3. Expresar las siguientes figuras en (i) coordenadas cilíndricas (ii) coordenadas esféricas (a) x 2 + y 2 + z 2 = 25 (b) z 2 = 2(x 2 + y 2 ) B + 3

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3. Expresar las siguientes figuras en (i) coordenadas cilíndricas (ii) coordenadas esféricas (a) x 2 + y 2 + z 2 = 25 (b) z 2 = 2(x 2 + y 2 ) B + 3"

Transcripción

1 ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA DEPARTAMENTO ACADÉMICO DE INGENIERÍA ELÉCTRICA ACADEMIA DE MATEMÁTICAS GUÍA DE LA MATERIA DE CÁLCULO VECTORIAL TURNO VESPERTINO Junio 2011 I. SISTEMAS DE REFERENCIA Y ALGEBRA VECTORIAL 1. a) Expresar en coordinadas cilíndricas los lugares geométricos siguientes: (i)x 2 + y 2 + z 2 = 9 (ii) z 2 = 3(x 2 + y 2 ) b) Siendo ρ, θ, z las coordenadas cilíndricas, enunciar los lugares geométricos que se indican y hallar su expresión en coordenadas cartesianas (i) ρ = 4 (ii) θ = π 2 2. Escriba las coordenadas del vector r = 2î 4ĵ + 3 k (a) en el sistema de coordenadas cartesianas, (b) en el sistema de coordenadas cilíndricas y (c) en el sistema de coordenadas esféricas. 3. Expresar las siguientes figuras en (i) coordenadas cilíndricas (ii) coordenadas esféricas (a) x 2 + y 2 + z 2 = 25 (b) z 2 = 2(x 2 + y 2 ) 4. Escriba las coordenadas del vector r = 5î 2ĵ 3 k (a) en el sistema de coordenadas cartesianas, (b) en el sistema de coordenadas cilíndricas y (c) en el sistema de coordenadas esféricas. 5. Para A = 2î + 3ĵ 4 k, B = î 2ĵ + 2 k, C = 2î + 3ĵ k, (a). Encuentre un vector unitario perpendicular a A y B simultáneamente. (b). Calcule el ángulo entre A y C. (c). Encuentre los valores de a, b, c de manera que el vector pueda escribirse como D = aî + bĵ + c k, D = A 2 B + 3 C. 6. Calcule la distancia del punto ( 2, 3, 1) al plano que pasa por los puntos (1, 1, 1), (3, 1, 2) y ( 1, 2, 1). 1

2 7. Determine el volumen del paralelepípedo con aristas (2, 3, 4), (0, 4, 1) y (5, 1, 3). 8. Para A = î + 5ĵ 2 k, B = 3î + 2ĵ + 2 k, C = 6î + 2ĵ 3 k, (a). Encuentre un vector unitario perpendicular a A y B simultáneamente. (b). Calcule el ángulo entre A y C. (c). Encuentre los valores de a, b, c de manera que el vector D = aî + bĵ + c k, pueda escribirse como D = 2 A 3 B + 4 C. 9. Calcule la distancia del punto (1, 3, 1) al plano que pasa por los puntos (5, 1, 2), (3, 1, 2) y (1, 2, 1). 10. Para A = î 3ĵ 2 k, B = 3î + 5ĵ + k, C = 4î + 3ĵ 3 k, (a). Encuentre un vector unitario perpendicular a A y B simultáneamente. (b). Calcule el ángulo entre A y C. (c). Encuentre los valores de a, b, c de manera que el vector D = aî + bĵ + c k, pueda escribirse como D = A 2 B + 3 C. 11. Un pájaro vuela en línea recta con vector de velocidad 10î + 6ĵ + k (en kilómetros por hora). Supongamos que (x, y) son sus coordenadas en el suelo y que z es su altura. a) Si en cierto momento el pájaro está en la posición (1, 2, 3), cuál será su situación una hora más tarde?, y un minuto más tarde? b) Cuántos segundos tarda el ave en subir 10 metros? 12. Un avión se encuentra en la posición (3, 4, 5) al mediodía y viaja con una velocidad de 400î + 500ĵ k, en kilómetros por hora. El piloto avista un aeropuerto en la posición (23, 29, 0). (a). A qué hora pasará el avión sobre el aeropuerto? (b). Cuál será la altura del avión cuando pase sobre el aeropuerto? 13. Una pesa de 100 lb cuelga de dos alambres. Encuentre las tensiones T 1 y T 2 en términos de sus componentes. 2

3 14. Determine el volumen del paralelepípedo con aristas (2, 3, 4), (0, 4, 1) y (5, 1, 3). 15. Encuentre la distancia entre los planos paralelos 3x 4y + 5z = 9 y 3x + 4y 5z = Un pájaro vuela en línea recta con vector de velocidad 10î + 6ĵ + k (en kilómetros por hora). Supongamos que (x, y) son sus coordenadas en el suelo y que z es su altura. a) Si en cierto momento el pájaro está en la posición (1, 2, 3), cuál será su situación una hora más tarde?, y un minuto más tarde? b) Cuántos segundos tarda el ave en subir 10 metros? 17. Una fuerza constante F = 5î + 9ĵ 6 k, mueve un objeto a lo largo de una recta del punto (2, 3, 3) al punto (4, 5, 9). (a) Encuentre el trabajo W = F d realizado si la distancia se mide en metros y la magnitud de la fuerza se mide en newtons. (b) Calcule el Momento de la fuerza ( M = r F ) respecto al punto P = (1, 1, 1) si la fuerza se aplica en el punto Q = (2, 2, 2) 18.Encuentre la distancia entre los planos paralelos 2x 4y + 3z = 2 y 2x + 4y 3z = Encontrar la ecuación del plano perpendicular a la superficie x 2 y 3x 3 z = 5 en el punto (2,1,-2). 20. Hallar la ecuación del plano que es perpendicular a v = (1, 2, 3) y pasa por (1, 1, 1). II. DERIVACIÓN VECTORIAL 21.Demostrar que 2 [ ( r r 2 )] = 2r 4. 3

4 22. Para A = x 2 yzî 2xyz 3 ĵ + xz 2 k, B = 2zî + yĵ x 2 k, encuentre 2 x y ( A B ). 23. Sea r = t 5 î + costĵ + sent k, encuentre la posición, velocidad y aceleración para t=5 s. 24. Hallar la derivada direccional de φ = 4xz 3 3x 2 y z en el punto (2, -1, 2) en la dirección de 2î 3ĵ + 6 k. 25. Hallar A ( B ) y ( A ) B para los vectores del problema Para A = x 2 yzî 2xyz 3 ĵ + xz 2 k, B = 2zî + yĵ x 2 k, evaluar a) ( A ) B, b) A ( B ). 27. La posición de una partícula está descrita por r = t 4 î + cos(ωt)ĵ + sen(ωt) k a) Encuentre la velocidad y aceleración en función de t, b) Evalúe la posición, velocidad y aceleración en t = 4s con ω = π 2, c) Determine la energía cinética dada por K = 1 2 m v2. 28.Hallar la derivada direccional de φ = 4xz 3 3x 2 yz en el punto (2, -1, -2) en la dirección de 2î 3ĵ 6 k. 29. Utilizar los multiplicadores de Lagrange para hallar los valores máximo y mínimo de f(x, y, x) = x 2 + 2y 2 + 3z 2 sujetos a las restricciones x + y + z = 1 y x y + 2z = Demostrar que A = (6xy + z 3 )î + (3x 2 z)ĵ + (3xz 2 y) k y es irrotacional y hallar φ de forma que A = φ. 31. Para A = yz 2 î 3xz 2 ĵ + 2xyz k, B = 3xî + 4zĵ xy k y φ = xyz encuentre (a) A ( φ) (b) ( A )φ (c) ( A ) B (d) B A 32. Siendo d2 A dt 2 t = 0. = 6tî 24t 2 ĵ + 4sent k hallar A sabiendo que A = 2î + ĵ y d A dt = î 3 k en 33. Hallar la derivada direccional de φ = 3x 2 y 3 + 3x 2 z en el punto (-1, 1, 2) en la dirección de î + 3ĵ + 4 k. 4

5 34. Hallar ( r r 2 ). 35. Demuestre que el campo vectorial dado por F = (zcosxz)î e y ĵ (xcosxz) k es conservativo y encontrar la función potencial φ correspondiente. 36. La posición de una partícula está descrita por r = 2t 3 î + cos(2ωt)ĵ + sen(2ωt) k a) Encuentre la velocidad y aceleración en función de t, b) Evalúe la posición, velocidad y aceleración en t = 3s con ω = π 4, c) Determine la energía cinética dada por K = 1 2 m v Para A = xz 2 î 2yĵ 3xz k, B = xzî + 2yzĵ z 2 k, evaluar a) A ( ) B ), b) ( A ) B, en el punto (1, -2, 2) 38. Demostrar que [ r ( r r 3 )] = 3r Hallar los valores extremos de f(x, y, x) = x + y + z sujeta a las restricciones x 2 + y 2 = 2 y x + z = Demostrar que E = r r 2 y es irrotacional y hallar φ de forma que E = φ y que φ(a) = 0 siendo a > Hallar la derivada direccional de φ = 2xyz 3 + 3x 3 yz 2 en el punto (1, -1, -1) en la dirección de 3î + 2ĵ 3 k. III. INTEGRACIÓN VECTORIAL 42. Para F = (2x cos y y cos x) î + ( x 2 sin y sin x ) ĵ (a). Pruebe que F es un campo de fuerzas conservativo. (b). Encuentre el potencial escalar para F. (c). Encuentre el trabajo hecho al mover una partícula en este campo de (0,1,-1) a ( π 2,-1,2). 43.Verifique el Teorema del rotacional para F = y 3 î + x 3 ĵ z 3 k donde S es la región x 2 + z 2 = 1 sobre x + y + z = 1. 5

6 44. Demostrar el teorema de Green en el plano para 2xydx + (x 2 + 2x)dy donde R es la región limitada por x2 9 + y2 4 = 1 exterior a x2 + y 2 = Verifique el Teorema de la Divergencia para C F = xz 2 î xyĵ + 3yz 2 k sobre la región limitada por x 2 + y 2 + z 2 = Verifique el Teorema de la Divergencia para A = yî + xĵ + z 2 k sobre la región limitada por z = (1 x 2 y 2 )) 1/2 y z = Verifique el Teorema de Stokes para A = (x 2 + y 2 4)î 3xyĵ + (2xz + z 2 ) k donde S es la superficie definida por z = 4 (x 2 + y 2 ). 48. Verifique el Teorema de Green en el plano para ( 2x y 3 ) dx xydy C donde C es el contorno de la región limitada por los círculos x 2 + y 2 = 1 y x 2 + y 2 = Verifique el Teorema de la Divergencia para A = xyî + (y 2 + e xz2 )ĵ + senxy k sobre la región limitada por z = 1 x 2 y los planos z = 0, y = 0 y y + z = Verifique el Teorema de Stokes para F = yzî + xzĵ + xy k donde S es la parte de la esfera x 2 + y 2 + z 2 = 4 que se encuentra dentro del cilindro x 2 + y 2 = 1 y arriba del plano XY. IV. COORDENADAS GENERALIZADAS 51. Calcule los factores de foma h u, h v, h w para el sistema de Coordenadas Esféricas. 52. Escriba el vector 6

7 A = 2xzî + x 2 zĵ + 4xy 2 z k en la forma A = Au ê u + A v ê v + A w ê w para coordenadas esféricas. 53. Calcule los factores de foma h u, h v, h w para el sistema de Coordenadas Cilindricas. 54. Escriba el vector A = x 2 yî + y 2 z 2 ĵ + 3xz 2 k en la forma A = Au ê u + A v ê v + A w ê w para coordenadas cilíndricas. 7

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

CAMPOS VECTORIALES CONSERVATIVOS

CAMPOS VECTORIALES CONSERVATIVOS 1 CAMPOS VECTORIALES CONSERVATIVOS DEFINICION DE CAMPO VECTORIAL. Sean M y N funciones de las variables x e y definidas en una región R del plano. La función definida por F(x, y) = Mi + Nj se llama campo

Más detalles

1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante.

1.18 Convertir de coordenadas cilíndricas a esféricas el campo vectorial H = (A/r), donde A es constante. Problemas 1.5 Un campo vectorial está dado por G = 24xy + 12(x 2 + 2) + 18z 2. Dados dos puntos, P(1, 2, - 1) y Q(-2, 1, 3), encontrar: a) G en P; b) un vector unitario en la dirección de G en Q; c) un

Más detalles

Ejercicios típicos del segundo parcial

Ejercicios típicos del segundo parcial Ejercicios típicos del segundo parcial El segundo examen parcial consiste en tres ejercicios prácticos y dos teóricos, aunque esta frontera es muy difusa. Por ejemplo, el primer ejercicio de esta serie,

Más detalles

ACTIVIDADES GA ACTIVIDAD

ACTIVIDADES GA ACTIVIDAD ACTIVIDADES GA ACTIVIDAD 1: (Mié-12-Feb-14) a) Conteste Qué es y para qué sirve un Sistema de referencia? b) Conteste Qué es y para qué sirve un Sistema de coordenadas? c) Conteste Es lo mismo 'sistema

Más detalles

Guía n 0: Herramientas de Física y Matemáticas

Guía n 0: Herramientas de Física y Matemáticas Guía n 0: Herramientas de Física y Matemáticas Problema Dadas dos partículas en el espacio ubicadas en los puntos de coordenadas p = (0,5, 2) y p 2 = (2,3,). Hallar el vector posición de la partícula respecto

Más detalles

CAMPOS: CIRCULACIÓN Y FLUJO

CAMPOS: CIRCULACIÓN Y FLUJO AMPO: IRULAIÓN Y FLUJO Dado el vector a ( x + y) i ˆ + xy ˆ j calcular su circulación a lo largo de la recta y x+ desde el punto A (, ) al B (, 2). olución: I.T.I. 99, 5, I.T.T. 2 En la trayectoria que

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07.

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07. Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander Monday, November 5, 2007 at 8:44 am (FA07.01,02) Para uso exclusivo en el salón de clase. 2007 c Julio C. Carrillo

Más detalles

SERIE # 4 CÁLCULO VECTORIAL

SERIE # 4 CÁLCULO VECTORIAL SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el

Más detalles

SERIE # 2 CÁLCULO VECTORIAL

SERIE # 2 CÁLCULO VECTORIAL SERIE # CÁLCULO VECTORIAL SERIE 1) Calcular las coordenadas del punto P de la curva: en el que el vector P 1, 1, r t es paralelo a r t Página 1 t1 r t 1 t i ( t ) j e k ) Una partícula se mueve a lo largo

Más detalles

Operadores diferenciales

Operadores diferenciales Apéndice A Operadores diferenciales A.1. Los conceptos de gradiente, divergencia y rotor Sobre el concepto de gradiente. Si f r) es una función escalar, entonces su gradiente, en coordenadas cartesianas

Más detalles

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE PLANO TANGENTE Y VECTOR NORMAL. AREA DE UNA SUPERFICIE 1) En cada uno de los siguientes ejercicios se presenta una S dada en forma paramétrica,

Más detalles

EJERCICIOS DEL CAPÍTULO 5 - CAMPOS ESCALARES Y VECTORIALES. C5. 1 Hallar el momento del vector v respecto al punto M (2, 1, 1), siendo v = - grad φ en

EJERCICIOS DEL CAPÍTULO 5 - CAMPOS ESCALARES Y VECTORIALES. C5. 1 Hallar el momento del vector v respecto al punto M (2, 1, 1), siendo v = - grad φ en EJERCICIOS DEL CAPÍTULO 5 - CAMPOS ESCALARES Y VECTORIALES C5. 1 Hallar el momento del vector v respecto al punto M (2, 1, 1), siendo v = - grad φ en el punto P (1, 3, 0) y siendo φ=. C5. 2 Dado un campo

Más detalles

NOCIONES DE CALCULO VECTORIAL

NOCIONES DE CALCULO VECTORIAL NOCIONES DE CALCULO VECTORIAL ANÁLISIS VECTORIAL o ÁLGEBRA VECTORIAL: Suma, resta y multiplicación de vectores. o CÁLCULO VECTORIAL: Gradiente, divergencia y rotacional. Teorema de la Divergencia. Teorema

Más detalles

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple El Teorema de Green Una curva dada por r(t) x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) r(d) si c d. urva simple urva no simple urva orientada positivamente La curva

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Analisis Vectorial. 19 de octubre de 2011

Analisis Vectorial. 19 de octubre de 2011 M.Sc. Alejandro Galo Roldan Physics Professor Head of the Physics Program at the National University of Honduras UNAH 19 de octubre de 2011.Sc. Alejandro Galo RoldanPhysics Professor Head of the Analisis

Más detalles

son dos elementos de Rⁿ, definimos su suma, denotada por

son dos elementos de Rⁿ, definimos su suma, denotada por 1.1 Definición de un vector en R², R³ y su Interpretación geométrica. 1.2 Introducción a los campos escalares y vectoriales. 1.3 La geometría de las operaciones vectoriales. 1.4 Operaciones con vectores

Más detalles

Práctico 2: Mecánica lagrangeana

Práctico 2: Mecánica lagrangeana Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las

Más detalles

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática. Álgebra Geometría Analítica Vectores en R en R 3. Rectas planos en el espacio Prof. Gisela Saslavs Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..

Más detalles

UNIVERSIDAD JOSE CARLOS MARIATEGUI CAPITULO 2 VECTORES

UNIVERSIDAD JOSE CARLOS MARIATEGUI CAPITULO 2 VECTORES CAPITULO 2 VECTORES 2.1 Escalares y Vectores Una cantidad física que pueda ser completamente descrita por un número real, en términos de alguna unidad de medida de ella, se denomina una cantidad física

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 162 CONTENIDO Funciones

Más detalles

Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. Solución: ( )

Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. Solución: ( ) SERIE DE ÁLULO VETORIAL 1 PROFESOR: PEDRO RAMÍREZ MANNY TEMA 1 Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. f x, y = x + y 6x + 6y + 8 1) (

Más detalles

Vectores. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán.

Vectores. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán. Vectores Autor: Ing. Jonathan Alejandro Cortés Montes de Oca. Vectores En el campo de estudio del Cálculo

Más detalles

Cátedra Matemática del PIT. Gradiente y Derivada Direccional

Cátedra Matemática del PIT. Gradiente y Derivada Direccional Cátedra Matemática del PIT Gradiente y Derivada Direccional Propósito de la Unidad Hallar y usar las derivadas direccionales de una función de dos variables. Hallar el gradiente de una función de dos variables.

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99)

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99) Capítulo 1 Vectores 26 Problemas de selección - página 13 (soluciones en la página 99) 21 Problemas de desarrollo - página 22 (soluciones en la página 100) 11 1.A PROBLEMAS DE SELECCIÓN Sección 1.A Problemas

Más detalles

Sea S = F r(w ) una supercie cerrada que limita una región en el espacio W R 3

Sea S = F r(w ) una supercie cerrada que limita una región en el espacio W R 3 4.3 Teorema de la ivergencia Gauss) ea = F r ) una supercie cerrada que limita una región en el espacio R 3 El teorema de la divergencia tambien conocido como teorema de Gauss) es una generalización del

Más detalles

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática. Álgebra Geometría Analítica Prof. Gisela Saslavsk Vectores en R en R 3. Rectas planos en el espacio Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..

Más detalles

Lección 3. El campo de las corrientes estacionarias. El campo magnetostático.

Lección 3. El campo de las corrientes estacionarias. El campo magnetostático. Lección 3. El campo de las corrientes estacionarias. El campo magnetostático. 81. Un campo vectorial está definido por B = B 0 u x (r < a) B r = A cos ϕ ; B r 2 ϕ = C sin ϕ (r > a) r 2 donde r y ϕ son

Más detalles

Ingeniería Electrónica ELECTROMAGNETISMO Cátedra Ramos-Lavia Versión

Ingeniería Electrónica ELECTROMAGNETISMO Cátedra Ramos-Lavia Versión Versión 2013 1 TRABAJO PRÁCTICO N 0: Modelo Electromagnético 0.1 - Cuáles son las cuatro unidades SI fundamentales del electromagnetismo? 0.2 - Cuáles son las cuatro unidades de campo fundamentales del

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP.

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP. Wilson Herrera 1 Vectores 1. Dados los puntos P (1, 2), Q( 2, 2) y R(1, 6): a) Representarlos en el plano XOY. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo

Más detalles

Coordenadas Generalizadas en el Espacio

Coordenadas Generalizadas en el Espacio Capítulo 3 Coordenadas Generalizadas en el Espacio Las coordenadas cartesianas usuales en R 3 pueden verse también como un sistema de tres familias de superficies en el espacio, de modo que cada punto

Más detalles

MÉTODOS MATEMÁTICOS II

MÉTODOS MATEMÁTICOS II MÉTODOS MATEMÁTICOS II (Licenciatura de Física. Curso 2007-2008) Boletín de problemas a evaluar correspondientes a los Temas I y II Fecha de entrega: Viernes, 23 de Noviembre de 2007 1. Calcula los siguientes

Más detalles

Soluciones a los ejercicios de vectores

Soluciones a los ejercicios de vectores Soluciones a los ejercicios de vectores Tomás Rocha Rinza 28 de agosto de 2006 1. De acuerdo con la propiedad de la norma entonces si x 0, se tiene que luego, si x 0 el vector x/ x es unitario. 2. Si x

Más detalles

i j k xy yz xz = = Div Rot F = x y z

i j k xy yz xz = = Div Rot F = x y z Div Rot F, si F = ( xy, yz, xz) 1. Hallar: primero, debemos hallar rotor de la función vectorial. i j k Rot ( F ) = ( xy, yz, xz) =,, ( xy, yz, xz) = x y z xy yz xz ( xz) ( yz) ( xy) ( xz) ( yz) ( xy)

Más detalles

1.5. Integral de línea de un campo Vectorial.

1.5. Integral de línea de un campo Vectorial. .5. Integral de línea de un campo Vectorial. Sea F ( xyz,, un campo vectorial continuo sobre R donde F representa un campo de fuerzas aplicado sobre una partícula cuya trayectoria puede ser descrita por

Más detalles

gradiente de una función? Para esos valores, calcule la función potencial.

gradiente de una función? Para esos valores, calcule la función potencial. CAMPOS CONSERVATIVOS. FUNCIÓN POTENCIAL 1. Sea F = 4xy 3x ( z (, 2x (, 2x, z. Demuestre que Fdl trayectoria C. es independiente de la 2. Dado el campo vectorial F = 3x ( + 2y y ( e 3, 2x 2ye 3. Es posible

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

Universidad Nacional Autónoma de México Centro de Investigación en Energía. Programa de Estudio

Universidad Nacional Autónoma de México Centro de Investigación en Energía. Programa de Estudio Universidad Nacional Autónoma de Centro de Investigación en Energía Programa de Estudio Cálculo Vectorial 2 10 Asignatura Clave Semestre Créditos Ciencias Básicas Ciclo Matemáticas Área Asignatura: Horas:

Más detalles

SERIE ÁLGEBRA VECTORIAL

SERIE ÁLGEBRA VECTORIAL SERIE ÁLGEBRA VECTORIAL 1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre

Más detalles

Sistemas de coordenadas

Sistemas de coordenadas Tema 2 Vectores Sistemas de coordenadas Se utilizan para describir la posición de un punto en el espacio Un sistema de coordenadas consiste en un punto de referencia que llamaremos origen ejes específicos

Más detalles

ANALISIS VECTORIAL. Vectores concurrentes: cuando se interceptan en un mismo punto.

ANALISIS VECTORIAL. Vectores concurrentes: cuando se interceptan en un mismo punto. ANALISIS VECTORIAL Vector: Es un operador matemático que sirve para representar a las magnitudes vectoriales. Vectores concurrentes: cuando se interceptan en un mismo punto. Vectores iguales: cuando tienen

Más detalles

VECTORES. BIDIMENSIONAL

VECTORES. BIDIMENSIONAL VETORES. IDIMENSIONL 1. Dado los vectores,,, D, E, F y G que se muestran en la figura, determinar el modulo del vector resultante si = 5N y F = 4N. Rpta. R = 17,35N. 2. En el primer cuadrante de un sistema

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. 2do. cuatrimestre de 2015 Práctica 2 - Integrales de superficie. Definición.1. Una superficie paramétrica (superficie a secas para nosotros) es un conjunto

Más detalles

VECTORES 1.- Dados los vectores a (,-1,0), b (-3,3,-) y c (4,-3,-4) calcule a (b-c) : A) (-,-4,5) B) (-,4,5) C) (,4,-5) D) (,-4,5).- Dados dos vectores a (3,5,4) y b (-1,,3) aplicados ambos en el punto

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA

ALGEBRA Y GEOMETRIA ANALITICA Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 009 Profesora Mariana Suarez PRACTICA N 8: RECTA EN EL ESPACIO PLANO ALGEBRA Y GEOMETRIA ANALITICA - Segundo cuatrimestre

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.

Más detalles

EJERCICIOS VECTORES EN EL ESPACIO 1. Dados los vectores A = 2î - 4 ĵ + 6 kˆ y B = î + 5 ĵ 9 kˆ, encontrar un vector c tal que 3 a + 2b + 4 c

EJERCICIOS VECTORES EN EL ESPACIO 1. Dados los vectores A = 2î - 4 ĵ + 6 kˆ y B = î + 5 ĵ 9 kˆ, encontrar un vector c tal que 3 a + 2b + 4 c EJERCICIOS VECTORES EN EL ESPACIO 1. Dados los vectores A = î - 4 ĵ + 6 kˆ y B = î + 5 ĵ 9 kˆ, encontrar un vector c tal que 3 a + b + 4 c 1 = 0. RESPUESTA: i+ j. Dados los vectores A = î - ĵ + 3 kˆ y

Más detalles

Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica

Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica http://www.cidse.itcr.ac.cr 7 de junio de 008 . Para cada una de las funciones que se

Más detalles

SECRETARÍA DE EDUCACIÓN PÚBLICA DIRECCIÓN GENERAL DE EDUCACIÓN SUPERIOR TECNOLÓGICA INSTITUTO TECNOLÓGICO DE VERACRUZ. Carrera: Ingeniería Mecatrónica

SECRETARÍA DE EDUCACIÓN PÚBLICA DIRECCIÓN GENERAL DE EDUCACIÓN SUPERIOR TECNOLÓGICA INSTITUTO TECNOLÓGICO DE VERACRUZ. Carrera: Ingeniería Mecatrónica SECRETARÍA DE EDUCACIÓN PÚBLICA DIRECCIÓN GENERAL DE EDUCACIÓN SUPERIOR TECNOLÓGICA INSTITUTO TECNOLÓGICO DE VERACRUZ Carrera: Ingeniería Mecatrónica Materia: Robótica Titular de la materia: Dr. José Antonio

Más detalles

Fecha de elaboración: Agosto de 2004 Fecha de última actualización: Julio de 2010

Fecha de elaboración: Agosto de 2004 Fecha de última actualización: Julio de 2010 Programa elaborado por: PROGRAMA DE ESTUDIO ANÁLISIS VECTORIAL Programa Educativo: Área de Formación : Licenciatura en Física Sustantiva profesional Horas teóricas: 3 Horas prácticas: 2 Total de Horas:

Más detalles

1. INTEGRALES MÚLTIPLES

1. INTEGRALES MÚLTIPLES 1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE GRUPOS C Y D.

EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE GRUPOS C Y D. Página 1 de 14 Al índice de exámenes EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE 1994. GRUPOS C Y D. E1. Deducir la ecuación de dimensiones de las siguientes magnitudes: 1- velocidad; 2-

Más detalles

SERIE # 1 CÁLCULO VECTORIAL

SERIE # 1 CÁLCULO VECTORIAL SERIE # 1 CÁLCULO VECTORIAL Página 1) Determinar la naturaleza de los puntos críticos de la función f x, y = x y x y. P 1 0,0 máximo relativo, P 1, 1 punto silla, P 1, 1 punto silla, 4 1, 1 silla, P5 1,

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16. Integración en varias variables.

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16. Integración en varias variables. AMPLIACIÓN DE MATEMÁTICA. Curso 2015/16. Integración en varias variables. 1. Calcular para = [0, 1] [0, 3] las integrales (a) xydxdy. (b) xe y dxdy. (c) y 2 sin xdxdy. 2. Calcular las integrales dobles

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

GEOMETRÍA MÉTRICA. Usando sólo la escena: Si A( 1, 1,0) y B(k, 2,2), qué dos valores puede tomar k para que d(a,b)=3? Solución:

GEOMETRÍA MÉTRICA. Usando sólo la escena: Si A( 1, 1,0) y B(k, 2,2), qué dos valores puede tomar k para que d(a,b)=3? Solución: INTRODUCCIÓN. A1. Observa que: Ministerio de Educación, Cultura y Deporte. Año 2003 Si A(x 1,y 1,z 1 ) y B(x 2,y 2,z 2 ), entonces GEOMETRÍA MÉTRICA Usando sólo la escena: Si A( 1, 1,0) y B(k, 2,2), qué

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo

Más detalles

[ ] 2, 2, 3 [ ( )] 2, 2, 3 CAMPOS: SUPERFICIES ( ) Hallar un vector unitario normal a la superficie x 2 y + 2xz = 4 en el punto (2, 2,3).

[ ] 2, 2, 3 [ ( )] 2, 2, 3 CAMPOS: SUPERFICIES ( ) Hallar un vector unitario normal a la superficie x 2 y + 2xz = 4 en el punto (2, 2,3). CAMPOS SUPERFICIES Hallar un vector unitario normal a la superficie x 2 y + 2xz 4 en el punto (2, 2,3). Solución I.T.I. 98, I.T.T. 99, 02 En primer lugar deberíamos verificar que el punto (2, 2,3) pertenece

Más detalles

Variables presión y caudal

Variables presión y caudal Variables presión y caudal Potencia = Presión * Caudal La presión es la magnitud escalar que relaciona la fuerza con la superficie sobre la cual actúa, es decir, equivale a la fuerza que actúa sobre la

Más detalles

LA INTEGRAL DEFINIDA. APLICACIONES

LA INTEGRAL DEFINIDA. APLICACIONES 13 LA INTEGRAL DEFINIDA. APLICACIONES REFLEXIONA Y RESUELVE Dos trenes Un Talgo y un tren de mercancías salen de la misma estación, por la misma vía y en idéntica dirección, uno tras otro, casi simultáneamente.

Más detalles

CINEMÁTICA 2. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA

CINEMÁTICA 2. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA CINEMÁTICA 2 Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA CAMPO DE VELOCIDADES El campo de velocidad está constituido

Más detalles

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. 1. Coordenadas curvilíneas. Ingeniero de Telecomunicación

I. Fundamentos matemáticos. ticos. Campos Electromagnéticos. ticos. 1. Coordenadas curvilíneas. Ingeniero de Telecomunicación I. Fundamentos matemá 1. Coordenadas curvilíneas Gabriel Cano Gómez, G 2009/10 Dpto. Física F Aplicada III (U. Sevilla) Campos Electromagné Ingeniero de Telecomunicación I. Fundamentos matemá Gabriel Cano

Más detalles

TEMA II.7. Lagrange y Euler. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México)

TEMA II.7. Lagrange y Euler. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México) TEMA II.7 Lagrange y Euler Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

ALGEBRA Y GEOMETRIA ANALITICA

ALGEBRA Y GEOMETRIA ANALITICA Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 2009 Profesora Mariana Suarez PRACTICA N 7: SISTEMA COORDENADO TRIDIMENSIONAL. VECTORES. PRACTICA 7: Sistema coordenado

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0.

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 26 de Junio de 2008 Primera parte. =1, a,b > 0. ÁLULO Primer curso de ngeniero de Telecomunicación Examen Final. 6 de Junio de 8 Primera parte Ejercicio. onsideremos los rectángulos de lados paralelos a los ejes que pueden inscribirse en la elipse x

Más detalles

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial.

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial. Tema 12: Teoremas de Integración del Cálculo Vectorial El operador nabla e conoce como operador nabla al pseudo-vector = ( x, y, ) Juan Ignacio Del Valle Gamboa ede de Guanacaste Universidad de Costa Rica

Más detalles

Carrera: Ingeniería Química. Asignatura: Cálculo Multivariable. Área del Conocimiento: Ciencias Basicas

Carrera: Ingeniería Química. Asignatura: Cálculo Multivariable. Área del Conocimiento: Ciencias Basicas Carrera: Ingeniería Química Asignatura: Cálculo Multivariable Área del Conocimiento: Ciencias Basicas Generales de la Asignatura: Nombre de la Asignatura: Clave Asignatura: Nivel: Carrera: Frecuencia (h/semana):

Más detalles

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean

Más detalles

Universidad Autónoma del Estado de México Unidad Académica Profesional Nezahualcóyotl Lic. en Ingeniería en Sistemas Inteligentes.

Universidad Autónoma del Estado de México Unidad Académica Profesional Nezahualcóyotl Lic. en Ingeniería en Sistemas Inteligentes. Universidad Autónoma del Estado de México Unidad Académica Profesional Nezahualcóyotl Lic. en Ingeniería en Sistemas Inteligentes. PROBLEMARIO Unidad de aprendizaje: CÁLCULO III Autor: Dr. Israel Gutiérrez

Más detalles

ALGEBRA LINEAL. Capítulo III: Vectores en los espacios bidimensional y tridimensional. MsC. Andrés Baquero. jueves, 2 de julio de 15

ALGEBRA LINEAL. Capítulo III: Vectores en los espacios bidimensional y tridimensional. MsC. Andrés Baquero. jueves, 2 de julio de 15 ALGEBRA LINEAL Capítulo III: Vectores en los espacios bidimensional y tridimensional MsC. Andrés Baquero jueves, 2 de julio de 15 Introducción a los vectores Vectores Geométricos Vectores Geométricos Vectores

Más detalles

INDICE Presentación Preliminar del Cálculo 1. Funciones y Modelos 2. Límites y Derivadas Problemas especiales 3. Reglas de Derivación

INDICE Presentación Preliminar del Cálculo 1. Funciones y Modelos 2. Límites y Derivadas Problemas especiales 3. Reglas de Derivación INDICE Presentación Preliminar del Cálculo 2 1. Funciones y Modelos 10 1.1. Cuatro maneras de representar una función 11 1.2. Modelos matemáticos 24 1.3. Nuevas funciones a partir de funciones ya conocidas

Más detalles

PEP 3. Responda 4 de los siguientes 9 problemas, escogiendo al menos uno de cada sección.

PEP 3. Responda 4 de los siguientes 9 problemas, escogiendo al menos uno de cada sección. Universidad de Santiago de Chile Cálculo odrigo Vargas do semestre 1 PEP Nombre: Nota: esponda de los siguientes 9 problemas, escogiendo al menos uno de cada sección. Sección 1. 1. Use coordenadas esféricas

Más detalles

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil. DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley

Más detalles

Teorema de Cambio de Variables para Integrales Dobles

Teorema de Cambio de Variables para Integrales Dobles Universidad de Chile Facultad de Ciencias Físicas y Matemáticas epartamento de Ingeniería Matemática Cátedra - MA2A1 22 de Enero 2008 Teorema de Cambio de Variables para Integrales obles Cuál es la idea:

Más detalles

Materia: Matemática de 5to Tema: Ecuación vectorial. Marco Teórico

Materia: Matemática de 5to Tema: Ecuación vectorial. Marco Teórico Materia: Matemática de 5to Tema: Ecuación vectorial Marco Teórico Como ya sabemos y = mx + b es la forma pendiente-intersección de una recta. Mientras que esta ecuación funciona bien en el espacio de dos

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Fundamentos Matemáticos. Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla

Fundamentos Matemáticos. Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla Tema 1: Fundamentos Matemáticos Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla Índice Introducción I. Sistemas de coordenadas II. Campos escalares. Gradiente III.

Más detalles

Física II Ecuaciones de Maxwell. Ingeniería Electrónica Departamento de Ciencias Aplicadas y Tecnología Universidad Nacional de Moreno

Física II Ecuaciones de Maxwell. Ingeniería Electrónica Departamento de Ciencias Aplicadas y Tecnología Universidad Nacional de Moreno Departamento de Ciencias Aplicadas y Tecnología 30 de noviembre de 2015 Índice 1. Repaso de las ecuaciones 1 1.1. ey de Gauss para el campo electrostático....................... 1 1.2. ey de Gauss para

Más detalles

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera: PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

Cinemática de la partícula, movimiento curvilíneo

Cinemática de la partícula, movimiento curvilíneo Cinemática de la partícula, movimiento curvilíneo Introducción En este documento se estudiará el movimiento de partículas (cuerpos cuyas dimensiones no son tomadas en cuenta para su estudio) que siguen

Más detalles

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2 Ejemplos de parcial de Análisis Matemático II Los ítems E1, E, E3 E4 corresponden a la parte práctica Los ítems T1 T son teóricos (sólo para promoción) T1) Sea F : IR IR diferenciable tal que F(,) 00 =

Más detalles

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL (Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL En numerosas aplicaciones de la ingeniería se presentan problemas de optimización,

Más detalles

, 2 x+y+z = 2, = z 5 y s: 4x-2y+z = 0. ( ) ( ) y dado el punto P(0,3,-1) exterior a, obtener las ecuaciones en

, 2 x+y+z = 2, = z 5 y s: 4x-2y+z = 0. ( ) ( ) y dado el punto P(0,3,-1) exterior a, obtener las ecuaciones en x+y-z = 0 1. [2014] [EXT-A] Sea P el punto de coordenadas P(1,0,1) y r la recta de ecuación r x-2z = 1. a) Hallar la ecuación en forma continua de una recta que pase por el punto P y sea paralela a la

Más detalles

Integrales Triples Centro de Masa y Momento de Inercia Integrales Triples en Coordenadas Cilindricas Coordenadas Cilindricas. Integrales Triples

Integrales Triples Centro de Masa y Momento de Inercia Integrales Triples en Coordenadas Cilindricas Coordenadas Cilindricas. Integrales Triples Integrales Triples Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 30 CONTENIDO Integrales Triples Introducción

Más detalles

PRÁCTICA TEMA 2 INTEGRALES MÚLTIPLES. Ejercicio 1. Escriba la expresión que permite calcular por integrales dobles.

PRÁCTICA TEMA 2 INTEGRALES MÚLTIPLES. Ejercicio 1. Escriba la expresión que permite calcular por integrales dobles. PRÁCTICA TEMA 2 INTEGRALES MÚLTIPLES Ejercicio 1. Escriba la expresión que permite calcular por integrales dobles. a. El área de una región plana R. b. El volumen de un sólido V, de altura z = f(x,y).

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles