SERIE # 1 CÁLCULO VECTORIAL
|
|
|
- Adrián Miguel Maldonado Prado
- hace 9 años
- Vistas:
Transcripción
1 SERIE # 1 CÁLCULO VECTORIAL
2 Página 1) Determinar la naturaleza de los puntos críticos de la función f x, y = x y x y. P 1 0,0 máximo relativo, P 1, 1 punto silla, P 1, 1 punto silla, 4 1, 1 silla, P5 1, 1 punto silla. P punto ) Determinar la naturaleza de los puntos críticos de la función f x, y = x x y y x y 1. P 1 1 0, mínimo relativo, 1 P, punto silla, P 1, punto silla. ) Determinar la naturaleza de los puntos críticos de la función f ( x, y )= x + y x y 8. P punto silla, P mínimo relativo, P máximo relativo, P 0,0 1 punto silla. 0,, 0 4) Determinar los valores extremos de la función, f x y = x + y - x + y. 4, Un mínimo relativo en 1 0,0 8 z. 7 P de valor, un máximo relativo en P 4, de valor 5) Determinar la naturaleza de los puntos críticos de la función x 1 1 f ( x, y) y x y
3 Página f presenta un puntosillaenel punto P( 1,1). 6) Determinar los puntos donde la función f x, y cosh x senh y tiene valores máximos, mínimos o puntos silla. La función no tiene puntos críticos. 1 7) Obtener los puntos críticos de la función f x, y y + x y x y 6 y determinar la naturaleza de cada uno de los puntos obtenidos. P máximo relativo, P mínimo relativo, P punto silla, P 0,0 1 punto silla. 0, 4, 4, 8) Se desea construir un ducto desde el punto P, hasta el punto S, los costos por cada Km de ducto son: de k en el tramo PQ, k en el tramo QR, y de k en el tramo RS. Determinar las dimensiones de X y Y para que el costo del ducto sea mínimo. X 1 y Y 1
4 Página 4 9) Calcular los valores extremos de la función, x y 4. f x y x + y +x - y -1 en la región Los valores extremos son: f -1,1 mínimo y f, máximo. 10) Determinar las coordenadas del punto Px, y, z que pertenece a la superficie S : x y z 1 0 y que es el más cercano al origen. El punto 0,0, 1 es el más cercano (distancia mínima) al origen. 11) Dada la función f x, y = x xy 5x y naturaleza de cada uno de ellos., determinar sus puntos críticos y la P 1 0,0 mínimo relativo, P P4 1, punto silla. 5,0 máximo relativo, P 1, punto silla, 1) Determinar, si existen los valores extremos para la función, f x y =(x -1) - y. La función no tiene valores extremos. 1) Obtener los puntos críticos de la función establecer su naturaleza. f (x,y,z)= 4x +x y+6xz+z - y+ x y P 1,, 1 punto silla, 1 P 1, 4, 1 punto silla.
5 Página 5 14) Determinar los puntos críticos de la función establecer su naturaleza. f (x,y,z)= xz + zy - x+1y - z+ y P 1 1,, 1 punto silla, P 5,, 1 punto silla. 15) Determinar la naturaleza de los puntos críticos de la función f (x,y,z)= x +4xy -10x - y +4y+ z. P 11 1,,0 7 7 es un punto silla. 16) Obtener los puntos críticos de la función establecer la naturaleza de cada uno de ellos. z f (x, y,z)= x +xy+ +zy+x+z -10 y P punto silla, 1 0, 1, 0 P,, punto silla. 17) Determinar los puntos críticos de la función f (x,y,z)= -x - y - z + xy+ yz+ x+ y+ z+10 y establecer la naturaleza de cada uno de ellos. 1 1,, máximo relativo.
6 Página 6 18) Obtener los puntos críticos de la función determinar la naturaleza de los mismos. x f (x, y,z)= - x+1 - y +y - z +z y P punto silla, 1 1, 1, 1 P 1, 1, 1 máximo relativo ) Verificar que el campo escalar f x, y, z = x + y + z 4xyz, tiene un punto crítico en 1,1,1 y determinar la naturaleza de este punto. En el punto 1,1,1, f tiene un valor mínimo igual a 1. 0) Obtener los puntos críticos de la función f x, y, z = x y z xz 8yz x 6y 8z y establecer la naturaleza de cada uno de los puntos obtenidos. P,, punto silla. 1) Se desea construir una ventana de área máxima como la mostrada en la figura. Calcular las dimensiones de dicha ventana si su perímetro debe medir 0 m.
7 Página x, y 4 4 ) Calcular mediante el criterio de la segunda derivada la distancia mínima del punto P (1,,0) a la superficie de ecuación z x y. Distancia = unidades delongitud ) Se desea fabricar un envase con forma de cilindro circular con tapa, empleando una r cantidad determinada de lámina. Determinar la razón entre el radio r y la altura h del h envase, de modo que su volumen sea máximo. r 1 h 4) Se desea fabricar un tanque con capacidad de 10 m formado por un cilindro circular de radio R y por dos semiesferas de radio R en sus extremos. Calcular las dimensiones L y R del tanque de modo que se requiera de la menor cantidad posible de material. L 0, r 15 m
8 Página 8 5) Se desea fabricar un recipiente sin tapa con forma de cilindro circular recto y cuyo volumen sea de 16m. Si el metro cuadrado de material para la base cuesta el doble que para la pared, utilizar el método de los multiplicadores de Lagrange para calcular las dimensiones que debe tener el recipiente para que el costo sea mínimo. 4 r m, h m 6) Determinar los valores extremos de la función f(x,y)= x y 5 en la región cerrada R del plano XY limitada por las gráficas de y = 5, y = - 5 y x - y = 4. f(-, 5 ) 19 f(, 5 ) 19 f presenta 4 máximos absolutos, en: f(-,- 5 ) 19 f(,- 5 ) 19 y un mínimo, relativo y absoluto en PC ( 0, 0 ) = 5 7) Utilizar el método de los multiplicadores de Lagrange para determinar las coordenadas de los vértices de la hipérbola representada por la ecuación xy = 4. Nota: La hipérbola tiene su centro en el origen. V (,) 1 y V (, ). 8) Aplicar el análisis de la variación de una función para establecer las ecuaciones de las rectas sobre las cuales se localizan los ejes de la elipse de ecuación 5x +8xy+5y = 9. Sugerencia : Tomar en cuenta que la elipse tiene su centro en el origen. y x, y x.
9 Página 9 9) Calcular la distancia mínima del punto A,-, 1 a la superficie de ecuación z = x y. Distancia mínima de unidades. 0) Obtener los máximos y mínimos de la función f x, y x xy 4y restricción g x, y x y 5. con la 14 5 x y, y ) Determinar las coordenadas del punto de la superficie z = xy+1 que está más cerca del origen. P 0, 0, 1 ) Determinar los valores extremos de la función f x y z x x y z,, 1 sujeta a la restricción z = x y. 1 1 En, 0,, f tiene un valor mínimo igual a 1.
10 10 CÁLCULO VECTORIAL Página ) Una partícula se mueve en el espacio a lo largo de la curva: Determinar las cotas máxima y mínima de la trayectoria de la partícula. x y 8 C : x y z 10 Cota máxima en,, 7, cota mínima en,,. 4) El paraboloide z = x y es cortado por el plano z = 4 x y. Utilizar el método de los multiplicadores de Lagrange para calcular el punto de la curva de intersección entre el paraboloide y el plano que está más alejado del origen. P,, 8 5)Sea la función f x, y,z = 4x y z restringida por los planos x - y+z = 4, x+y - z =1. Obtener los valores extremos. f ,, ) Obtener los valores extremos de la función cos x - y - 5= 0. z x y, sujeta a la restricción f 0, 4 16
11 11 CÁLCULO VECTORIAL Página 7) Se desea construir un envase de lámina en forma de cilindro circular recto con tapa, que tenga un volumen de litros. Si el m de lámina cuesta $ Cuáles deben ser las dimensiones del envase para que su costo sea mínimo?. r 1, h 8) Determinar las dimensiones del radio r y de la altura h del cilindro que puede ser inscrito en una esfera de radio R, de tal modo que su superficie total sea mínima. R r, h R 9) Calcular el área de la región del plano XY limitada por la elipse de ecuación 5 x 14 x y 5 y 88 0 (sugerencia: el área de una elipse con semiejes, a y b es igual a ab ; determinar el valor de las constantes a y b utilizando el método de los multiplicadores de Lagrange). A 1 u 40) Se tiene que diseñar un campo deportivo que esté formado por un rectángulo con dos semicírculos en sus extremos. La parte rectangular debe tener un área de 5000 m, y el campo debe estar rodeado por una barda. Cuáles deberán ser las dimensiones del patio de modo que la longitud de la barda que se necesita sea mínima?.
12 1 CÁLCULO VECTORIAL Página 100 x 50, y 41) Si la suma de tres números positivos a, b, c es S, cuáles son sus valores si la raíz cúbica de su producto debe ser máxima? a S, b S, c S. 4) En un aeropuerto se desea tender un cable eléctrico desde un contacto en el piso, localizado en el punto A1,1,0, hasta un anuncio luminoso montado sobre una superficie plana inclinada de ecuación x= y - z. Calcular: a) La longitud mínima de cable que se puede unir al plano con el contacto. b) Las coordenadas del punto sobre el plano, más cercano al contacto. a) 1.06 unidades de longitud b) P,,
13 1 CÁLCULO VECTORIAL Página 4) Un arco metálico cuya configuración geométrica esta representada por las ecuaciones y - x = 0 x y 4z 7 0 T x, y, z x y z 10. Determinar los puntos donde el está en un medio con temperatura arco tiene mayor y menor temperatura. Puntos de mayor temperatura:,, y Puntos de menor temperatura:,,,,. y,,. 44) Calcular el valor de los extremos absolutos de la función f x, y y y x definida en la región R x, y x y 4; y 0. Mínimo absoluto igual a 4 en,0 Máximo absoluto igual a 1 en 0, 1., 0. y en 45) Determinar los valores máximos y mínimos de la función f x, y y x 4x y 4 en una región del dominio de f limitada por las rectas x 4, y 1, x y. Mínimo absoluto igual a 1 en Máximo absoluto igual a 7 en,0. 4, 1.
14 14 CÁLCULO VECTORIAL Página 46) Determinar los valores extremos de la función f x, y y x definida por R x, y x 4y 4. El valor extremo de la función sobre la región R f x, y y x es 6 y se obtiene en cuatro puntos diferentes de los cuales se concluye que son máximos absolutos. La función presenta mínimos absolutos y relativos en todos los puntos de sus ejes ( x0 y y 0 ). 47) Calcular el valor máximo de la función f, x y = xy en el círculo x y 1. La función f tiene un valor máximo absoluto igual 1 1 1, en los puntos 1, 1 y 48) Una placa semicircular está definida por la región R x, y x y 1; y 0; x, y La temperatura T, en grados centígrados, en cualquier punto Px, y de la placa, está dada T x,y = x y y. Calcular las coordenadas de los puntos de mayor y menor por temperatura. 1 El punto de menor temperatura es 0, 1,0 son los de mayor temperatura. La mayor temperatura es igual a C. con 0.5 C y los puntos 1,0 y 49) Determinar el máximo absoluto y el mínimo absoluto de la función f x, y x x y D x, y x y 1. cuyo dominio se restringe a f
15 15 CÁLCULO VECTORIAL Página El máximo absoluto es 9 4 y se presenta en los puntos 1, 1 1 mínimo absoluto es y se presenta en el punto,0 4. y 1, y el 50) Para la función f x y naturaleza de cada uno de ellos., x ang tan( y), obtener sus puntos críticos y determinar la A 0, 0, f presenta un punto silla. En 51) Determinar los valores extremos de la función f x, y xy en la región R = x,y x y a, para f x, y 0. a a Máximos absolutos en A, a a y B,, y su valor es a. 5) Determinar los valores extremos de la función la región R : ( x 1) ( y 1) 1. Mínimo relativo y absoluto = 0 en PC(1,1). Máximo absoluto = en A(1,0) y en B(1,). f x y x y x y (, ) 4 en
Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica
Práctica 5 Máximos y Mínimos. Multiplicadores de Lagrange. Escuela de Matemática Instituto Tecnológico de Costa Rica http://www.cidse.itcr.ac.cr 7 de junio de 008 . Para cada una de las funciones que se
Funciones de varias variables: continuidad derivadas parciales y optimización
Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio
Escuela Politécnica Superior de Málaga. CÁLCULO
Escuela Politécnica Superior de Málaga. CÁLCULO 4. Funciones de varias variables. 1. Describe y dibuja en el plano el dominio de las siguientes funciones en el espacio: f(x, y) = f(x, y) = 36 4x 2 9y 2
CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES
GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)
VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES
VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES Sergio Stive Solano Sabié 1 Mayo de 2013 1 Visita http://sergiosolanosabie.wikispaces.com VALORES MÁXIMOS Y MÍNIMOS DE FUNCIONES DE DOS VARIABLES
1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:
APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes
SERIE # 4 CÁLCULO VECTORIAL
SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el
Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. Solución: ( )
SERIE DE ÁLULO VETORIAL 1 PROFESOR: PEDRO RAMÍREZ MANNY TEMA 1 Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. f x, y = x + y 6x + 6y + 8 1) (
Aplicaciones físicas
Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:
INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2.
INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. 1 1 4, 0 1 a.- (, ) = 2 1 4, 1 2 2 1 < 3, 0 < 1 b.- (, ) = 1 1 < 3, 1 2 3 3 4,
CÁLCULO VECTORIAL SEGUNDO EXAMEN LISTA 1
CÁLCULO VECTORIAL SEGUNDO EXAMEN LISTA 1 III. FUNCIONES DE VARIAS VARIABLES Sección I. En los ejercicios siguientes, hallar el límite (si existe). Si el límite no existe, explicar por qué. ( ) 4. ( ) 5.
SERIE ÁLGEBRA VECTORIAL
SERIE ÁLGEBRA VECTORIAL 1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre
Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias
Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos
Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1
Editorial Mc Graw Hill. Edición 007 Respuestas faltantes en ejercicios edición 007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4- R r + x + y Ejercicio 4-3 + R x + y + z Ecuaciones: x +
SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS
(Apuntes en revisión para orientar el aprendizaje) SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS - Leer cuidadosamente el enunciado para comprender la problemática presentada y ver qué se pretende
EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.
FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de
Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.
Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites
Problemas Tema 3 Enunciados de problemas de Derivabilidad
página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la
APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN
APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN 1. Calcular, aplicando la definición de derivada: f (), siendo f (x) = 3x 1 1 f ( ), siendo f (x) = x 1 Solución: 1; 4. Determinar el dominio y la expresión de
GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del
GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE PLANO TANGENTE Y VECTOR NORMAL. AREA DE UNA SUPERFICIE 1) En cada uno de los siguientes ejercicios se presenta una S dada en forma paramétrica,
PROBLEMAS DE OPTIMIZACIÓN
1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello
Ejercicios recomendados: Cálculo III
Ejercicios recomendados: Cálculo III Cátedra de MA 1003 II ciclo 2017 Los ejemplos que siguen están tomados del libro: Claudio Pita Ruiz Cálculo Vectorial Prentice-Hall Hispanoamericana México 1995 Ejemplos
Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.
Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
SERIE SUPERFICIES. 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones:
SERIE SUPERFICIES 1.- Determinar la ecuación cartesiana del cilindro que contiene a la curva de ecuaciones: 4x C z 0 y que se genera por rectas perpendiculares al plano: x + y + 3z + = 0.-Sea la superficie
Integrales de lı nea y de superficie
EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas
Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1
TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los
Ejercicios Resueltos de Cálculo III.
Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como
12. Una caja con base cuadrada y parte superior abierta debe tener un. 14. Un recipiente rectangular de almacenaje con la parte superior
328 CAPÍTULO 4 APLICACIONES DE LA DERIVACIÓN 4.7 EJERCICIOS 1. Considere el problema siguiente. Encuentre dos números cuya suma es 23 y cuyo producto es un máximo. (a) Formule una tabla de valores, como
Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático
Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o
y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.
. Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte
CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de 4 Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico con semieje orizontal a
Capítulo VI. Diferenciabilidad de funciones de varias variables
Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector
Tema 3. GEOMETRIA ANALITICA.
Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase
APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES.
APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES. 001 Hallar 2 números cuya suma es 20, sabiendo que su producto es 002 003 004 005 Halla dos números cuya suma sea 25, tales que el doble
Análisis Matemático IV
Análisis Matemático IV Relación. Ejercicios resueltos Ejercicio. Probar la siguiente versión multidimensional del Teorema de Rolle: Sea f : B (, ) R una función continua que es diferenciable en B(, ).
1. INTEGRALES MÚLTIPLES
1. INTEGALES MÚLTIPLES 1. Calcular las siguientes integrales iteradas: 1. x x 7 y dy dx dx 1. x x y y dx dy 1 1 7. (1 + xy) dx dy 1 1 π/. x sen y dy dx 5. (x + y) dx dy 6/ 1 6. (x + y) 8 dx dy 616 5 1
Funciones Reales de Varias Variables
Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 162 CONTENIDO Funciones
TEORIA MATEMATICAS 5 PRIMER PARCIAL
Def: Grafica de una función TEORIA MATEMATICAS 5 PRIMER PARCIAL Sea:. Definimos la grafica de f como el subconjunto de formado por los puntos, de en los que es un punto de U. Simbólicamente grafica es:
GUIA PARA EL EXAMEN EXTRAORDINARIO DE MATEMATICAS V
GUIA PARA EL EXAMEN EXTRAORDINARIO DE MATEMATICAS V 1) Determinar el dominio de las siguientes funciones dando el resultado en parentesis para:. y = x + 4. y = 3x c). y = x 3 x+ ) Obtener el rango para
7. [2013] [JUN-A] a) Pueden existir vectores u y v tales que u = 2, v = 3 y u v = 8? Justifique la respuesta.
1. [014] [EXT-A] a) Determine el valor o valores de m, si existen, para que la recta r: mx+y = x+ mz = : x-y-z+6 = 0. b) Determine la distancia del punto P= (,1,1) a la recta r cuando m =. sea paralela
Profesor: Fernando Ureña Portero
Optimización de funciones P a s o s p a r a l a r e s o l u c i ó n d e p ro b l e m a : 1. S e p l a n t e a l a f u n c i ón que hay que maximizar o minimizar. 2. S e p l a n t e a u n a e c u a c i
DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA
SISTEMA COORDENADO CARTESIANO, DISTANCIA ENTRE DOS PUNTOS ANGULO ENTRE DOS RECTAS y AREA 1) Transportar a una gráfica los siguientes puntos: a) ( 5, 2 ) b) (0, 0 ) c) ( 1 + 3, 1-3 ) d) ( 0, 3 ) e) ( -
Funciones de varias variables
Funciones de varias variables 1. Conceptos elementales Funciones IR n IR m. Definición Una función f (también f o f): A IR n IR m es una aplicación que a cada x (también x o x) A IR n le hace corresponder
Fundamentos matemáticos. Tema 6 Aplicaciones de la derivada
Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 6 Aplicaciones de la derivada José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected]
Ejercicio 1 Relacione convenientemente cada una de las siguientes expresiones: (considere x > 0 ) P Q a b. ax + bxh + h. x bxh
Módulo 1 DERIVADAS 1.1 Reglas de diferenciación Reconocimiento de saberes Ejercicio 1 Relacione convenientemente cada una de las siguientes epresiones: (considere > 0 ) ln ( e ) ln ln ( e ) ln e ln + ln
gradiente de una función? Para esos valores, calcule la función potencial.
CAMPOS CONSERVATIVOS. FUNCIÓN POTENCIAL 1. Sea F = 4xy 3x ( z (, 2x (, 2x, z. Demuestre que Fdl trayectoria C. es independiente de la 2. Dado el campo vectorial F = 3x ( + 2y y ( e 3, 2x 2ye 3. Es posible
Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.
CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina
Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA
Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA 54 Actualización Permanente en el Área Matemática 1. Cilindro Definiciones Se llama superficie cilíndrica la engendrada por una recta que
MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real
MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL 1. Escribe la ecuación de la recta normal a la curva de ecuación: arcsen abscisa 1. Haz un estudio de todas las asíntotas de la función: 1 e f ( ). Halla los valores
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión
GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.
GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de
Hallar el dominio de las siguientes funciones : 1. log F(x) = 234. F(x) = x F(x) = ln( F(x) = 9 3. x.calcular simplificando
Hallar el dominio de las siguientes funciones : 4. F() = 3 8 0 6 5. F() = 3 7 6. F() = 6 7. F() = 9 4 8. F() = ln 9. F() = e e 30. F() = e 3 3. F() = log 7 3. F() = sen 33. F() = 3 8 34. F() = 3 3 4 35.
COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS
LUGARES GEOMÉTRICOS Y CÓNICAS 01. Halla la ecuación de la circunferencia de centro ( 5, 12) y radio 13. Comprueba que pasa por el punto (0, 0). 02. Halla las ecuaciones de los siguientes lugares geométricos:
2015/2. Ejercicios cálculo diferencial cdx24 Derivada y aplicaciones
015/ Ejercicios cálculo diferencial cd4 Derivada y aplicaciones 6. Encuentre la derivada de la función usando la definición de derivada, y muestre que obtiene el mismo resultado encontrándola nuevamente
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #3
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #3 ÁREA Y PERÍMETRO DE FIGURAS PLANAS LINEA POLIGONAL: Se llama línea poligonal a la gura formada por la unión de segmentos de
SECCIONES CÓNICAS (1)Determinar y graficar el lugar geométrico de los puntos que equidistan de F(0, 2) y de la recta
LOS EJERCICIOS DEBEN RESOLVERSE TAMBIÉN USANDO SOFTWARE MATEMÁTICO. LAS ECUACIONES PEDIDAS SON, EN TODOS LOS CASOS, LAS CANÓNICAS Y LAS PARAMÉTRICAS. I) GEOMETRÍA ANALÍTICA EN EL PLANO 1. Determinar y
Función de dos variables
Funciones de dos y más variables, dominio y rango, y curva de nivel Marlon Fajardo Molinares - [email protected] 1. Función de dos variables 2. Funciones de varias variables 3. Método para hallar el
Problemas de Análisis Vectorial y Estadístico
Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1. 1º PARTE: Función creciente y decreciente, puntos críticos, extremos relativos
Cálculo 1 _Comisión 1 Año 016 APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1 Una de las aplicaciones de derivadas es el estudio del comportamiento de funciones Este estudio ya se había comenzado cuando
PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO.
PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. FACULTAD DE MATEMATICAS UNIVERSIDAD VERACRUZANA 2010 Xalapa, Ver. México 1 1. La distancia entre dos puntos en la recta real es 5. Si uno de los puntos
Derivadas Parciales. Aplicaciones.
RELACIÓN DE PROBLEMAS FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Curso 2004/2005 Escuela Universitaria de Ingeniería Técnica Agrícola Departamento de Matemática Aplicada I Tema 3. Derivadas Parciales. Aplicaciones.
SERIE # 2 CÁLCULO VECTORIAL
SERIE # CÁLCULO VECTORIAL SERIE 1) Calcular las coordenadas del punto P de la curva: en el que el vector P 1, 1, r t es paralelo a r t Página 1 t1 r t 1 t i ( t ) j e k ) Una partícula se mueve a lo largo
TEMA 10. CÁLCULO DIFERENCIAL
TEMA 0. CÁLCULO DIFERENCIAL Problemas que dieron lugar al cálculo diferencial. (Estos dos problemas los resolveremos más adelante) a) Consideremos la ecuación de movimiento de un móvil en caída libre en
ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97!
ELIPSE Las órbitas de los planetas son elípticas. La excentricidad de la órbita de la Tierra es muy pequeña (menor de 0.2), de manera que la órbita es casi circular. La órbita de Plutón es la más excéntrica
ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.
ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de 2012. Circunferencia. Elementos de la circunferencia. El segmento de recta es una cuerda. El segmento de recta es una cuerda que pasa por el centro, por lo tanto
Tema 2. GEOMETRÍA ELEMENTAL Y ANALÍTICA.
Fundamentos Matemáticos para la Ingeniería. Curso 2015-2016. Tema 2. Hoja 1 Tema 2. GEOMETRÍA ELEMENTAL Y ANALÍTICA. 1. Un solar de forma triangular tiene dos lados de longitudes 140,5 m y 170,6 m, y el
, siendo ln(1+x) el logaritmo neperiano de 1+x. x
Selectividad CCNN 00. [ANDA] [JUN-B] Considera la función f: definida por f() = (+)e -. (a) Halla las asíntotas de la gráfica de f. (b) Determina los etremos de f y los puntos de infleión de su gráfica.
Rotaciones alrededor de los ejes cartesianos
Sólido de revolución Un sólido de revolución es un cuerpo que puede obtenerse mediante una operación geométrica de rotación de una superficie plana alrededor de una recta que se contenida en su mismo plano.
GEOMETRÍA ANALÍTICA PROBLEMARIO GUÍA DE PROBLEMAS PARA LOS EXÁMENES DEPARTAMENTALES
PROBLEMARIO GUÍA DE PROBLEMAS PARA LOS EXÁMENES DEPARTAMENTALES CONTENIDO: 1. Conceptos básicos (Problemas 1-18). Línea recta (Problemas 19-6). Circunferencia (Problemas 7-4) 4. Parábola (Problemas 44-6)
EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA
1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.
1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:
1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =
ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.
ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el
Matemáticas 2 Agosto 2015
Laboratorio # 1 Línea recta I.-Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por y Pendiente
PAIEP. Valores máximos y mínimos de una función
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Valores máximos y mínimos de una función Diremos que la función f : D R R, alcanza un máximo absoluto en el punto
UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 13 CÁLCULO I
UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N CÁLCULO I Profesor: Carlos Ruz Leiva MÁXIMOS Y MÍNIMOS Criterio de la segunda derivada Supongamos que
Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca
Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:
Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6
página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto
I. Para cada una de las siguientes funciones calcular la derivada del orden pedido y simplificarlas. x 8(4 3 x ) x.. Sol. ). Sol.
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE FARMACIA CATEDRA DE MATEMATICA-FISICA GUÍA N 5 : Derivadas n-ésimas y aplicaciones de la derivada I. Para cada una de las siguientes funciones calcular la derivada
INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites
INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.
1. Optimización sobre intervalos intervalos cerrados
Universidad Autónoma Metropolitana (Iztapalapa) Cálculo Diferencial (CA53-14o) Tarea # 4 1. Optimización sobre intervalos intervalos cerrados Para cada uno de los siguientes dos problemas, el dominio de
ACTIVIDADES GA ACTIVIDAD
ACTIVIDADES GA ACTIVIDAD 1: (Mié-12-Feb-14) a) Conteste Qué es y para qué sirve un Sistema de referencia? b) Conteste Qué es y para qué sirve un Sistema de coordenadas? c) Conteste Es lo mismo 'sistema
2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.
cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..
b) En qué se diferencia la gráfica de un elipsoide que tiene un par semiejes iguales, con la de otro elipsoide cuyos semiejes son todos distintos?
Unidad Trabajo Práctico Superficies en 3D 01 CONOCIMIENTOS PREVIOS PARA SUPERFICIES Es necesario que sepas: - operar con expresiones algebraicas - resolver sistemas de ecuaciones e interpretar sus soluciones
Examen de Mitad de Periodo, MM-111
Examen de Mitad de Periodo, MM-111 arlos ruz October 27, 2015 Nombre: Registro Estudiantil: Instrucciones: Resuelva cada ejercicios de forma clara honesta y ordenada mostrando todo su procedimiento de
Clase 1: Funciones de Varias Variables
Clase 1: Funciones de Varias Variables C. J. Vanegas 29 de abril de 2008 1. La geometría de funciones con valores reales Considere la siguiente función f: donde x = (x 1,..., x n ). f : A R n R m x A f(x)
Ejercicios típicos del segundo parcial
Ejercicios típicos del segundo parcial El segundo examen parcial consiste en tres ejercicios prácticos y dos teóricos, aunque esta frontera es muy difusa. Por ejemplo, el primer ejercicio de esta serie,
1. Escribir las ecuaciones paramétricas, reducida y continua de la recta que pasa por los puntos A(2,3,5) y B(-1,0,2).
1. Escribir las ecuaciones paramétricas, reducida y continua de la recta que pasa por los puntos A(,3,5) y B(-1,0,).. Dados los puntos A(,3,-1) y B(-4,1,-), hallar las coordenadas de un punto C perteneciente
INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican:
INTEGACION EN VAIAS VAIABLES: Integrales dobles.. Evaluar las siguientes integrales iteradas: (x y + y )dy dx xye x+y dy dx ( x ln y)dy dx ln [((x + )(y + )] dx dy. 3 ; ; ; ln. 5. Sea I = [, ] [, 3]. Calcular
3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p
ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia
2 Estudio local de funciones de varias variables.
a t e a PROBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CURSO 2009 2010 2 Estudio local de funciones de varias variables. 2.1 Derivadas de orden superior. Problema 2.1 Sea
Academia de Matemáticas T.M Geometría Analítica Página 1
INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos
Problemas de optimización
Problemas de optimización 1º) La producción de cierta hortaliza en un invernadero (Q() en Kg) depende de la temperatura (ºC) según la epresión Q() = ( + 1) 2 (2 ). a) Calcula razonadamente cuál es la temperatura
x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.
. [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos
CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P. 8 x 2 + y 2 + xy3 x 4 =1
CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P (1) Obtener la ecuación de la tangente a la curva en el punto (2, 2). x 2 + y 2 + xy3 x 4 =1 (2) Se requiere construir un
. (Nota: ln x denota el logaritmo neperiano de x).
e - si 0. [04] [ET-A] Sea la función f() = k si = 0 a) Determine razonadamente el valor del parámetro k para que la función sea continua para todos los números reales. b) Estudie si esta función es derivable
