sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

Tamaño: px
Comenzar la demostración a partir de la página:

Download "sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x"

Transcripción

1 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) = (4cost, 1,4sent) con t [ 0, π ]. Sabiendo que f. ds = 8 C línea del campo f a lo largo de la recta ( 4,1,0). sea 148 π. 1 C y la curva C parametrizada por y que rot f = ( z, x, ), calcular la integral de y = 1 L : desde ( 4,1,0 ) hasta z = 0 y 4. Calcular la integral de línea del campo f ( x, y) = (x y +, x y + y x) a lo largo de la curva solución de la ecuación diferencial xy, = 5x y desde (, ) hasta ( 1, y (1)). 4. Sea C la curva definida como intersección de las superficies 0 u π S 1: ϕ ( u, v) = ( vcos( u), v sen( u), v ) con y 0 v S : y = x a) Hallar una parametrización de C y graficarla. b) Hallar la masa de un alambre cuya forma coincide con la de la curva C, sabiendo que su densidad en cada punto está dada por la función 4 6 δ ( x, = 1+ 8x + 16x + 16x. 5. Hallar los extremos de la función f ( x, = x + y + z restringida a la curva ( x 1) y C + = x + z =

2 1. Sea Ω R definida por x + z, 0 y x + z. Calcular el flujo del campo f ( x, = (x a través de la superficie borde de Ω. Indicar en un gráfico la dirección del vector normal elegido.. Sea C la curva definida por x + az = 1, y = 1, a > 0 y F : R R un campo C que satisface que rotf = ( 1,1 x x. Hallar a > 0 de manera que la circulación de F a lo largo de C sea π. Orientar la curva de manera que en ( 1,1,0 ) la tangente tenga coordenada z positiva.. Hallar la ecuación de la familia de curvas ortogonales a las curvas definidas por x = ky. 4. Si A R es una región de área, calcular el área de B = ( x, y) R : (x x + y) A { }. 5. Sea g : R 1 R una función C. Calcular la circulación del campo F( x, = ( xy 9yg( x,,g( x,,xg( x, ) desde ( x 0,1, z0 ) hasta ( x 1,8, z1) a lo largo de la curva C cuyos puntos pertenecen a la superficie de ecuación z = y x, y su proyección sobre el plano xy cumple con la ecuación y = x.

3 1. Calcular el flujo del campo F ( x, = ( y, x, z ) a través de la superficie x = 4 y z con x 0. Considere la normal de componente x positiva.. Sea P R : R una función C en R. Hallar la circulación del campo F ( x, = (x + P( x,, P( x, + a lo largo de la curva C de ecuaciones z = 4 x y, x x + y = 0, orientada de manera que su tangente en (,0,0) tenga coordenada y positiva. Sugerencia: Comprobar que C es una curva plana.. Sea S una porción de área del cono de ecuación z = x + y. Calcular el flujo del campo F ( x, = ( x, 1 + a través de S, considerando la normal de componente z positiva. 4. Un corcho flota en la superficie de un estanque y su velocidad depende de su posición según V ( x, y) = ( x). Hallar la trayectoria del corcho si a tiempo t = 0 está en el punto de coordenada ( 1,0). x x 5. Calcular el trabajo del campo F( x, y) = ( e sen( y) + e cos( y) + x y) a lo largo de la curva definida por: 4x + y = 4, y 0 desde el (1,0) hasta el (-1,0).

4 FIUBA Análisis Matemático II Integrador -Tema 1 1. Sea C la curva definida como intersección de las superficies de ecuaciones: x = y, z = y con y 1. Calcular el trabajo del campo de fuerzas F (x, = (x, y) sobre una partícula cuya trayectoria es la curva C, sabiendo que su vector velocidad tiene componente y positiva.. Sea F (x, = (x z 5 sen(y), y z + h(x,, z x cos(y )) con h un campo escalar C (R ). Sea C la curva definida como intersección de las superficies de ecuaciones: y = x + 4z ; y = 6 x 4z. Calcule la circulación del campo F a lo largo de la curva C. Indique en un gráfico la orientación elegida para la curva.. Hallar el volumen del sólido limitado por el paraboloide z = x + y y el plano tangente al gráfico de f(x, y) = y + 1 en el punto (, 1, f(, 1)). 4. Sea la familia de curvas de ecuaciones y = k(x + ) + 1. Hallar una curva perteneciente a la familia ortogonal a la familia dada que encierre una región de área 8π. 5. Determinar los valores de a y b R para que el flujo del ϕ a través de la superficie S alcance valores extremos, con S orientada de manera que el vector normal en el punto (0, 0, 5) tenga componente z positiva, sabiendo que: a + b =, 0 a. ϕ es un campo escalar C (R ), armónico en R ϕ z (x, = 1 ( a x + b z ). π S = {(x, R : x + y + z = 5z ; z > 1}.

5 FIUBA Análisis Matemático II Integrador -Tema 1 1. Sea U(x, = x z + y una función potencial del campo F. Calcular el flujo de F a través del plano tangente a la superficie x + y + z = 6 en el punto (, 1, 1) en el primer octante. Indique en un gráfico la orientación elegida para el plano.. Dada f(x, y) = (x + ) y + x + hallar su derivada direccional máxima en el punto de la circunferencia x + y = 1 más alejado del punto (, ).. Sea D R el conjunto limitado por las rectas x y = 1, y = 0, x y =, x = 0. Calcular dx dy. Sugerencia: usar u = x + v = x y. 4. Sea F : R R, F (x, y) = (x + y ) (x, a y). D e x+y x y a) Encontrar el valor de a para que F sea conservativo y con ese valor hallar las expresiones de las líneas de campo. b) Comprobar que las líneas de campo halladas en (a) son ortogonales a las curvas equipotenciales y graficarlas. 5. Sean f(x, = x y + z 4 /1 + g(x,, f y (x, = x + g armónica en R y S = {(x, R : y = x + z ; y 4}. Calcular el flujo del f a través de la superficie S orientada de forma tal que el versor normal en cada punto cumpla n.(0, 1, 0) > 0.

6 FIUBA Análisis Matemático II Integrador -Tema 1 1. Sean T : R R, T (x, y) = x + y y un campo escalar de temperaturas, y C = {(x, y) R : x + y = y}. Hallar las temperaturas extremas sobre la curva C. Graficar la curva C y las curvas de nivel del campo escalar correspondientes a esos valores extremos.. Hallar la familia de curvas planas tales que en cada punto P = (x 0, y 0 ), con y 0 0, la recta tangente a la curva en P corte al eje y en (0, y 0 ).. Sean A, B y C los puntos donde el plano tangente a la superficie de ecuación z = x y+y +4 x y resulta paralelo al plano x y P la poligonal cerrada que tiene a los puntos mencionados como vértices. Calcular los puntos A, B y C y la circulación de F (x, = ( y z+g(x), 4 x z, x) a lo largo de P, siendo g C 1 (R). Indicar gráficamente la orientación elegida para la poligonal. 4. Sea F : R R un campo C (R ) con matriz jacobiana y y x y Hallar el flujo del campo F sobre la superficie frontera del cuerpo limitado por (x 1) + y + (z ) 4, indicando la normal utilizada. 5. Elegir una función g : R R de manera que la circulación del campo F (x, y) = (g(y), x + y) a lo largo del perímetro del paralelogramo de vértices (1, 1), (, ), (, 5) y (1, 4), recorrido en sentido antihorario, sea 6.

7 FIUBA Análisis Matemático II Integrador -Tema 1 1. Determinar el punto en que la función g(x, = x y + z toma su valor máximo sobre la curva C = {(x, R : x + y = 1, x y + z = 1}.. Siendo f(x, = x + z un campo escalar definido en R y S = {(x, R : x + z = 4, 1 x + y + z }, calcular el flujo del campo vectorial f a través de S, indicando la normal utilizada.. Sea S la superficie esférica de centro (R, 0, 0) y radio R. El campo F (x, = ( x h(x) + y h(x), 4 z ) satisface F (1, 1, 1) = (,, 4). Hallar una función h = h(x) para que el flujo saliente de F a través de S sea igual a 1 veces el volumen de la esfera. Escribir claramente las condiciones que debe cumplir la función h y verificarlas para la función hallada. 4. Sea la curva C = {(x, R : z = 4 x, y = 1, 0 z}. Calcular la circulación de F (x, = ( x, x y + z, y + g( ) a lo largo de C desde el punto (, y 0, z 0 ) hasta el punto (, y 0, z 0 ) sabiendo que g C 1 (R). 5. Calcular el volumen del sólido W = {(x, R : x + y + z 4, x + y x, 0 x, 0 0 z}.

8 FIUBA Análisis Matemático II Integrador -Tema 1 1. Sea el campo de fuerzas F :R R, F(x,y) =(x) actuando sobre una partícula que se desplaza en el plano, desde el origen de coordenadas a un punto R 1 = (x 1, y 1 ) de la circunferencia x + y = 5. Demostrar que el trabajo realizado por el campo de fuerzas sobre la partícula depende solamente del punto final R 1 y no de la trayectoria y calcular él o los puntos R 1 para el cual este trabajo es máximo.. Sea F : R R, F (x, = (x 7, x +. Calcular el flujo de F a través de la porción del plano normal a la curva de ecuación γ(t) = (t, t 5 t +, t 4), t [1, 4] en el punto (, 1, ) en el primer octante. Indicar en un gráfico la normal utilizada.. Sea S la porción de cilindro α(u, v) = (v, cos(u), sen(u)), con 0 u π/, 0 v u. Graficar la superficie S y siendo F (x, = (P (x), Q(, R( ), con Q, R C (R ), y P C (R), hallar la circulación de F sobre la curva frontera de S indicando claramente la orientación elegida para la curva. 4. Sea F : R R, F (x, y) = (x y + y + cos(x), x + sen(y) + xy). Calcular la circulación de F a lo largo de la curva solución de la ecuación diferencial y y + x 1 = 0 que pasa por el (1, 1), con sentido de circulación antihorario y recorrida una sola vez. 5. Calcular el flujo del campo vectorial F (x, = (sen(y) + x, e x + sobre la superficie S = {(x, R : z = x + y, z 4}, con el vector normal alejándose del eje z.

9 FIUBA Análisis Matemático II Integrador - Tema 1 1. Sea D = {(x, y) R : 0 y x + x + y 4} y D su frontera, calcule D + f. dl sabiendo que f (x, y) = (xy xg(x y ), yg(x y )) con g C (R).. Sea la superficie S de ecuación y = + x + z con y 5, orientada de forma tal que su vector normal tiene componente y positiva. Calcular el flujo de F a través de S siendo F (x, = (x, z+g(x, y))) con g C (R ).. Sea F (x, = (ax,, y sea C el segmento orientado que va desde el punto (,, ) al (4, 4, 4). (ax, Calcule el o los valores de a para que C f. dl= longitud del segmento. 4. Sea el campo vectorial F (x, y) = (1 + z, x), calcule la circulación de F sobre la curva C parametrizada por α(t) = (t, h(t), t e t 1 ),0 t 1; siendo h(t) la solución del problema de valores iniciales de dh(t) dt + h(t) = t, h(0) = Calcule los valores extremos de f(x, y) = xy sobre los puntos de la curva C = {(x, y) R, y = x + 1con0 x 4}.

10 FIUBA Análisis Matemático II Integrador - Tema 1 1. Sean X = (x, y φ(x, la función potencial de F (x, = (x,. Sabiendo que φ(0, 0, 0) = calcule la integral de superficie del campo escalar X F sobre la superficie de ecuación φ(x, = 7.. Sea C una curva cerrada regular y simple incluida en R que satisface ( x + f x (x, y) + 4y x + f ) (x, y) d y l = 6 C con f C (R ). Hallar el área de la región encerrada por C.. Sean H > 0 y R > 0, graficar y calcular el volumen del sólido descripto por: y = r cos(θ) z = r sen(θ) Hr R x H con 0 θ π, 0 r R 4. Calcular la circulación del campo vectorial F (x, = (x y z, g() sobre la curva definida por α(t) = ( t, t, t ) con 1 t 1, sabiendo que g : R R es una función con primera derivada continua. 5. Hallar la mínima distancia al origen de la curva plana que pasa por (1, 4) y es solución de la ecuación y dx + 4 dy = 0.

ANALISIS II 12/2/08 COLOQUIO TEMA 1

ANALISIS II 12/2/08 COLOQUIO TEMA 1 ANALISIS II //08 COLOQUIO TEMA Sea f : R R un campo vectorial C y C la curva parametrizada por: γ(t) = (cost, 0, sent) con t ɛ [0, π] Sabiendo que C f ds = 6 y que rot( f( ) = (z, ), calcular la integral

Más detalles

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares. FIUBA 07-05-11 Análisis Matemático II Parcial - Tema 1 1. Sea f(x, y) = { x y si x 3y si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.. Sea G(x, y) = (u(x, y),

Más detalles

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8 ANALISIS MATEMATIO II (iencias- 2011) Integrales sobre curvas (o de línea) Trabajo Práctico 8 1. Evaluar las siguientes integrales curvilíneas γ f ds. (a) f(x, y, z) = x + y + z ; r(t) = (sen t, cos t,

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green ANÁLISIS MATEMÁTIO II - Grupo iencias 018 Práctica 9 ampos conservativos - Teorema de Green A. ampos conservativos 1. Mostrar que F x, y) = y cos x) i + x sen y) j no es un campo vectorial gradiente..

Más detalles

de C sobre el plano xy tiene ecuación

de C sobre el plano xy tiene ecuación Análisis Matemático II (95-0703) Finales tomados durante el Ciclo lectivo 017 Son 10 (die fechas de final, desde el 4/05/17 al 7/0/18 inclusive Análisis Matemático II (95-0703) Final del 4/05/17 Condición

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto.

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto. 1 Sea f : R R una función C 3 que satisface f(1, ) = (0, 0), y cuya matriz ( Hessiana ) en (1, ) es: 1 0 H = 0 Hallar todos los b ɛ R de manera que la función: g( = f( + 1 b b (y ) ) tenga extremo en (1,

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. 2do. cuatrimestre de 2015 Práctica 2 - Integrales de superficie. Definición.1. Una superficie paramétrica (superficie a secas para nosotros) es un conjunto

Más detalles

Ejercicios típicos del segundo parcial

Ejercicios típicos del segundo parcial Ejercicios típicos del segundo parcial El segundo examen parcial consiste en tres ejercicios prácticos y dos teóricos, aunque esta frontera es muy difusa. Por ejemplo, el primer ejercicio de esta serie,

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

Integrales Curvilíneas.

Integrales Curvilíneas. CAPÍTULO 8 Integrales Curvilíneas. Este capítulo abre la segunda parte de la materia : el cálculo integral vectorial. Las integrales de línea de campos escalares y vectoriales tienen aplicaciones a la

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

Integrales Curvilíneas.

Integrales Curvilíneas. CAPÍTULO 7 Integrales Curvilíneas. Este capítulo abre la segunda parte de la materia : el cálculo integral vectorial. Las integrales de línea de campos escalares y vectoriales tienen aplicaciones a la

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE PLANO TANGENTE Y VECTOR NORMAL. AREA DE UNA SUPERFICIE 1) En cada uno de los siguientes ejercicios se presenta una S dada en forma paramétrica,

Más detalles

Diferenciación SEGUNDA PARTE

Diferenciación SEGUNDA PARTE ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 4 - Primer Cuatrimestre 009 Diferenciación SEGUNDA PARTE Regla de la Cadena 1 Sean f(u, v, w) = u + v 3 + wu y g(x, y) = x sen(y) Además, tenemos

Más detalles

Certamen 2 - Mate 024 (Pauta)

Certamen 2 - Mate 024 (Pauta) Certamen - Mate 4 (Pauta) noviembre 6, 14 1. Calcular γ x 4 + y 4 1 dx + y 3 x 4 + y 4 1 dy en cada uno de los siguientes casos: a) γ es la curva x + y = 1 4 y se recorre en sentido positivo. b) γ es la

Más detalles

Lista de Ejercicios Complementarios

Lista de Ejercicios Complementarios Lista de Ejercicios omplementarios Matemáticas VI (MA-3) Verano. ean α >, β > y a, b R constantes. ea la superficie que es la porción del cono de ecuación z = α x + y que resulta de su intersección con

Más detalles

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2 Ejemplos de parcial de Análisis Matemático II Los ítems E1, E, E3 E4 corresponden a la parte práctica Los ítems T1 T son teóricos (sólo para promoción) T1) Sea F : IR IR diferenciable tal que F(,) 00 =

Más detalles

Integrales de Superficie.

Integrales de Superficie. CAPÍTULO 9. Integrales de Superficie. Este capítulo cierra los tipos de integrales que estudiamos en el curso. Se practica el concepto de integral de superficie y se dan aplicaciones geométricas y físicas.

Más detalles

Integrales de Superficie.

Integrales de Superficie. CAPÍTULO 10 Integrales de Superficie. Este capítulo cierra los tipos de integrales que estudiamos en el curso. Se practica el concepto de integral de superficie y se dan aplicaciones geométricas y físicas.

Más detalles

Integración sobre curvas

Integración sobre curvas Problemas propuestos con solución Integración sobre curvas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Integral de línea de campos escalares 1

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Comentarios y ejemplos - Práctica 10

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Comentarios y ejemplos - Práctica 10 ANÁLII MATEMÁTICO II - Grupo Ciencias 218 Comentarios y ejemplos - Práctica 1 A. Parametrizaciones de superficies El concepto de parametrización de una superficie es análogo al de parametrización de una

Más detalles

SERIE # 4 CÁLCULO VECTORIAL

SERIE # 4 CÁLCULO VECTORIAL SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el

Más detalles

con tiene recta tangente de ecuación y 4 x 2. Análisis Matemático II ( ) Final del 14/07/ dz planteada en coordenadas cilíndricas,

con tiene recta tangente de ecuación y 4 x 2. Análisis Matemático II ( ) Final del 14/07/ dz planteada en coordenadas cilíndricas, Análisis Matemático II (95-0703) Finales tomados durante el Ciclo lectivo 05 Son 0 (die fechas de final, desde el 6/05/5 al 9/0/6 inclusive Análisis Matemático II (95-0703) Final del 6/05/05 Condición

Más detalles

Matemáticas III Tema 6 Integrales de superficie

Matemáticas III Tema 6 Integrales de superficie Matemáticas III Tema 6 Integrales de superficie Rodríguez ánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba,. 214. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative Commons Attribution- NonComercial-hareAlike

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas III GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Considera la integral doble π π ibuja la región del plano XY en la que se está integrando. Usa el teorema

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0)

ANALISIS II Computación. Práctica 4. x 3. x 2 + y 2. x 2 + y 2 si (x, y) (0, 0) 0 si (x, y) = (0, 0) facultad de ciencias exactas y naturales uba curso de verano 2006 ANALISIS II Computación Práctica 4 Derivadas parciales 1. Calcular (a) f xy y (2, 1) para f(x, y) = + x y (b) f z (1, 1, 1) para f(x, y,

Más detalles

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera EJECICIOS E CA LCULO II PAA GAOS E INGENIEI A Elaborados por omingo Pestana y Jose Manuel odrı guez, con Arturo de Pablo y Elena omera 3 3. Integracio n en n Integral mu ltiple. f en los siguientes casos:

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

Matemáticas III Tema 5 Integrales de ĺınea

Matemáticas III Tema 5 Integrales de ĺınea Matemáticas III Tema 5 Integrales de ĺınea Rodríguez Sánchez, F.J. Muñoz Ruiz, M.L. Merino órdoba, S. 2014. OW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia reative ommons Attribution- Nonomercial-ShareAlike

Más detalles

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0)

ANÁLISIS II Computación. Práctica 4. x 3. x 2 + y 2 si (x, y) (0, 0) facultad de ciencias exactas y naturales uba primer cuatrimestre 2007 ANÁLISIS II Computación Práctica 4 Derivadas parciales 1. Calcular a) f y (2, 1) para f(x, y) = xy + x y b) f z (1, 1, 1) para f(x,

Más detalles

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple El Teorema de Green Una curva dada por r(t) x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) r(d) si c d. urva simple urva no simple urva orientada positivamente La curva

Más detalles

Ejercicios Tema 4: INTEGRAL DE SUPERFICIE (incluye ejercicios exámenes cursos anteriores)

Ejercicios Tema 4: INTEGRAL DE SUPERFICIE (incluye ejercicios exámenes cursos anteriores) Ejercicios Tema 4: INTEGRAL DE UPERFICIE (incluye ejercicios exámenes cursos anteriores) 1. Hallar el flujo del campo vectorial F x, y, z a través de la superficie total del cilindro x 2 y 2 R 2, 0 z h.

Más detalles

1 05/12/95. Indique bajo que hipótesis vale la regla de derivación de funciones compuestas. a) Demuestre que dz fxy cte obien xf yf

1 05/12/95. Indique bajo que hipótesis vale la regla de derivación de funciones compuestas. a) Demuestre que dz fxy cte obien xf yf 1 05/1/95 1.- Dada la superficie S de ecuación X= ( u, v, u + v ) con ( u, v) R y la curva C de ecuación X= ( t, t, t ) con t R y X= ( xyz,, ) R 3. Demuestre que en el punto A = ( 1, 1, ) la recta tangente

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. Asignatura: álculo II PRUEBAS DE EVALUAIÓN NOTA: En todos los ejercicios se deberá justificar la respuesta eplicando el procedimiento seguido en la resolución del ejercicio. URSO 010 011 JUNIO URSO 10

Más detalles

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO CÁLCULO II. Ejercicio de Examen Final Temas 1 y : Cálculo Diferencial y Optimización FECHA: 1/07/1 TIEMPO RECOMENDADO: 40 m Puntuación/TOTAL:,5/10 ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO w w 1. Dada

Más detalles

1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.

1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo. SEMESTRE 018-1 SERIE CURVAS EN EL PLANO POLAR 1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.. Determinar las coordenadas polares del punto C simétrico

Más detalles

SERIE # 2 CÁLCULO VECTORIAL

SERIE # 2 CÁLCULO VECTORIAL SERIE # CÁLCULO VECTORIAL SERIE 1) Calcular las coordenadas del punto P de la curva: en el que el vector P 1, 1, r t es paralelo a r t Página 1 t1 r t 1 t i ( t ) j e k ) Una partícula se mueve a lo largo

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático 2 Una resolución de ejercicios con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad de Ingeniería

Más detalles

Del tema 2 sobre campos vectoriales realiza los siguientes ejercicios: Propuestos número 2, 3, 5

Del tema 2 sobre campos vectoriales realiza los siguientes ejercicios: Propuestos número 2, 3, 5 Este documento contiene las actividades no presenciales propuestas al terminar la clase del día que se indica. Se sobreentiende que también se debe realiar el estudio de lo explicado en clase aunque no

Más detalles

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ,

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ, egundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de 216 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. ecuerde apagar

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN

SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN SEMINARIO 1: ELEMENTOS DIFERENCIALES DE LÍNEA, SUPERFICIE Y VOLUMEN Sistemas de coordenadas 3D Transformaciones entre sistemas Integrales de línea y superficie SISTEMA COORDENADO CARTESIANO O RECTANGULAR

Más detalles

CAPÍTULO 11. Teoremas Integrales.

CAPÍTULO 11. Teoremas Integrales. CAPÍTULO 11 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. Cálculo III, Examen Final. Semestre Primavera 1 Tiempo: 11 min. Problema 1 [1,5 puntos] La curvatura de una trayectoria

Más detalles

Tarea 4-Integral de línea

Tarea 4-Integral de línea Tarea 4-Integral de línea I. alcular la integral de línea del campo vectorial f a lo largo del camino que se indica. (Apostol TomoII Pag. 37-10.5) 1. f (x, y) = (x xy)i + (y xy)j a lo largo de la parábola

Más detalles

3 Integración en IR n

3 Integración en IR n a t e a POBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CUSO 29 21 3 Integración en I n 3.1 Integral múltiple. Problema 3.1 Calcula f en los siguientes casos: Q i) f(x, y) =

Más detalles

PRÁCTICA TEMA 2 INTEGRALES MÚLTIPLES. Ejercicio 1. Escriba la expresión que permite calcular por integrales dobles.

PRÁCTICA TEMA 2 INTEGRALES MÚLTIPLES. Ejercicio 1. Escriba la expresión que permite calcular por integrales dobles. PRÁCTICA TEMA 2 INTEGRALES MÚLTIPLES Ejercicio 1. Escriba la expresión que permite calcular por integrales dobles. a. El área de una región plana R. b. El volumen de un sólido V, de altura z = f(x,y).

Más detalles

CAPITULO I : FUNCIONES VECTORIALES DE VARIABLE REAL.

CAPITULO I : FUNCIONES VECTORIALES DE VARIABLE REAL. BALOTARIO(PDF) APITULO I : FUNIONES VETORIALES DE VARIABLE REAL. t t t.-dadas las curvas : f ( t) ( e cos t; e sent; e ), 0t, : g ( t ) ( t ; t ; t ) a) Hallar el punto de intersección de. b) Si desde

Más detalles

Integral Doble e Integral Triple

Integral Doble e Integral Triple www.cidse.itcr.ac.cr/revistamate Práctica 6 Integral Doble e Integral Triple Cambio de variable con coordenadas polares y coordenadas ciĺındricas. Cálculo Superior Instituto Tecnológico de Costa ica Escuela

Más detalles

ANÁLISIS MATEMÁTICO II

ANÁLISIS MATEMÁTICO II GUÍAS DE TRABAJOS PRÁCTICOS ANÁLISIS MATEMÁTICO II 61.03-81.01 1er. CUATRIMESTRE 2017 Profesora Responsable: María Inés Troparevsky La elaboración de las guías de trabajos prácticos fue realizada por María

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Programa de Ampliación de Cálculo. Curso 2014/15 1. Cálculo de integrales múltiples Integrales dobles en rectángulos;

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Índice general Programa III Tema 1. Enunciados 1 Tema 2. Enunciados 6 Tema 3. Enunciados 12 Tema 4. Enunciados

Más detalles

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 1 Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 215-1 El material relativo al temario puede ser consultado en la amplia bibliografía que allí se menciona o en alguno de los muchísimos

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático Resolución del coloquio de fecha 4/07/18 tema I con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad

Más detalles

Análisis Matemático II Curso 2018 Práctica introductoria

Análisis Matemático II Curso 2018 Práctica introductoria Análisis Matemático II Curso 018 Práctica introductoria Cónicas - Sus ecuaciones y gráficas 1. Encontrar la forma estándar de cada cónica y graficar. a) x + y 6y = 0 b) x + y 1 = 0 c) x(x + 1) y = 4 d)

Más detalles

CURVAS Y SUPERFICIES Hoja 1: Curvas

CURVAS Y SUPERFICIES Hoja 1: Curvas CURVAS Y SUPERFICIES Hoja 1: Curvas 1. Sea σ (t) = (cos t, sen t, t) con t [0, π] y sea f(x, y, z) = x + y + z. Evaluar la integral σ fdσ. (Sol.: π 3 (3 + 4π )).. Sea σ : [0, π/] R 3 la curva σ(t) = (30

Más detalles

Parametrización de curvas Integrales de linea. h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/

Parametrización de curvas Integrales de linea. hp://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de curvas Integrales de linea h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Curvas en el espacio En el espacio, una curva se define por el corte de dos superficies. La forma más general

Más detalles

MA2112 Departamento de Matemáticas. f.ds = γ. ABC, con A(1, 0, 2), B(1, 3, 0), C(0, 1, -1) y f = (P, Q, R) = ( z, x+y, x).

MA2112 Departamento de Matemáticas. f.ds = γ. ABC, con A(1, 0, 2), B(1, 3, 0), C(0, 1, -1) y f = (P, Q, R) = ( z, x+y, x). VRANO D 24 UNIVRSIDAD SIMON BOLIVAR P2A.- un segundo examen parcial de alguna fecha anterior. 1.- Calcule la integral : γ f.ds = γ Pdx+Qdy+Rdz, siendo γ la poligonal ABC, con A(1,, 2), B(1, 3, ), C(, 1,

Más detalles

Solución y Pautas de Corrección

Solución y Pautas de Corrección Universidad de los Andes Departamento de Matemáticas MATE127 Cálculo Vectorial Examen Final (1/12/29) 1 Prob. 1 2 3 4 5 Valor 1 1 1 1 1 5 Puntos Nombre: Código: Sección: Escriba todo su análisis si desea

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003 CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de Ejercicio 1. Calcular el volumen del elipsoide x a + y b + z c 1. Probar que el elipsoide de volumen máximo,

Más detalles

GUÍA DE EJERCICIOS - INTEGRALES MÚLTIPLES

GUÍA DE EJERCICIOS - INTEGRALES MÚLTIPLES GUÍA DE EJERIIOS - INTEGRALES MÚLTIPLES 1. Escriba la expresión que permite calcular por integrales dobles: a. El área de una región plana R. b. El volumen de un sólido V, de altura z = f(x,y). c. La masa

Más detalles

Definir la Integral del campo vectorial F sobre una superficie S como una suma de Riemann.

Definir la Integral del campo vectorial F sobre una superficie S como una suma de Riemann. .7. Integral de superfície de campos vectoriales. Otra de las aplicaciones importantes de la integral de superficies, es cuando se integra un campo vectorial sobre ella. El significado que adquiere este

Más detalles

1 Terminar los ejercicios de la práctica realizada el día de hoy

1 Terminar los ejercicios de la práctica realizada el día de hoy Este documento contiene las actividades no presenciales propuestas al terminar la clase del día que se indica. e sobreentiende que también se debe realizar el estudio de lo explicado en clase aunque no

Más detalles

Ejercicios Tercer Parcial del curso MA-1003.

Ejercicios Tercer Parcial del curso MA-1003. Ejercicios para MA 1003: álculo III 1 UNIVERIDAD DE OTA RIA FAULTAD DE IENIA EUELA DE MATEMÁTIA DEPARTAMENTO DE MATEMÁTIA APLIADA MA-1003 álculo III I ILO 2018 Ejercicios Tercer Parcial del curso MA-1003.

Más detalles

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3 Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los

Más detalles

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código:

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código: UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Examen Final de Cálculo Vectorial MATE 1207 PREGUNTAS ABIERTAS TEMA A Diciembre 6 de 2017 Este es un examen individual, no se permite el uso de libros,

Más detalles

CÁLCULO II Grados en Ingeniería

CÁLCULO II Grados en Ingeniería CÁLCULO II Grados en Ingeniería Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez Capítulo 1. Cálculo diferencial 1.1 Funciones. Límites y continuidad

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA 1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando

Más detalles

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y

1. Hallar la ecuación del plano que pasa por el punto (3, 1, 2) y satisface la condición dada. a) paralelo al plano xy b) perpendicular al eje y FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 5 1. Hallar la ecuación del plano que

Más detalles

gradiente de una función? Para esos valores, calcule la función potencial.

gradiente de una función? Para esos valores, calcule la función potencial. CAMPOS CONSERVATIVOS. FUNCIÓN POTENCIAL 1. Sea F = 4xy 3x ( z (, 2x (, 2x, z. Demuestre que Fdl trayectoria C. es independiente de la 2. Dado el campo vectorial F = 3x ( + 2y y ( e 3, 2x 2ye 3. Es posible

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

TEMA 1 05/12/95. Indique bajo que hipótesis vale la regla de derivación de funciones compuestas. dz a) Demuestre que. f x y cte o bien x f yf

TEMA 1 05/12/95. Indique bajo que hipótesis vale la regla de derivación de funciones compuestas. dz a) Demuestre que. f x y cte o bien x f yf TEMA 1 05/1/95 1- Dada la superficie S de ecuación X = u, v, u + v ) con u, v) R y la curva de ecuación X = t, t, t ) con t R y X = x, y, z) R 3 a) Demuestre que en el punto A = 1, 1, ) la recta tangente

Más detalles

MÉTODOS MATEMÁTICOS II

MÉTODOS MATEMÁTICOS II MÉTODOS MATEMÁTICOS II (Licenciatura de Física. Curso 2007-2008) Boletín de problemas a evaluar correspondientes a los Temas I y II Fecha de entrega: Viernes, 23 de Noviembre de 2007 1. Calcula los siguientes

Más detalles

U y j U. z k donde U = U(x, y, z ). a donde a = a1i a2 j a3k y. (, ).cos y. x y

U y j U. z k donde U = U(x, y, z ). a donde a = a1i a2 j a3k y. (, ).cos y. x y Análisis Matemático C T.P. Nº TRABAJO PRACTICO N DIFERENCIALES DE FUNCIONES DE VARIAS VARIABLES. INTERPRETACIONES GEOMETRICAS Y APLICACIONES.DERIVADAS DE FUNCIONES COMPUESTAS E IMPLICITAS. DERIVADA DIRECCIONAL.

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

1.5. Integral de línea de un campo Vectorial.

1.5. Integral de línea de un campo Vectorial. .5. Integral de línea de un campo Vectorial. Sea F ( xyz,, un campo vectorial continuo sobre R donde F representa un campo de fuerzas aplicado sobre una partícula cuya trayectoria puede ser descrita por

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

CÁLCULO II Funciones de varias variables

CÁLCULO II Funciones de varias variables CÁLCULO II Funciones de varias variables Facultad de Informática (UPM) Facultad de Informática (UPM) () CÁLCULO II Funciones de varias variables 1 / 36 Funciones de varias variables Función vectorial de

Más detalles

Capítulo 5. Integrales sobre curvas y superficies

Capítulo 5. Integrales sobre curvas y superficies Capítulo 5. Integrales sobre curvas y superficies 5.1. Integrales de funciones escalares sobre curvas 5.2. Integrales de campos vectoriales sobre curvas 5.3. Teorema de Green 5.4. Integrales sobre superficies

Más detalles

1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante.

1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante. Problemas 1.5 Un campo vectorial está dado por G = 24xy + 12(x 2 + 2) + 18z 2. Dados dos puntos, P(1, 2, - 1) y Q(-2, 1, 3), encontrar: a) G en P; b) un vector unitario en la dirección de G en Q; c) un

Más detalles

PRÁCTICAS DE CÁLCULO PARA I. QUÍMICA

PRÁCTICAS DE CÁLCULO PARA I. QUÍMICA PRÁCTICS DE CÁLCULO PR I. QUÍMIC Departamento de nálisis Matemático Curso 2005/2006 Práctica 1 Cálculo Diferencial............................... 1 Práctica 2 Cálculo Integral.................................

Más detalles

Funcion Lineal. 1) Determine la pendiente y el punto de intersección con el eje y, en las siguientes funciones lineales.

Funcion Lineal. 1) Determine la pendiente y el punto de intersección con el eje y, en las siguientes funciones lineales. Funcion Lineal 1 1) Determine la pendiente y el punto de intersección con el eje y, en las siguientes funciones lineales. 1) g(x) = x-7 x ) 4y = 10-x 4) x-y = 5 ) y m = m = m = m = b = b = b = b = ) Resuelva

Más detalles

CÁLCULO VECTORIAL SEMESTRE

CÁLCULO VECTORIAL SEMESTRE SERIE # 3 ÁLULO VETORIAL SEMESTRE 009- ÁLULO VETORIAL SEMESTRE: 009-1 Página 1) Sea el campo vectorial F (x, y,z)= ( 3x+ yz)i+( x+ y ) j + ( xz) k F d r. alcular x = + y lo largo de la curva :, del punto

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones:

Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones: Fundamentos Matemáticos para la Ingeniería. Curso 2015-2016. Tema 3. Hoja 1 Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones 1. Estudiar la acotación de las siguientes funciones: (a) y = 2x 1; (b) y =

Más detalles

Guía Semanas 13 y RESUMEN. Universidad de Chile. Ingeniería Matemática. Triedro de vectores y factores escalares. Supongamos que r.

Guía Semanas 13 y RESUMEN. Universidad de Chile. Ingeniería Matemática. Triedro de vectores y factores escalares. Supongamos que r. 1. RESUMEN Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08-1 Ingeniería Matemática Guía Semanas 13 y 14 Triedro de vectores y factores

Más detalles