Tarea 4-Integral de línea

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tarea 4-Integral de línea"

Transcripción

1 Tarea 4-Integral de línea I. alcular la integral de línea del campo vectorial f a lo largo del camino que se indica. (Apostol TomoII Pag ) 1. f (x, y) = (x xy)i + (y xy)j a lo largo de la parábola y = x desde ( 1; 1) a (1; 1).. f (x, y) = (a y)i + xj a lo largo del camino descrito por α(t) = a(t sen t)i + a(1 cos t)j, 0 t π. 3. f (x, y, z) = (y z )i + yzj x k, a lo largo del camino descrito por α(t) = ti + t j + t 3 k, 0 t f (x, y) = (x + y )i + (x y )j a lo largo de la curva y = 1 1 x, desde (0; 0) a (; 0) 5. f (x, y) = (x + y)i + (x y)j alrededor de la elipse b x + a y = a b en 6. f (x, y, z) = xyi + (x + z)j + yk, desde (1; 0; ) a (3; 4; 1) a lo largo de un segmento de recta. 7. f (x, y, z) = xi + yj + (xz y)k, desde (0; 0; 0) a (1; ; 4) a lo largo de un segmento rectilíneo. 8. f (x, y, z) = xi + yj + (xz y)k, a lo largo del camino dado por α(t) = t i + tj + 4t 3 k, 0 t 1. II. alcular el valor de la integral de línea dada. (Apostol TomoII Pag ) 1. (x xy)dx + (y xy)dy siendo el arco de la parábola y = x que une los puntos ( ; 4) y (1; 1). (x+y)dx (x y)dy donde es la circunferencia x + y = a recorrida en x +y 3. dx+dy donde es el contorno del cuadrado de vértices (1; 0), (0; 1), ( 1; 0) y x + y (0; 1) recorrido en 4. y dx + z dy + x dz, donde a. es la curva de intersección de las dos superficies x + y = y x + y + z = (x + y). La curva es recorrida de tal forma que mirando desde el origen el sentido es el de las agujas del reloj. b. es la intersección de las dos superficies z = xy y x + y = 1 recorrida en sentido, que visto desde encima del plano xy, es el contrario al de las agujas del reloj. III. Resolver los siguientes ejercicios empleando integrales de línea. (Apostol TomoII Pag ) 1. Un campo de fuerzas f del espacio de tres dimensiones viene dado por f (x, y, z) = xi + yj + (xz y)k.alcular el trabajo realizado por esta fuerza al mover una partícula desde (0; 0; 0) a (1; ; 4) a lo largo del segmento de recta que une esos puntos.. Hallar el trabajo realizado por la fuerza f (x, y) = (x y )i + xyj al mover una partícula en sentido contrario al de las agujas del reloj, recorriendo una vez el contorno del cuadrado limitado por los ejes coordenados y las rectas x = a e y = a, a > Un campo de fuerzas bidimensional f viene dado por la ecuación f (x, y) = cxyi + x 6 y j, siendo c una constante positiva. Esa fuerza actúa sobre una partícula que se mueve desde (0; 0) hasta la recta x = 1 siguiendo una curva de la forma y = ax b, en donde a > 0 y b > 0.Encontrar el valor de a (en función de c) tal que el trabajo realizado por esa fuerza sea independiente de b

2 IV. 4. Un campo de fuerzas f en el espacio de tres dimensiones viene dado por la fórmula f (x, y, z) = yzi + xzj + x(y + 1)k. alcular el trabajo realizado porf al mover una partícula recorriendo una vez el contorno del triángulo de vértices (0; 0; 0), (1; 1; 1), ( 1; 1; 1) en este orden. 5. alcular el trabajo realizado por el campo de fuerzasf (x, y, z) = (y z)i + (z x)j + (x y)k a lo largo de la curva de intersección de la esfera x + y + z = 4 y el plano z = y tan θ, en donde 0 < θ < π. El camino es recorrido de modo que, observando el plano xy desde el eje z positivo, el sentido aparezca contrario al de las agujas del reloj. 6. alcular el trabajo realizado por el campo de fuerzas f (x, y, z) = y i + z j + x k a lo largo de la curva de intersección de la esfera x + y + z = a y el cilindro x + y = ax, siendo z 0 y a > 0.El camino es recorrido de modo que, observando el plano xy desde el eje z positivo el sentido sea el de las agujas del reloj. alcular la integral de línea con respecto a la longitud del arco en los ejercicios siguientes. (Apostol TomoII Pag ) 1. (x + y) ds, siendo el triángulo de vértices (0; 0), (1; 0), (0; 1) recorrido en. y ds, donde tiene la ecuación vectorial α (t) = a(t sen t)i + a(1 cos t)j, 0 t π. 3. (x + y ) ds, donde tiene la ecuación vectorial α (t) = a( cos t + sen t)i + a(sen t t cos t)j, 0 t π. 4. z ds, donde tiene la ecuación vectorial α (t) = t cos t i + t sen t j + tk, 0 t t 0. V. Aplicaciones de la integral de línea (Masa,entro de masa, momento de inercia ). (Apostol TomoII Pag ) 1. onsideremos un alambre semicircular uniforme de radio a. a. Demostrar que el centroide está situado en el eje de simetría a una distancia a del eje de simetría. π b. Demostrar que el momento de inercia respecto al diámetro que pasa por los extremos del alambre es 1 Ma, siendo M la masa del alambre.. Un alambre tiene la forma de un círculo x + y = a. Determinar su masa y su momento de inercia respecto a un diámetro si la densidad en (x, y) es x + y. 3. Hallar la masa de un alambre cuya forma es la de la curva de intersección de la esfera x + y + z = 1 y el plano x + y + z = 0 si la densidad del alambre en (x, y, z) es x. 4. Un alambre uniforme tiene la forma de la porción de curva de intersección de las dos superficies x + y = z e y = x que une los puntos (0; 0; 0) y (1; 1; ). Hallar la coordenada z del centroide. 5. alcular la masa M, las coordenadas x,y del centro de masa y los momentos de inercia I x e I y de un muelle que tiene forma de hélice con densidad en (x, y, z) = x + y + z, cuya ecuación vectorial es α (t) = a cos t i + a sen t j + btk, 0 t π

3 VI. ampos de fuerzas. (Apostol TomoII Pag ) 1. Un campo de fuerzas f está definido en el espacio por la ecuación f (x, y, z) = yi + zj + yzk a. Determinar si f es o no conservativo. b. alcular el trabajo realizado al mover una partícula a lo largo de la curva de ecuación α (t) = cos t i + sen t j + e t k cuando t varía de 0 a π.. Un campo de fuerzas bidimensional F tiene por ecuación F (x, y) = (x + y)i + (x y)j a. Demostrar que el trabajo realizado por esa fuerza al mover una partícula siguiendo la curva α (t) = f(t)i + g(t)i, a t b, depende únicamente de f(a), f(b) g(a), g(b). b. Hallar el trabajo realizado si f(a) = 1, f(b) =, g(a) = 3 g(b) = 4 3. Un campo de fuerzas viene dado en coordenadas polares por la ecuación F (r, θ) = 4 sen θ i + 4 sen θ j alcular el trabajo efectuado al mover una partícula desde el punto (1; 0) al origen siguiendo la espiral cuya ecuación es r = e θ VII. 4. Un campo de fuerzas radial o central F en el plano puede expresarse de la forma F (x. y) = f(r)r en donde r = xi + yj + zk y r = r. Demostrar que un tal campo de fuerzas es conservativo. 5. Hallar el trabajo realizado por la fuerza F (x, y) = (3y + )i + 16xj al mover una partícula desde ( 1; 0) a (1; 0) siguiendo la mitad superior de la elipse b x + y = b. Qué elipse (es decir, qué valor de b) hace mínimo el trabajo?. Gradientes de campos escalares. 1. En cada uno de los siguientes ejercicios, se definen los campos vectoriales f por las fórmulas que se dan.determinar si f es o no gradiente de un campo escalar.en caso de que f sea un gradiente, hallar la correspondiente función potencial φ(apostol TomoII Pag ) a. f (x, y) = xi + yj b. f (x, y) = 3x yi + x 3 j c. f (x, y) = (xe y + y)i + (x e y + x y)j d. f (x, y) = (sen y y sen x + x)i + (cos x + x cos y + y)j e. f (x, y) = [sen(xy) + xy cos(xy)]i + x cos(xy) j f. f (x, y, z) = xi + yj + zk g. f (x, y, z) = (x + z)i (y + z)j + (x y)k h. f (x, y, z) = xy 3 i + x z 3 j + 3x yz k i. f (x, y, z) = 3y 4 z i + 4x 3 z j 3x y k j. f (x, y, z) = (x + 8xy )i + (3x 3 y 3xy)j (4y z + x 3 z)k k. f (x, y, z) = (y cos x + z 3 )i (4 y sen x)j + (3xz + )k l. f (x, y, z) = (4xy 3x z + 1)i + (x + 1)j (x 3 z + 3z )k. Un fluido se desplaza en el plano xy de modo que cada partícula se mueve en línea recta desde el origen. Si una partícula está a una distancia r del origen, su velocidad es ar n, en donde a y n son constantes a. Determinar los valores de a y n para los cuales el campo vectorial velocidad es el gradiente de cierto campo escalar.

4 b. Encontrar la función potencial de la velocidad siempre que ésta sea un gradiente. El caso n = 1 debe tratarse separadamente. VIII. Temas de exámenes anteriores 1. alcular el trabajo producido por un campo de fuerzas F = yzi + xzj + x(y + 1)k. Al moverse en línea recta desde el punto (1; 1; ) hasta el punto (; ; 4). Es este campo de fuerzas conservativo?. Un alambre uniforme tiene la forma de la porción de curva de intersección de las dos superficies x + y = z e y = x, que une los puntos (0; 0; 0) y (1; 1; ). Hallar el trabajo realizado por una fuerza F =. ze x cos y i ze x sen y j + e x cos y k. Al desplazar una partícula a través del alambre. Este trabajo depende de la forma del alambre? 3. alcular el trabajo realizado al mover una partícula a lo largo de la curva de intersección de la semiesfera x + y + z = a, z 0 y el plano x = a (sin incluir la recta en el plano z = 0). El camino es recorrido de modo que, observando el plano zy desde el eje x positivo el sentido sea el de las agujas del reloj, por los siguientes campos fuerzas: a. f (x, y, z) = y i + z j + x k b. f (x, y, z) = (x cos y + z 3 x)i x sen y j + 3z x k 4. Hallar el trabajo realizado al desplazar un cuerpo en línea recta desde (0; 1; 1) hasta ( 1 ; 1; ) a través de los campos de fuerzas : a. F = (y cos x + z 3 )i + (y sen x 4)j + (3xz + )k b. F = 3x i + (xz y)j + zk Son estos trabajos independientes del camino? 5. alcular el trabajo al mover una partícula a lo largo de la curva de intersección de la superficie esférica x + y + z = 4 y el plano z = x desde el punto (0; 0; ) hasta el punto (1; ; 1), siguiendo la trayectoria más larga,a través de los siguientes campos de fuerzas a. F (r ) = 7 r 7 r, siendo r = xi + yj + zk, r = r b. F (r ) = yi + zj + xk Son estos trabajos independientes del camino? En caso de serlos encontrar la función potencial para calcular el trabajo. 6. Un alambre tiene la forma de la intersección entre el cilindro x + y = 4, y el plano z = x, calcular la masa del alambre si la densidad es σ = x y 7. alcular el trabajo realizado al mover una partícula a lo largo de la intersección de la superficie x + y = 4, y el plano z = x desde el punto (; 0; 0) hasta el punto (0; ; ), siguiendo la trayectoria más larga. A través de las siguientes fuerzas. a. F (r) = 5(r A ) r A 7 b. F (r ) = yi, siendo r = xi + yj + zk, y, A = i + j + k 8. alcular la integral de línea dx+dy+dz donde es el segmento de línea recta x + z que une los puntos ( 1; ; ) con (1; ; 4). 9. alcular el trabajo realizado al mover una partícula a lo largo de la intersección de la superficie (x 3) + y = z, y el plano z = x + 3, recorrido en sentido anti horario mirando desde el eje z positivo. A través de la fuerza F (x, y, z) = x i + y j + z k. Graficar detalladamente el planteamiento.

5 10. Hallar el trabajo realizado al desplazar un cuerpo a través del campo de fuerzas F (x, y, z) = 3x i + (xz y)j + zk a través de la curva de intersección de la esfera x + y + z = 1, y el plano x + y + z = 1, desde (1; 0; 0) hasta (0; 0; 1), en sentido anti horario mirando desde el origen del sistema de coordenadas. Son estos trabajos independientes del camino?. Obs. Todas las unidades físicas están en Sistema Internacional. Forma de Entrega Digital. Formato: Realizado a mano con letra y gráficos a mano (para los gráficos también se puede utilizar Geogebra). Escaneado con buena calidad en formato pdf. Grupo de 10 alumnos (el mismo grupo que el de la tarea 1 si es posible). Enviar al analisisfiuni@gmail.com Fecha Tope: 31/05/018, posterior a esta fecha no se recibirá ningún trabajo.

Ejercicios típicos del segundo parcial

Ejercicios típicos del segundo parcial Ejercicios típicos del segundo parcial El segundo examen parcial consiste en tres ejercicios prácticos y dos teóricos, aunque esta frontera es muy difusa. Por ejemplo, el primer ejercicio de esta serie,

Más detalles

Ejercicios Tercer Parcial del curso MA-1003.

Ejercicios Tercer Parcial del curso MA-1003. Ejercicios para MA 1003: álculo III 1 UNIVERIDAD DE OTA RIA FAULTAD DE IENIA EUELA DE MATEMÁTIA DEPARTAMENTO DE MATEMÁTIA APLIADA MA-1003 álculo III I ILO 2018 Ejercicios Tercer Parcial del curso MA-1003.

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 álculo diferencial e integral 4 Guía 4 1. alcular la divergencia y el rotacional de los siguientes campos vectoriales: a) V (x, y, z) = yzi + xzj + xyk. b) V (x, y, z) = x 2 i + (x + y) 2 j + (x + y +

Más detalles

GUÍA DE EJERCICIOS - INTEGRALES MÚLTIPLES

GUÍA DE EJERCICIOS - INTEGRALES MÚLTIPLES GUÍA DE EJERIIOS - INTEGRALES MÚLTIPLES 1. Escriba la expresión que permite calcular por integrales dobles: a. El área de una región plana R. b. El volumen de un sólido V, de altura z = f(x,y). c. La masa

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. Asignatura: álculo II PRUEBAS DE EVALUAIÓN NOTA: En todos los ejercicios se deberá justificar la respuesta eplicando el procedimiento seguido en la resolución del ejercicio. URSO 010 011 JUNIO URSO 10

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

CÁLCULO VECTORIAL SEMESTRE

CÁLCULO VECTORIAL SEMESTRE SERIE # 3 ÁLULO VETORIAL SEMESTRE 009- ÁLULO VETORIAL SEMESTRE: 009-1 Página 1) Sea el campo vectorial F (x, y,z)= ( 3x+ yz)i+( x+ y ) j + ( xz) k F d r. alcular x = + y lo largo de la curva :, del punto

Más detalles

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8 ANALISIS MATEMATIO II (iencias- 2011) Integrales sobre curvas (o de línea) Trabajo Práctico 8 1. Evaluar las siguientes integrales curvilíneas γ f ds. (a) f(x, y, z) = x + y + z ; r(t) = (sen t, cos t,

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

3. Expresar las siguientes figuras en (i) coordenadas cilíndricas (ii) coordenadas esféricas (a) x 2 + y 2 + z 2 = 25 (b) z 2 = 2(x 2 + y 2 ) B + 3

3. Expresar las siguientes figuras en (i) coordenadas cilíndricas (ii) coordenadas esféricas (a) x 2 + y 2 + z 2 = 25 (b) z 2 = 2(x 2 + y 2 ) B + 3 ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA DEPARTAMENTO ACADÉMICO DE INGENIERÍA ELÉCTRICA ACADEMIA DE MATEMÁTICAS GUÍA DE LA MATERIA DE CÁLCULO VECTORIAL TURNO VESPERTINO Junio 2011 I. SISTEMAS

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

CAMPOS VECTORIALES CONSERVATIVOS

CAMPOS VECTORIALES CONSERVATIVOS 1 CAMPOS VECTORIALES CONSERVATIVOS DEFINICION DE CAMPO VECTORIAL. Sean M y N funciones de las variables x e y definidas en una región R del plano. La función definida por F(x, y) = Mi + Nj se llama campo

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green ANÁLISIS MATEMÁTIO II - Grupo iencias 018 Práctica 9 ampos conservativos - Teorema de Green A. ampos conservativos 1. Mostrar que F x, y) = y cos x) i + x sen y) j no es un campo vectorial gradiente..

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

PRACTICO A.M. II 2014

PRACTICO A.M. II 2014 PRATIO 4- - A.M. II 014 INTEGRALES DE LINEA INTEGRAL DE LINEA DE AMPOS ESALARES 1. alcule las siguientes integrales de línea a) f ds donde es el arco de parábola x 4 desde (-, -1) hasta (5, ), f está dada

Más detalles

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución:

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución: Problemas resueltos 1. Halle la longitud de la curva dada por la parametrización α(t) t ı + 4 3 t3/ j + 1 t k, t [, ]. α (t) (1, t 1/, 1 ), t [, ]. La curva α es de clase C 1 y, por tanto, es rectificable.

Más detalles

Problemas y ejercicios de Mecánica Leyes de conservación

Problemas y ejercicios de Mecánica Leyes de conservación Problemas y ejercicios de Mecánica Leyes de conservación 1. Dada la función escalar f(x, y, z) = x 2 + y 2 2z 2 + z ln x; encuentre el gradiente de f en el punto (1; 1; 1). (R. f = 3î + 2ĵ 4ˆk) 2. Si f(x,

Más detalles

ANALISIS II 12/2/08 COLOQUIO TEMA 1

ANALISIS II 12/2/08 COLOQUIO TEMA 1 ANALISIS II //08 COLOQUIO TEMA Sea f : R R un campo vectorial C y C la curva parametrizada por: γ(t) = (cost, 0, sent) con t ɛ [0, π] Sabiendo que C f ds = 6 y que rot( f( ) = (z, ), calcular la integral

Más detalles

Lista de Ejercicios Complementarios

Lista de Ejercicios Complementarios Lista de Ejercicios omplementarios Matemáticas VI (MA-3) Verano. ean α >, β > y a, b R constantes. ea la superficie que es la porción del cono de ecuación z = α x + y que resulta de su intersección con

Más detalles

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. Solución: ( )

Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. Solución: ( ) SERIE DE ÁLULO VETORIAL 1 PROFESOR: PEDRO RAMÍREZ MANNY TEMA 1 Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. f x, y = x + y 6x + 6y + 8 1) (

Más detalles

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera EJECICIOS E CA LCULO II PAA GAOS E INGENIEI A Elaborados por omingo Pestana y Jose Manuel odrı guez, con Arturo de Pablo y Elena omera 3 3. Integracio n en n Integral mu ltiple. f en los siguientes casos:

Más detalles

1.5. Integral de línea de un campo Vectorial.

1.5. Integral de línea de un campo Vectorial. .5. Integral de línea de un campo Vectorial. Sea F ( xyz,, un campo vectorial continuo sobre R donde F representa un campo de fuerzas aplicado sobre una partícula cuya trayectoria puede ser descrita por

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

SERIE # 2 CÁLCULO VECTORIAL

SERIE # 2 CÁLCULO VECTORIAL SERIE # CÁLCULO VECTORIAL SERIE 1) Calcular las coordenadas del punto P de la curva: en el que el vector P 1, 1, r t es paralelo a r t Página 1 t1 r t 1 t i ( t ) j e k ) Una partícula se mueve a lo largo

Más detalles

gradiente de una función? Para esos valores, calcule la función potencial.

gradiente de una función? Para esos valores, calcule la función potencial. CAMPOS CONSERVATIVOS. FUNCIÓN POTENCIAL 1. Sea F = 4xy 3x ( z (, 2x (, 2x, z. Demuestre que Fdl trayectoria C. es independiente de la 2. Dado el campo vectorial F = 3x ( + 2y y ( e 3, 2x 2ye 3. Es posible

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

SERIE # 4 CÁLCULO VECTORIAL

SERIE # 4 CÁLCULO VECTORIAL SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Programa de Ampliación de Cálculo. Curso 2014/15 1. Cálculo de integrales múltiples Integrales dobles en rectángulos;

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Índice general Programa III Tema 1. Enunciados 1 Tema 2. Enunciados 6 Tema 3. Enunciados 12 Tema 4. Enunciados

Más detalles

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE PLANO TANGENTE Y VECTOR NORMAL. AREA DE UNA SUPERFICIE 1) En cada uno de los siguientes ejercicios se presenta una S dada en forma paramétrica,

Más detalles

3 Integración en IR n

3 Integración en IR n a t e a POBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CUSO 29 21 3 Integración en I n 3.1 Integral múltiple. Problema 3.1 Calcula f en los siguientes casos: Q i) f(x, y) =

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

MATEMÁTICAS 2. Curso 2016/17. Integración en varias variables.

MATEMÁTICAS 2. Curso 2016/17. Integración en varias variables. MATEMÁTICA 2. Curso 2016/17. Integración en varias variables. 1. Calcular para = [0, 1] [0, 3] las integrales (a) xydxdy. (b) xe y dxdy. (c) y 2 sin xdxdy. 2. Calcular las integrales dobles siguientes

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16. Integración en varias variables.

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16. Integración en varias variables. AMPLIACIÓN DE MATEMÁTICA. Curso 2015/16. Integración en varias variables. 1. Calcular para = [0, 1] [0, 3] las integrales (a) xydxdy. (b) xe y dxdy. (c) y 2 sin xdxdy. 2. Calcular las integrales dobles

Más detalles

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 1 Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 215-1 El material relativo al temario puede ser consultado en la amplia bibliografía que allí se menciona o en alguno de los muchísimos

Más detalles

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican:

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican: INTEGACION EN VAIAS VAIABLES: Integrales dobles.. Evaluar las siguientes integrales iteradas: (x y + y )dy dx xye x+y dy dx ( x ln y)dy dx ln [((x + )(y + )] dx dy. 3 ; ; ; ln. 5. Sea I = [, ] [, 3]. Calcular

Más detalles

Matemáticas III Tema 5 Integrales de ĺınea

Matemáticas III Tema 5 Integrales de ĺınea Matemáticas III Tema 5 Integrales de ĺınea Rodríguez Sánchez, F.J. Muñoz Ruiz, M.L. Merino órdoba, S. 2014. OW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia reative ommons Attribution- Nonomercial-ShareAlike

Más detalles

Integración sobre curvas

Integración sobre curvas Problemas propuestos con solución Integración sobre curvas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Integral de línea de campos escalares 1

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

UNIVERSIDAD NACIONAL Facultad de Ciencias Departamento de Matemáticas. TALLER IV Profesor: H. Fabian Ramirez Cálculo Vectorial INTEGRALES TRIPLES

UNIVERSIDAD NACIONAL Facultad de Ciencias Departamento de Matemáticas. TALLER IV Profesor: H. Fabian Ramirez Cálculo Vectorial INTEGRALES TRIPLES UNIVERSIA NAIONAL Facultad de iencias epartamento de Matemáticas 1. alcule TALLER IV Profesor: H. Fabian Ramirez álculo Vectorial INTEGRALES TRIPLES 3dV, donde está limitado por las superficies z =, y

Más detalles

Del tema 2 sobre campos vectoriales realiza los siguientes ejercicios: Propuestos número 2, 3, 5

Del tema 2 sobre campos vectoriales realiza los siguientes ejercicios: Propuestos número 2, 3, 5 Este documento contiene las actividades no presenciales propuestas al terminar la clase del día que se indica. Se sobreentiende que también se debe realiar el estudio de lo explicado en clase aunque no

Más detalles

1. Funciones de más de una variable

1. Funciones de más de una variable Universidad de Pamplona Facultad de iencias Básicas Departamento de matemáticas Ejercicios propuestos álculo Multivariable 1. Funciones de más de una variable 1. Encuentre el dominio de las siguientes

Más detalles

4 Integrales de línea y de superficie

4 Integrales de línea y de superficie a t e a PROBLEMA DE ÁLULO II t i c a s 1 o Ings. Industrial y de Telecomunicación URO 2009 2010 4 Integrales de línea y de superficie 4.1 Integrales sobre curvas y campos conservativos. Problema 4.1 Integra

Más detalles

De x = 1 a x = 6, la recta queda por encima de la parábola.

De x = 1 a x = 6, la recta queda por encima de la parábola. Área entre curvas El área comprendida entre dos funciones es igual al área de la función que está situada por encima menos el área de la función que está situada por debajo. Ejemplos 1. Calcular el área

Más detalles

AMPLIACIÓN DE CÁLCULO. Curso 2008/9. Hoja 1: Integración en varias variables.

AMPLIACIÓN DE CÁLCULO. Curso 2008/9. Hoja 1: Integración en varias variables. AMPLIACIÓN DE CÁLCULO. Curso 2008/9. Hoja 1: Integración en varias variables. 1. Calcular para =[0, 1] [0, 3] las integrales (a) xydxdy. (b) xe y dxdy. (c) y 2 sin xdxdy. 2. Calcularlasintegralesdoblessiguientesenlosrecintosqueseindican:

Más detalles

MÉTODOS MATEMÁTICOS II

MÉTODOS MATEMÁTICOS II MÉTODOS MATEMÁTICOS II (Licenciatura de Física. Curso 2007-2008) Boletín de problemas a evaluar correspondientes a los Temas I y II Fecha de entrega: Viernes, 23 de Noviembre de 2007 1. Calcula los siguientes

Más detalles

GUÍA DE CÁLCULO VECTORIAL Academia de Matemáticas y Física I.C.

GUÍA DE CÁLCULO VECTORIAL Academia de Matemáticas y Física I.C. 1. Considere los siguientes vectores a = (2,3,1), b = (4, 1,3). Calcule: a) a + b b) 2a + 3b c) 3a b d) a + b e) 3a 2b f) 2 a + b 2. Halle las longitudes de los lados del triángulo ABC y determine si son

Más detalles

1. Integrales curvilíneas.

1. Integrales curvilíneas. GRADO DE INGENIERÍA AEROESPAIAL. URSO 0. MATEMÁTIAS II. DPTO. DE MATEMÁTIA APLIADA II Lección. álculo vectorial.. Integrales curvilíneas. Muchos conceptos físicos, como el de traajo desarrollado por una

Más detalles

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO CÁLCULO II. Ejercicio de Examen Final Temas 1 y : Cálculo Diferencial y Optimización FECHA: 1/07/1 TIEMPO RECOMENDADO: 40 m Puntuación/TOTAL:,5/10 ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO w w 1. Dada

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones:

SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: SERIE SUPERFICIES 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: 4x C z 0 y que se genera por rectas perpendiculares al plano: x + y + 3z + = 0.-Sea la superficie

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. 1 Análisis II Análisis matemático II Matemática 3. 1er. cuatrimestre de 2008 Práctica 1 - urvas, integral de longitud de arco e integrales curvilíneas. urvas Definición 1. Una curva R 3 es un conjunto

Más detalles

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites

Más detalles

CAMPOS: CIRCULACIÓN Y FLUJO

CAMPOS: CIRCULACIÓN Y FLUJO AMPO: IRULAIÓN Y FLUJO Dado el vector a ( x + y) i ˆ + xy ˆ j calcular su circulación a lo largo de la recta y x+ desde el punto A (, ) al B (, 2). olución: I.T.I. 99, 5, I.T.T. 2 En la trayectoria que

Más detalles

Integrales de Línea. Sabemos que una curva cerrada C paramétrica para a t b (en donde t es el parámetro), se representa por:

Integrales de Línea. Sabemos que una curva cerrada C paramétrica para a t b (en donde t es el parámetro), se representa por: r (t) =x (t) î + y (t) ĵ + z (t) ˆk dr (t) =dx (t) î + dy (t) ĵ + dz (t) ˆk Las integrales que incluyen vectores de desplazamiento diferencial d r se llaman integrales de línea. onsideremos las siguientes

Más detalles

Teorema de Stokes Introducción

Teorema de Stokes Introducción EIÓN 1 1.1 Introducción En la presente sesión se revisa el último teorema clave del cálculo vectorial, el teorema de tokes. Este teorema establece una relación entre una integral de línea sobre una curva

Más detalles

1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.

1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo. SEMESTRE 018-1 SERIE CURVAS EN EL PLANO POLAR 1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.. Determinar las coordenadas polares del punto C simétrico

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2017 Práctica 5 - Polinomio de Taylor. Extremos de funciones de varias variables

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2017 Práctica 5 - Polinomio de Taylor. Extremos de funciones de varias variables ANÁLISIS MATEMÁTIO II - Grupo iencias 07 Práctica 5 - Polinomio de Taylor. Extremos de funciones de varias variables A. Polinomio de Taylor. Hallar el polinomio de Taylor de segundo orden para las siguientes

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ALGEBRA I GUÍA N o 2 DE GEOMETRÍA ANALÍTICA Profesor: David Elal Olivero Primer año Plan Común de Ingeniería Primer Semestre 2009

Más detalles

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código:

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código: UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Examen Final de Cálculo Vectorial MATE 1207 PREGUNTAS ABIERTAS TEMA A Diciembre 6 de 2017 Este es un examen individual, no se permite el uso de libros,

Más detalles

SERIE # 1 CÁLCULO VECTORIAL

SERIE # 1 CÁLCULO VECTORIAL SERIE # 1 CÁLCULO VECTORIAL Página 1) Determinar la naturaleza de los puntos críticos de la función f x, y = x y x y. P 1 0,0 máximo relativo, P 1, 1 punto silla, P 1, 1 punto silla, 4 1, 1 silla, P5 1,

Más detalles

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES 9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,

Más detalles

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura.

Rectas y Cónicas. Sistema de Coordenadas Cartesianas. Guía de Ejercicios # Encuentre las coordenadas de los puntos mostrados en la figura. Universidad de Los Andes Facultad de Ciencias Forestales y Ambientales Escuela de ingeniería Forestal Departamento de Botánica y Ciencias Básicas Matemáticas I I 2014 Prof. K. Chang. Rectas y Cónicas Guía

Más detalles

Tema 4A: Integración Doble ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Tema 4A: Integración Doble ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO Ejercicio de Seguimiento de Aprendizaje Tema 4A: Integración Doble FECHA: 8/05/1 TIEMPO RECOMENDADO: 1/ Hora Puntuación/TOTAL:,5/10 Halle el área total encerrada por la curva: Y RESPUESTA AL EJERCICIO:

Más detalles

Cinemática del Punto. e Problema 2.3 de [1]

Cinemática del Punto. e Problema 2.3 de [1] Capítulo 2 Cinemática del Punto Problema 2.1 Se considera una esfera de radio R centro O. Sean ABC las intersecciones de las esfera con tres ejes rectangulares que pasan por O. Un punto M está situado

Más detalles

Gu ıa Departamento Matem aticas U.V.

Gu ıa Departamento Matem aticas U.V. Universidad de Valparaíso Instituto de Matemáticas Guía de Cálculo en Varias Variables Integración. Sean = [,] [,] {(x,y) : (x,y) < } y f : continua. a) Escriba lafuncióncaracterísticaχ demedianteunafunciónporparte,análogamente

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Ingeniería Técnica Industrial. Especialidades Electricidad, Electrónica y Mecánica. EUP Sevilla Curso

FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Ingeniería Técnica Industrial. Especialidades Electricidad, Electrónica y Mecánica. EUP Sevilla Curso FUNDAMENTOS MATEMÁTIOS DE LA INGENIERÍA Ingeniería Técnica Industrial. Esecialidades Electricidad, Electrónica y Mecánica. EUP Sevilla urso 8-9 Bloque III: álculo diferencial e integral de funciones de

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. 1 Análisis II Análisis matemático II Matemática 3. 1er. cuatrimestre de 2015 Práctica 1 - urvas, integral de longitud de arco e integrales curvilíneas. urvas Ejercicio 1 1. Probar que x 1 (t) = r cos(2πt),

Más detalles

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta

SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta LOS EJERCICIOS DEBEN RESOLVERSE TAMBIÉN USANDO SOFTWARE MATEMÁTICO. LAS ECUACIONES PEDIDAS SON, EN TODOS LOS CASOS, LAS CANÓNICAS Y LAS PARAMÉTRICAS. I) GEOMETRÍA ANALÍTICA EN EL PLANO 1. Determinar y

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

Vectores. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán.

Vectores. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán. Vectores Autor: Ing. Jonathan Alejandro Cortés Montes de Oca. Vectores En el campo de estudio del Cálculo

Más detalles

Universidad Nacional Autónoma de México Facultad de Ingeniería División de Ciencias Básicas Coordinación de Matemáticas Cálculo Vectorial

Universidad Nacional Autónoma de México Facultad de Ingeniería División de Ciencias Básicas Coordinación de Matemáticas Cálculo Vectorial Semestre: 16- Nombre: Universidad Nacional Autónoma de México Facultad de Ingeniería División de Ciencias Básicas Coordinación de Matemáticas Cálculo Vectorial Primer Examen Final Colegiado Tipo A Duración

Más detalles

Matemáticas III Tema 5 Integrales de línea

Matemáticas III Tema 5 Integrales de línea Matemáticas III Tema 5 Integrales de línea Rodríguez Sánchez, F.J. Muñoz Ruiz, M.L. Merino órdoba, S. 14. OW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia reative ommons ttribution- Nonomercial-Sharelike

Más detalles

Encuentre para el alambre: a. Las coordenadas de su centro de masa. (3 puntos) b. Su momento de inercia respecto al eje x.

Encuentre para el alambre: a. Las coordenadas de su centro de masa. (3 puntos) b. Su momento de inercia respecto al eje x. CÁLCULO INTERMEDIO APLICADO (64) PRIMER PARCIAL (%) 5//9 Encuentre el área de la cerca indicada en la figura, que tiene por base la curva en coordenadas polares de ecuación r = + cos( θ ), con θ y se encuentra

Más detalles

Análisis Matemático II Curso 2018 Práctica introductoria

Análisis Matemático II Curso 2018 Práctica introductoria Análisis Matemático II Curso 018 Práctica introductoria Cónicas - Sus ecuaciones y gráficas 1. Encontrar la forma estándar de cada cónica y graficar. a) x + y 6y = 0 b) x + y 1 = 0 c) x(x + 1) y = 4 d)

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

Coordenadas Generalizadas en el Espacio

Coordenadas Generalizadas en el Espacio Capítulo 3 Coordenadas Generalizadas en el Espacio Las coordenadas cartesianas usuales en R 3 pueden verse también como un sistema de tres familias de superficies en el espacio, de modo que cada punto

Más detalles

Ejercicios de Álgebra y Geometría Analítica

Ejercicios de Álgebra y Geometría Analítica Ejercicios de Álgebra y Geometría Analítica Profr. Fausto Cervantes Ortiz Recta Dibujar las rectas indicadas 1. y = x + 1 2. y = 2x + 5 2 3. y = x + 2 4. y = x + 2 5. y = 2x 3 2 6. y = 3 2 x + 1 2 7. y

Más detalles

Guía de Integrales Definidas. Matemáticas II Prof. Wilson Herrera.

Guía de Integrales Definidas. Matemáticas II Prof. Wilson Herrera. Wilson Herrera 1 Guía de Integrales Definidas. Matemáticas II Prof. Wilson Herrera. 1. Calcular las siguientes integrales: a) b) c) d) e) f ) g) h) 1 8 4 1 6 3 3 1 ( + 3) ( + 3 ) 1 + y dy y 5 + 3 1 + 3

Más detalles

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO

INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO PRIMER EXAMEN PARCIAL INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO GUÍA DE GEOMETRÍA ANALÍTICA 2016-2017A SISTEMA DE COORDENADAS, LUGARES

Más detalles

TEMA 11: INTEGRAL DE LINEA.

TEMA 11: INTEGRAL DE LINEA. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingeniería Industrial (GITI/GITI+ADE) Ingeniería de Telecomunicación (GITT/GITT+ADE) CÁLCULO Curso 015-016 TEMA 11:

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición La elipse es el lugar geométrico de todos los puntos del plano cuya suma de las distancias a dos puntos fijos es constante. Más claramente: Dados (elementos bases de la elipse) Dos puntos

Más detalles

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2.

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. 1 1 4, 0 1 a.- (, ) = 2 1 4, 1 2 2 1 < 3, 0 < 1 b.- (, ) = 1 1 < 3, 1 2 3 3 4,

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 Cálulo diferenial e integral 4 Guía 3 Los ejeriios marados on una E deberán entregarse por equipos el día 15 de abril al iniio de lase! 1. Sean : [a, b] R n una urva de lase C 1 y on (t) 0 para todo t

Más detalles

Enunciado y solución del cuarto certamen de Cálculo 3. Viernes 5 de Julio de 2013 Prof: Roberto Cabrales

Enunciado y solución del cuarto certamen de Cálculo 3. Viernes 5 de Julio de 2013 Prof: Roberto Cabrales nunciado y solución del cuarto certamen de álculo. Viernes 5 de Julio de 1 Prof: oberto abrales 1 puntos). ean f y g son campos escalares en y F un campo vectorial en. 1. puntos) Muestre que divrotf))..

Más detalles

Guía n 0: Herramientas de Física y Matemáticas

Guía n 0: Herramientas de Física y Matemáticas Guía n 0: Herramientas de Física y Matemáticas Problema Dadas dos partículas en el espacio ubicadas en los puntos de coordenadas p = (0,5, 2) y p 2 = (2,3,). Hallar el vector posición de la partícula respecto

Más detalles