1 Funciones de Varias Variables

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1 Funciones de Varias Variables"

Transcripción

1 EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3, 4). b) Calcular el Hessiano de f. a) Calculamos el vector unitario en la dirección de v. Como v 5 entonces u v/ v ( 3, 4 ). El gradiente de f vale: 5 5 ( ) f (f x, f y ) x + ln(y), y x + ln(y) y la derivada direccional en la dirección de u vale D u f f u 3 5 x + ln(y) x + ln(y). Su valor en el punto (x, y) (, e 2 ) es D u f(, e 2 ) ln(e 2 ) x + ln(e 2 ) 3e e 2 e 2 y b) Hf (x + ln(y)) 2 ( y y ( + x + ln(y)) y 2 ) 2. Hallar la divergencia y el Jacobiano de f(x, y, z) (sin(xy), e x+z, y 2 + z). Si denotamos f (f, f 2, f 3 ) entonces luego J f f x + f 2 y + f 3 y cos(xy) y cos(xy) z y cos(xy) x cos(xy) Jf e x+z e x+z 2y ( ) f, f 2, f 3 x, y, z f x f 2 x f 3 x f y f 2 y f 3 y f z f 2 z f 3 z Jf e x+z cos(xy) y x 2y ex+z cos(xy) ( 2y 2 x).

2 3. Calcula los extremos relativos de: a) f(x, y) y 3 x 3 + y 2 x 2 b) f(x, y) x 3 + y 2 6xy 39x + 8y + 2. a) Los puntos críticos son, (x, y ) (, ), punto de silla (x 2, y 2 ) (, 2 ), máximo relativo 3 (x 3, y 3 ) ( 2, ), mínimo relativo 3 (x 4, y 4 ) ( 2, 2 ), punto de silla. 3 3 b) Los puntos críticos son, (x, y ) (3, ), el Hessiano vale y no se puede saber por esta técnica. Habría que analizar el desarrollo de Taylor alrededor del punto (3,). (x 2, y 2 ) ( 2, 3), punto de silla. 4. Hallar el punto de la circunferencia x 2 + y 2 más cercano al punto (3, 2). (Ayuda: f(x, y) (x 3) 2 + (y 2) 2, F (x, y) x 2 + y 2 ). La distancia de un punto genérico del plano (x, y) al punto (3, 2) viene dado por la función f(x, y) (x 3) 2 + (y 2) 2. Esta es la función que tenemos que minimizar ya que queremos obtener la distancia mínima. Los puntos (x, y) no son cualesquiera, sino aquellos que pertenecen a la circunferencia de radio unidad, dada por la restricción: F (x, y) x 2 + y 2 (que es la circunferencia) como nos daban en la ayuda. Con estas funciones nos construimos la función lagrangiana: L (x 3) 2 + (y 2) 2 + λ(x 2 + y 2 ). Calculamos las derivadas parciales e igualamos a. L x L y x 3 (x 3) + λ2x 2 +(y 2) 2 y 2 (x 3) 2 +(y 2) 2 + λ2y L λ x 2 + y 2 que es un sistema de tres ecuaciones con tres incógnitas. Si despejamos λ de las dos primeras ecuaciones e igualamos (simplificando la raíz) obtenemos x 3 y 2 x y y si sustituimos el la tercera ecuación y(x 3) x(y 2) y 2 3 x, x x2 x ± 3 3 y ± 2 3 De aquí obtenemos dos soluciones (x, y ) ( 3, 3 ) y (x 3 3 2, y 2 ) ( 3, 3). 3 3 Estos puntos se corresponden con las distancias mínima y máxima, por lo que claramente podemos comprobar que la solución que se pide es (x, y ) ( 3 3, 3 3 ). 2

3 NOTA: Se obtendría exactamente lo mismo si en vez de la distancia al punto, f(x, y) (x 3) 2 + (y 2) 2, tomamos el cuadrado de la distancia, f(x, y) (x 3) 2 + (y 2) (a) Calcular la altura, h, y el radio, de un cilindro de superficie, S, para que su volumen, V cil, sea máximo. Obtén el volumen en función de S. (b) Calcular los lados, x, y, z de un paralelepípedo de superficie, S, para que su volumen, V cub, sea máximo. Obtén el volumen en función de S. (c) Una esfera de radio tiene de volumen, V esf 4 3 π3 y superficie S 4π 2, esto es, V esf 6 π S/3. Comprueba que V esf > V cil > V cub. a) Tenemos que V cil π 2 h y S 2π 2 + 2πh. Si denotamos (x, y) (, h) tenemos que la función a maximizar es f(x, y) πx 2 y y la restricción es F (x, y) 2πx 2 + 2πxy S. Por tanto, la función lagrangiana será: L(x, y, λ) πx 2 y + λ(2πx 2 + 2πxy S). La solución del sistema correspondiente es y 2x, esto es h 2. Sustituyendo y despejando de las expresiones de V cil y S obtenemos: V cil 3 6π S/3 b) La función lagrangiana es ahora L(x, y, λ) xyz + λ(2(xy + xz + yz) S). La solución es x y z y V cub 6 6 S/3. c) Claramente vemos que V cil V cub 2 π >, luego V esf > V cil > V cub. V esf 6 V cub π >, V esf 3 V cil 2 >, 6. (a) Calcular la altura, h, y el radio,, de un cilindro de volumen, V, para que su superficie, S cil, sea mínima. (b) Calcular los lados, x, y, z de un paralelepípedo de volumen, V, para que su superficie, S cub, sea mínima. a) La función lagrangiana es: L(x, y, λ) 2πx 2 + 2πxy + λ(πx 2 y V ), pero la solución es exactamente la misma. b) La función lagrangiana es ahora La solución es la misma. L(x, y, λ) 2(xy + xz + yz) + λ(xyz V ). 3

4 P M L 2. 2 Integrales Curvilíneas. Calcula el promedio de f(x, y, z) e y a lo largo de la curva C {(3, t 2, ), t [, ]}. L M dl f dl 2 2. Dada la hélice de curva l(t) (cos(t), sin(t), t), t [, 6π]: a) Calcular su longitud ( dl). b) Si la densidad lineal es δ(x, y, z) x 2 + y 2 + z, calcular la masa total del cable y la densidad promedio. c) Calcular el centro de gravedad y el centro geométrico (suponiendo densidad constante). a) L dl (x ) 2 + (y ) 2 + (z ) 2 dt ( sin(t))2 + (cos(t)) 2 + dt 2dt 2 6π b) La masa total es M δ dl 2 (x 2 + y 2 + z) (x ) 2 + (y ) 2 + (z ) 2 dt (cos 2 (t) + sin 2 (t) + t) 2 dt ( ) t + t2 6π 2(8π 2 + 6π) 2 y la densidad promedio será: δ M 3π +. L c) Z c.grav zδ dl t( + t) 2dt M M Z c.geom L z dl L t 2dt 3π. ( + t) 2dt 3π( + 4π) 2( + 3π) 4

5 3. Calcula la masa de la espiral dada por la curva en coordenadas polares ρ α, α [, 4π] y densidad lineal f(α, ρ) ρ. M f dl 3 ( ( + 6π 2 ) 3/2 ) 4. Calcula el área de la superficie cilíndrica x 2 +y 2 6 contenida en el primer cuadrante, limitada inferiormente por el plano XOY y superiormente por la superficie de ecuación, z xy. Como el dominio de definición (en el plano XY es una circunferencia, utilizaremos polares. La curva es ρ 4, α [, π/2]. El área es: π/2 A f dl (ρ cos(α))(ρ sin(α)) (ρ ) 2 + ρ 2 d α π/2 (4 cos(α))(4 sin(α)) d α 32 π/2 sin(2α)d α Siendo C la curva cerrada que delimita la región del plano comprendida entre y x 2, y 2 x, calcula el área y el perímetro de la figura Las curvas y x 2, y 2 x se cortan en (x, y) (, ) y (x, y) (, ), luego, la superficie se obtiene calculando la integral doble ( ) x A dx dy dy dx ( ( ) x x x 2 3/2 )dx D x 2 3/2 x3 3 3 El perímetro lo obtenemos considerando que la curva C se divide en dos partes (son dos parábolas abiertas hacia arriba y hacia la derecha y que intersectan en el primer cuadrante) C C C 2 C : y x 2 x [, ]} C 2 : y x x [, ]} Tenemos que C C + C 2 donde dl + (y ) 2 dx + 4x2 dx C 4 (2 5 + arcsin(2)) dl + (y ) 2 dx + C 2 4x dx 4 (2 5 + arcsin(2)). 5

6 3 Integración Múltiple. Cambiar el orden de integración de las siguientes integrales dobles (es conveniente dibujar las regiones en cuestión). a) 4 dy 2 f(x, y)dx (Sol.:) 2 dx f(x, y)dy b) a dx a 2 x 2 f(x, y)dy (Sol.:) a dy a 2 y 2 f(x, y)dx c) 3 dx 2x x/3 f(x, y)dy (Sol.:) dy 3y y/2 f(x, y)dx+ 9 dy 3 x+ y/2 f(x, y)dx d) 2 dy 2 y f(x, y)dx (Sol.:) dx 2 6 y f(x, y)dy+ 8 dx 2 x x+ 2 x+ e) dy 3 f(x, y)dx (Sol.:) dx 4+x f(x, y)dy+ 3 dx f(x, y)dy 2 y Dibuja la región de integración y calcula la integral I x cos(x + y)dxdy siendo S un triángulo de vértices (, ), (π, ), (π, π). I π dx x S x cos(x + y)dy 3 2 π. f(x, y)dy 3. Calcular I D a e (x2 +y 2) dx dy donde D a es el disco x 2 + y 2 a 2 Por la forma del dominio y el integrando, claramente se ve que la integral hay que realizarla utilizando coordenadas polares (x r cos(α), y r sin(α)) donde el Jacobiano sabemos que es r, luego 2π a [ I dα e r2 r dr2 π ] a 2 e r2 π ( e a2) 4. Calcular la masa del cubo D {(x, y, z) : x, y, z 2} de densidad δ(x, y, z) ( + x)e z y M 5 4 e(e ). 5. Calcular el centro de gravedad, (X CM, Y CM ), del cuadrado D {(x, y) : x, y } si la densidad superficial es δ(x, y) e x+y. Por la simetría del problema vemos que X CM Y CM, por lo que sólo calculamos el primero. Calculamos primero la masa total del cuadrado M e x+y dx dy dx e x+y dy (e ) e x dx (e ) 2. D 6

7 y el valor de X CM viene dado por X CM x e x+y dx dy dx x e x+y dy M D (e ) 2 x e x dx (e ) (e ). 6. Calcular I (z2 x 2 + z 2 y 2 ) dx dy dz donde es la región cilíndrica x 2 + y 2, z. Lo resolveremos utilizando coordenadas cilíndricas x r cos(α) 2π I z 2 (x 2 + y 2 ) dx dy dz y r sin(α) z z 2π dα r 3 dr z 2 dz π 3 z 2 r 2 r dα dr dz 7. Calcula el volumen de la esfera x 2 + y 2 + z 2 a 2. Si la densidad de la misma viene dada por δ(x, y, z) (x 2 + y 2 + z 2 ) /3, calcula su masa y la densidad media. Para este problema, lo más apropiado es utilizar coordenadas esféricas x r sin(θ) cos(ϑ) ( ) y r sin(θ) sin(ϑ) x, y, z z r cos(θ) J r 2 sin(θ) r, θ, ϕ y los límites de integración pasan a ser: r [, a], θ [, π], ϕ [, 2π], luego 2π π a V dx dy dz r 2 sin(θ)dr dθ dϕ 2π dϕ π sin(θ)dθ a r 2 dr 4 3 πa3. La masa total será, teniendo en cuenta que δ r 2/3 2π π a M δ(x, y, z)dx dy dz r 2/3 r 2 sin(θ)dr dθ dϕ 2 πa/3. y el promedio será P M V 9 a2/3 7

8 8. Calcular el volumen limitado por la región encerrada en (a < b): x 2 + y 2 + z 2 a 2 x 2 + y 2 + z 2 b 2 x 2 + y 2 z 2 Si utilizamos coordenadas esféricas, el recinto de integración es: r [a, b], θ [, π/4], ϕ [, 2π] (se puede considerar como una porción de la esfera de radio interior a y exterior b), luego 2π π/4 b V dϕ sin(θ)dθ a ( 2π ) 2 3 (b3 a 3 ). 2 r 2 dr 2π 3 (b3 a 3 ) [ cos(θ)] π/4 9. Considera la intersección de una esfera de radio con un cono cuyo vértice esta en el centro de la esfera y tiene una abertura de ángulo α. Calcula a) El centro de gravedad de la figura (densidad constante). b) La superficie total de la pieza. a) Por la simetría del problema, las coordenadas más apropiadas para resolver el problema son las coordenadas esféricas. x r sin(θ) cos(ϑ) y r sin(θ) sin(ϑ) z r cos(θ) ( ) x, y, z J r 2 sin(θ) r, θ, ϕ Si suponemos que la pieza esta situada con simetría de revolución respecto al eje z, y los límites de integración pasan a ser: r [, ], θ [, α], ϕ [, 2π]. En primer lugar calculamos el volumen de la pieza 2π α V zdx dy dz r 2 sin(θ)dr dθ dϕ 2π dϕ D α sin(θ)dθ r 2 dr 3 2 π3 ( cos(α)). Obsérvese que si α π tenemos la esfera total y el volumen es V 4 3 π3, y si α π/2 tenemos el volumen de media esfera. Para calcular el centro de gravedad, por la simetría del problema tiene que estar en el eje z, por lo que sólo tenemos que calcular Z c.g. zdx dy dz 2π α r cos(θ)r 2 sin(θ)dr dθ dϕ M M M 2π dϕ D α cos(θ) sin(θ)dθ 8 r 3 dr 3( cos(2α)) 6( cos(α)).

9 Obsérvese que si α π tenemos la esfera total y el centro de gravedad esta en el origen, Z c.g., y si α π/2 tenemos media esfera, y su centro de gravedad es Z c.g b) El área se puede obtener también fácilmente utilizando coordenadas cartesianas utilizando. Para la ecuación de la parte esférica utilizaríamos z 2 x 2 y 2 y para la ecuación del cono z m x 2 + y 2, con x 2 + y 2 2 sin(α). Las integrales dobles las resolveríamos utilizando coordenadas polares. Para calcular la superficie de la pieza, primero calculamos la superficie de la parte esférica, S e, y después la del cono, S c. S e (z x ) 2 + (z y ) 2 + dx dy dx dy S S 2 x 2 y2 2π sin(α) 2 r 2 r dr dα2π 2 ( cos(α)) S c S m2 + dx dy m 2 + π( sin(α)) 2 π 2 sin(α) 9

a n en las que n=1 s n = n + 1 Solución: a) Utilizando el criterios de D Alembert se obtiene que a n+1 n a n 3 > 1 n=1

a n en las que n=1 s n = n + 1 Solución: a) Utilizando el criterios de D Alembert se obtiene que a n+1 n a n 3 > 1 n=1 EJERCICIO DE FUNDAMENTO MATEMÁTICO eries. Estudia el carácter de las series (a El término general es a n en las que (b la suma parcial n-sima es a n n n+ 3 n, n,, 3,... s n n, n,, 3,... n + olución: a

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican:

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican: INTEGACION EN VAIAS VAIABLES: Integrales dobles.. Evaluar las siguientes integrales iteradas: (x y + y )dy dx xye x+y dy dx ( x ln y)dy dx ln [((x + )(y + )] dx dy. 3 ; ; ; ln. 5. Sea I = [, ] [, 3]. Calcular

Más detalles

Teorema 1 (Cambio de Variable en R n ).

Teorema 1 (Cambio de Variable en R n ). Vamos a estudiar en este segundo capítulo sobre los cambios de variable para funciones de varias variables, algunos de los más habituales: los cambios de coordenadas a coordenadas polares en el plano,

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

Integral Doble e Integral Triple

Integral Doble e Integral Triple www.cidse.itcr.ac.cr/revistamate Práctica 6 Integral Doble e Integral Triple Cambio de variable con coordenadas polares y coordenadas ciĺındricas. Cálculo Superior Instituto Tecnológico de Costa ica Escuela

Más detalles

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera EJECICIOS E CA LCULO II PAA GAOS E INGENIEI A Elaborados por omingo Pestana y Jose Manuel odrı guez, con Arturo de Pablo y Elena omera 3 3. Integracio n en n Integral mu ltiple. f en los siguientes casos:

Más detalles

Integrales Múltiples.

Integrales Múltiples. CAPÍTULO 9 Integrales Múltiples. En este capítulo generalizamos las integrales definidas de una variable a dos y tres variables. La interpretación geométrica de las integrales definidas de una variable

Más detalles

3 Integración en IR n

3 Integración en IR n a t e a POBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CUSO 29 21 3 Integración en I n 3.1 Integral múltiple. Problema 3.1 Calcula f en los siguientes casos: Q i) f(x, y) =

Más detalles

Integración múltiple: integrales dobles

Integración múltiple: integrales dobles Problemas propuestos con solución Integración múltiple: integrales dobles ISABEL MAEO epartamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice. Integrales iteradas 2. Teorema

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

Tema 2. Ejercicios propuestos

Tema 2. Ejercicios propuestos Tema 2. Ejercicios propuestos 1.- - Calcular 2.- - Calcular 3.- - Sea = x2 y2 dx dy, siendo = {(x, y) 2 : 1 x y 2, x y 4x}. (x2 +y2 )dx dy, donde = (x, y) 2 : x2 + y2 2y, x2 + y2 1, x 0. (x, y) 2 1 x 2

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

( ) x y dxdy. x y dxdy y. sin 2θ 2 = = = x y dxdy. 3 4y y ln. 1

( ) x y dxdy. x y dxdy y. sin 2θ 2 = = = x y dxdy. 3 4y y ln.   1 Cálculo II Exámenes esueltos Tercer Parcial. Evaluar la integral, pasando a coordenadas polares: Solución: haciendo los siguientes cambios, ( ) 4y 4y 4y x y y 4y 4y 4 4 4y x y sin θ x y = r ( sinθcosθ

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral 8 de junio de (Soluciones) Cuestiones C Sí se puede asegurar que es integrable, como consecuencia del teorema 4. de los apuntes: Llamamos W y f : W R a la esfera y a la

Más detalles

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2.

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. 1 1 4, 0 1 a.- (, ) = 2 1 4, 1 2 2 1 < 3, 0 < 1 b.- (, ) = 1 1 < 3, 1 2 3 3 4,

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. Cálculo III, Examen Final. Semestre Primavera 1 Tiempo: 11 min. Problema 1 [1,5 puntos] La curvatura de una trayectoria

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas III GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Considera la integral doble π π ibuja la región del plano XY en la que se está integrando. Usa el teorema

Más detalles

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8 ANALISIS MATEMATIO II (iencias- 2011) Integrales sobre curvas (o de línea) Trabajo Práctico 8 1. Evaluar las siguientes integrales curvilíneas γ f ds. (a) f(x, y, z) = x + y + z ; r(t) = (sen t, cos t,

Más detalles

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS Análisis Matemático I (Ing. de Telecomunicación), 29-1 Examen final, 26 de enero de 21 RESPUESTAS A AMBOS MODELOS Primera Parte Las preguntas 1 14 son de tipo test. Se pide elegir una única respuesta en

Más detalles

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE PLANO TANGENTE Y VECTOR NORMAL. AREA DE UNA SUPERFICIE 1) En cada uno de los siguientes ejercicios se presenta una S dada en forma paramétrica,

Más detalles

Integrales Múltiples.

Integrales Múltiples. CAPÍTULO 8 Integrales Múltiples. En este capítulo generalizamos las integrales definidas de una variable a dos y tres variables. La interpretación geométrica de las integrales definidas de una variable

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green ANÁLISIS MATEMÁTIO II - Grupo iencias 018 Práctica 9 ampos conservativos - Teorema de Green A. ampos conservativos 1. Mostrar que F x, y) = y cos x) i + x sen y) j no es un campo vectorial gradiente..

Más detalles

Tema 4: Integración de funciones de varias variables

Tema 4: Integración de funciones de varias variables Departamento de Matemáticas. Universidad de Jaén. Análisis Matemático II. Curso 29-21. Tema 4: Integración de funciones de varias variables 1. Evaluar las siguientes integrales iteradas e) f ) g) 1 2 1

Más detalles

TERCER EXAMEN EJERCICIOS RESUELTOS

TERCER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II G. I. T. I.) TERCER EXAMEN 4 EJERCICIOS RESUELTOS EJERCICIO. ) Dibuja la región limitada por la circunferencia de ecuación r = r θ) = senθ) y la lemniscata de ecuación r = r θ) = cosθ).

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-112-4-V-1--217 CURSO: SEMESTRE: Primero CÓDIGO DEL CURSO: 112 TIPO DE EXAMEN: Examen Final Parcial FECHA DE

Más detalles

Ejercicios recomendados: Cálculo III

Ejercicios recomendados: Cálculo III Ejercicios recomendados: Cálculo III Cátedra de MA 1003 II ciclo 2017 Los ejemplos que siguen están tomados del libro: Claudio Pita Ruiz Cálculo Vectorial Prentice-Hall Hispanoamericana México 1995 Ejemplos

Más detalles

COORDENADAS POLARES O CILÍNDRICAS

COORDENADAS POLARES O CILÍNDRICAS COORDENADAS POLARES O CILÍNDRICAS Para definir la posición de un punto en un plano (o en el espacio) podemos utilizar distintos tipos de coordenadas, siendo las más normales las coordenadas rectangulares

Más detalles

Gu ıa Departamento Matem aticas U.V.

Gu ıa Departamento Matem aticas U.V. Universidad de Valparaíso Instituto de Matemáticas Guía de Cálculo en Varias Variables Integración. Sean = [,] [,] {(x,y) : (x,y) < } y f : continua. a) Escriba lafuncióncaracterísticaχ demedianteunafunciónporparte,análogamente

Más detalles

MATE1207 Cálculo Vectorial Taller 1 Preparación P2 Repaso semana 12

MATE1207 Cálculo Vectorial Taller 1 Preparación P2 Repaso semana 12 Universidad de los Andes Departamento de Matemáticas MATE127 Cálculo Vectorial Taller 1 Preparación P2 Repaso semana 12 1. Encuentre, si existen, los máximos locales, mínimos locales y puntos de silla

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS Examen de febrero EJECICIO ( h. 3 min.) 13 de junio de 9 1. En E 3 se considera el plano de ecuación x y z = 5. Se pide: a) Ecuaciones de la proyección ortogonal sobre dicho plano.

Más detalles

SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN

SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN Sistemas de coordenadas 3D Transformaciones entre sistemas Integrales de línea y superficie SISTEMA COORDENADO CARTESIANO O RECTANGULAR

Más detalles

Tema 3: Diferenciabilidad de funciones de varias variables

Tema 3: Diferenciabilidad de funciones de varias variables Departamento de Matemáticas. Universidad de Jaén. Análisis Matemático II. Curso 2009-2010. Tema 3: Diferenciabilidad de funciones de varias variables 1. Calcular las dos derivadas parciales de primer orden:

Más detalles

Tarea 2 - Vectorial

Tarea 2 - Vectorial Tarea - Vectorial 5.. Evaluar las siguientes integrales.. Part : 5. - 7. () sin(x + y ) da, () R donde R es la region del plano xy definida por x + y. (xy) cos(x ) da, donde R [, ] [, ]. R Solución: ()

Más detalles

Integración múltiple: integrales triples

Integración múltiple: integrales triples Problemas propuestos con solución Integración múltiple: integrales triples ISABEL MARRERO epartamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Integrales iteradas 1. Teorema

Más detalles

Lista de Ejercicios Complementarios

Lista de Ejercicios Complementarios Lista de Ejercicios omplementarios Matemáticas VI (MA-3) Verano. ean α >, β > y a, b R constantes. ea la superficie que es la porción del cono de ecuación z = α x + y que resulta de su intersección con

Más detalles

INTEGRALES MÚLTIPLES

INTEGRALES MÚLTIPLES INTEGALES MÚLTIPLES Introducción: Si f es una función definida sobre una región, la integral doble se puede interpretar como el volumen del sólido limitado superiormente por la superficie z = f(,, inferiormente

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de 4 Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico con semieje orizontal a

Más detalles

Integrales de Superficie.

Integrales de Superficie. CAPÍTULO 10 Integrales de Superficie. Este capítulo cierra los tipos de integrales que estudiamos en el curso. Se practica el concepto de integral de superficie y se dan aplicaciones geométricas y físicas.

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =

Más detalles

La puntuación depende del modo de resolución.

La puntuación depende del modo de resolución. Grupo B 16/17 Ampliación de Cálculo En todos los casos, se pide contestar razonadamente La puntuación depende del modo de resolución Ejercicio 1 (15 puntos por apartado) Una semiesfera sólida de densidad

Más detalles

Integrales de Superficie.

Integrales de Superficie. CAPÍTULO 9. Integrales de Superficie. Este capítulo cierra los tipos de integrales que estudiamos en el curso. Se practica el concepto de integral de superficie y se dan aplicaciones geométricas y físicas.

Más detalles

SERIE # 4 CÁLCULO VECTORIAL

SERIE # 4 CÁLCULO VECTORIAL SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

Selectividad Matemáticas II junio 2011, Andalucía

Selectividad Matemáticas II junio 2011, Andalucía Selectividad Matemáticas II junio, Andalucía Pedro González Ruiz junio de. Opción A Problema. Se desea construir un depósito cilíndrico cerrado de área total igual a 54 m. Determinar el radio de la base

Más detalles

Pauta Auxiliar N 10 Aplicaciones de la Integral I Viernes 1 de Junio de 2012

Pauta Auxiliar N 10 Aplicaciones de la Integral I Viernes 1 de Junio de 2012 Pauta Auxiliar N Aplicaciones de la Integral I Viernes de Junio de P.- (P Examen Adicional - ) Sea A la región delimitada por las rectas y = x, y = ax, y = ax, a a) Calcule el área de A y el volumen del

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen de 1 de Septiembre de 2009 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen de 1 de Septiembre de 2009 Primera parte ÁLULO Primer curso de ngeniero de Telecomunicación Examen de de Septiembre de 9 Primera parte Ejercicio. En un círculo de radio a se toma un diámetro POQ. Sobre la perpendicular al círculo en el punto

Más detalles

SEGUNDO PARCIAL (3/6/2015)

SEGUNDO PARCIAL (3/6/2015) NOMBE Y nº de MATÍCULA: SEGUNDO PACIAL (3/6/15) 1.. (.5 ptos.) Calcular la integral doble: y sin(x ) dxdy, siendo el recinto acotado del primer cuadrante limitado por las curvas de ecuaciones respectivas

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES . DIFERENCIABILIDAD EN VARIAS VARIABLES. Calcular las derivadas direccionales de las siguientes funciones en el punto ā y la dirección definida por v... f(x, y = x + 2xy 3y 2, ā = (, 2, v = ( 3 5, 4 5.

Más detalles

ETSII Febrero Análisis Matemático.

ETSII Febrero Análisis Matemático. Departamento de Análisis Matemático ETSII Febrero 2000. Análisis Matemático. Problema 1. (1 punto) Calcular los siguientes ites: e x e senx x 0 x senx x π/4 (tgx)tg2x Problema 2. (2 puntos) Considérese

Más detalles

Parametrización de superficies Integrales de superficie. h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/

Parametrización de superficies Integrales de superficie. hp://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de superficies Integrales de superficie h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de una superficie en R 3 ea un dominio del espacio R 2, donde los puntos están definidos

Más detalles

Certamen 2 - Mate 024 (Pauta)

Certamen 2 - Mate 024 (Pauta) Certamen - Mate 4 (Pauta) noviembre 6, 14 1. Calcular γ x 4 + y 4 1 dx + y 3 x 4 + y 4 1 dy en cada uno de los siguientes casos: a) γ es la curva x + y = 1 4 y se recorre en sentido positivo. b) γ es la

Más detalles

Capítulo 5. Integrales sobre curvas y superficies

Capítulo 5. Integrales sobre curvas y superficies Capítulo 5. Integrales sobre curvas y superficies 5.1. Integrales de funciones escalares sobre curvas 5.2. Integrales de campos vectoriales sobre curvas 5.3. Teorema de Green 5.4. Integrales sobre superficies

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema UCM Matemáticas II Examen Final, 8/05/014 Soluciones 1 Dado el parámetro a R, se considera el sistema lineal x +y t = 1 x +y +z +t = x y +z t = 7 x +6y +z +t = a (a (6 puntos Discutir el sistema según

Más detalles

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 1 Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 215-1 El material relativo al temario puede ser consultado en la amplia bibliografía que allí se menciona o en alguno de los muchísimos

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto.

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto. 1 Sea f : R R una función C 3 que satisface f(1, ) = (0, 0), y cuya matriz ( Hessiana ) en (1, ) es: 1 0 H = 0 Hallar todos los b ɛ R de manera que la función: g( = f( + 1 b b (y ) ) tenga extremo en (1,

Más detalles

Tema 2. Funciones de varias variables El espacio n-dimensional. Definición 2.1

Tema 2. Funciones de varias variables El espacio n-dimensional. Definición 2.1 Tema Funciones de varias variables... El espacio n-dimensional. Definición. El espacio n-dimensional, cuyos elementos reciben el nombre de puntos, es el conjunto: R n = {x, x,..., x n )/x, x,..., x n R}.

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

i j k xy yz xz = = Div Rot F = x y z

i j k xy yz xz = = Div Rot F = x y z Div Rot F, si F = ( xy, yz, xz) 1. Hallar: primero, debemos hallar rotor de la función vectorial. i j k Rot ( F ) = ( xy, yz, xz) =,, ( xy, yz, xz) = x y z xy yz xz ( xz) ( yz) ( xy) ( xz) ( yz) ( xy)

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

b) Halle el punto de corte del plano π con la recta que pasa por P y P.

b) Halle el punto de corte del plano π con la recta que pasa por P y P. GEOMETRÍA 1- Considere los puntos A(1,2,3) y O(0,0,0). a) Dé la ecuación de un plano π 1 que pase por A y O, y sea perpendicular a π 2 : 3x-5y+2z=11. b) Encuentre la distancia del punto medio de A y O

Más detalles

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO APUNTES E MATEMÁTICAS EXÁMENES RESUELTOS E MATEMÁTICAS I EPARTAMENTO E ECONOMÍA APLICAA I UNIVERSIA E SEVILLA GRAOS EN ECONOMÍA Y AMINISTRACIÓN E EMPRESAS PRIMER CURSO Jesús Muñoz San Miguel http://www.personal.us.es/jmiguel

Más detalles

PRÁCTICAS DE CÁLCULO PARA I. QUÍMICA

PRÁCTICAS DE CÁLCULO PARA I. QUÍMICA PRÁCTICS DE CÁLCULO PR I. QUÍMIC Departamento de nálisis Matemático Curso 2005/2006 Práctica 1 Cálculo Diferencial............................... 1 Práctica 2 Cálculo Integral.................................

Más detalles

MATE1207 Cálculo Vectorial Tarea 2 Individual Entregue a su profesor en la Semana 11 (Ma Vi. 21 de Octubre)

MATE1207 Cálculo Vectorial Tarea 2 Individual Entregue a su profesor en la Semana 11 (Ma Vi. 21 de Octubre) Universidad de los Andes Departamento de Matemáticas MAT27 Cálculo Vectorial Tarea 2 Individual ntregue a su profesor en la Semana (Ma. 8 - Vi. 2 de Octubre) Segundo xamen Parcial: Sábado 29 de Octubre,

Más detalles

Fundamentos matemáticos. Tema 6 Aplicaciones de la derivada

Fundamentos matemáticos. Tema 6 Aplicaciones de la derivada Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 6 Aplicaciones de la derivada José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

Geometría de masas: Cálculos del tensor de Inercia

Geometría de masas: Cálculos del tensor de Inercia Departamento: Física Aplicada Mecánica acional (ngeniería ndustrial) Curso 007-08 eometría de masas: Cálculos del tensor de nercia Tensor de inercia de una varilla delgada. Calculo del tensor de inercia

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. 2do. cuatrimestre de 2015 Práctica 2 - Integrales de superficie. Definición.1. Una superficie paramétrica (superficie a secas para nosotros) es un conjunto

Más detalles

CÁLCULO III (0253) EXAMEN DE REPARACIÓN 30/06/09. 3t 3t 3 3

CÁLCULO III (0253) EXAMEN DE REPARACIÓN 30/06/09. 3t 3t 3 3 CÁLCULO III (05) 0/06/09 a Estudie la curva de ecuación vectorial t t r(t) =,, + t + t tomando en cuenta: dominio, cortes con los ejes, signo, simetrías, asíntotas, puntos asintóticos, tangentes, puntos

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

UNIVERSIDAD NACIONAL Facultad de Ciencias Departamento de Matemáticas. TALLER III Profesor: H. Fabian Ramirez Maximos- Mínimos y Integrales Multiples

UNIVERSIDAD NACIONAL Facultad de Ciencias Departamento de Matemáticas. TALLER III Profesor: H. Fabian Ramirez Maximos- Mínimos y Integrales Multiples UNIVESIDAD NACIONAL Facultad de Ciencias Departamento de Matemáticas TALLE III Profesor: H. Fabian amirez Maximos- Mínimos y Integrales Multiples. Porque la función f(x,y) = x x y con dominio D = {(x,y)

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral de junio de 11 (Soluciones) Cuestiones C 1 La respuesta es que la función es integrable, como consecuencia del Teorema 1.1 de los apuntes, o el Teorema del Capítulo 5 del

Más detalles

ANALISIS II 12/2/08 COLOQUIO TEMA 1

ANALISIS II 12/2/08 COLOQUIO TEMA 1 ANALISIS II //08 COLOQUIO TEMA Sea f : R R un campo vectorial C y C la curva parametrizada por: γ(t) = (cost, 0, sent) con t ɛ [0, π] Sabiendo que C f ds = 6 y que rot( f( ) = (z, ), calcular la integral

Más detalles

Parametrización de curvas Integrales de linea. h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/

Parametrización de curvas Integrales de linea. hp://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de curvas Integrales de linea h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Curvas en el espacio En el espacio, una curva se define por el corte de dos superficies. La forma más general

Más detalles

Ejercicios típicos del segundo parcial

Ejercicios típicos del segundo parcial Ejercicios típicos del segundo parcial El segundo examen parcial consiste en tres ejercicios prácticos y dos teóricos, aunque esta frontera es muy difusa. Por ejemplo, el primer ejercicio de esta serie,

Más detalles

Soluciones Matemáticas II Examen Final 2º Parcial 3-Julio-07. 1) La temperatura en un punto (x, y) de una lámina metálica es T(x, y) =.

Soluciones Matemáticas II Examen Final 2º Parcial 3-Julio-07. 1) La temperatura en un punto (x, y) de una lámina metálica es T(x, y) =. Soluciones Matemáticas II Examen Final º Parcial 3-Julio-07 3x 1) La temperatura en un punto (x, y) de una lámina metálica es T(x, y) =. x + y a) Hallar la curva de nivel (isoterma) que pasa por el punto

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Índice general Programa III Tema 1. Enunciados 1 Tema 2. Enunciados 6 Tema 3. Enunciados 12 Tema 4. Enunciados

Más detalles

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas.

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas. CÁLCULO Práctica 4.2 Cálculo diferencial en varias variables (Curso 2017-2018) 1. Sean f, h: IR 2 IR funciones definidas del siguiente modo: x 3 f(x, y) = x 2, (x, y) (0, 0) + y2 a) Estudiar la continuidad

Más detalles

Ejercicios Tercer Parcial del curso MA-1003.

Ejercicios Tercer Parcial del curso MA-1003. Ejercicios para MA 1003: álculo III 1 UNIVERIDAD DE OTA RIA FAULTAD DE IENIA EUELA DE MATEMÁTIA DEPARTAMENTO DE MATEMÁTIA APLIADA MA-1003 álculo III I ILO 2018 Ejercicios Tercer Parcial del curso MA-1003.

Más detalles

1.6 Ejercicios resueltos

1.6 Ejercicios resueltos Apuntes de Ampliación de Matemáticas 1.6 Ejercicios resueltos Ejercicio 1.1 En cada uno de los siguientes casos a A {(x,y R : 1 < x < 1, 1 < y < 1}. b A {(x,y R : 1 < x + y < 4}. c A {(x,y R : y > 0}.

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

Solución y Pautas de Corrección

Solución y Pautas de Corrección Universidad de los Andes Departamento de Matemáticas MATE127 Cálculo Vectorial Examen Final (1/12/29) 1 Prob. 1 2 3 4 5 Valor 1 1 1 1 1 5 Puntos Nombre: Código: Sección: Escriba todo su análisis si desea

Más detalles

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas.

Cálculo diferencial en varias variables (Curso ) a) Estudiar la continuidad en el origen de las funciones dadas. CÁLCULO Práctica 4.2 Cálculo diferencial en varias variables (Curso 2016-2017) 1. Sean f, h: IR 2 IR funciones definidas del siguiente modo: x 3 f(x, y) = x 2, (x, y) (0, 0) + y2 a) Estudiar la continuidad

Más detalles

+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima.

+ ax 2 + bx) x. ( 2 sen(x) 0 (a + b sen(x) sen(2x))2 dx sea mínima. Facultad de Ingeniería - IMERL Cálculo - Curso. Práctico 8. Integrales paramétricas e integrales iteradas dobles y triples. Integrales múltiples. Cambio de variables, áreas, volúmenes, sumas de Riemann

Más detalles

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES 9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,

Más detalles

MÉTODOS MATEMÁTICOS II

MÉTODOS MATEMÁTICOS II MÉTODOS MATEMÁTICOS II (Licenciatura de Física. Curso 2007-2008) Boletín de problemas a evaluar correspondientes a los Temas I y II Fecha de entrega: Viernes, 23 de Noviembre de 2007 1. Calcula los siguientes

Más detalles

Integral doble 1.- Calcular el área representada en el gráfico mediante una integral doble.

Integral doble 1.- Calcular el área representada en el gráfico mediante una integral doble. Integral doble 1.- Calcular el área representada en el gráfico mediante una integral doble..- Colocar los límites de integración en uno y otro orden, en la integral doble: f(x,y)dxdy para los recintos:

Más detalles

GUÍA DE EJERCICIOS - INTEGRALES MÚLTIPLES

GUÍA DE EJERCICIOS - INTEGRALES MÚLTIPLES GUÍA DE EJERIIOS - INTEGRALES MÚLTIPLES 1. Escriba la expresión que permite calcular por integrales dobles: a. El área de una región plana R. b. El volumen de un sólido V, de altura z = f(x,y). c. La masa

Más detalles