GUÍA DE EJERCICIOS - INTEGRALES MÚLTIPLES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "GUÍA DE EJERCICIOS - INTEGRALES MÚLTIPLES"

Transcripción

1 GUÍA DE EJERIIOS - INTEGRALES MÚLTIPLES 1. Escriba la expresión que permite calcular por integrales dobles: a. El área de una región plana R. b. El volumen de un sólido V, de altura z = f(x,y). c. La masa total de una lámina R, con densidad σ(x, y). 2. En los siguientes apartados, grafique la región de integración R y plantee mediante integración iterada, de dos formas distintas, dxdy y dydx R R y x a. R. { y x y senx y x + 2 c. R. { y 0 onsidere la función x 1 0 x π b. R. { x 3 arcsen(y) = i ln (i y ± 1 y 2 ) y 0 3. alcule el área de las siguientes regiones. a. b. y = sen(x) y = 1 x 2 y = cos(x) y = x c. d. x = y 2 1 y = x 2 y = x 3 x = 1 x = 2 e. x y = 16 y = x y = 1 y = x 6 Año

2 4. Grafique las siguientes regiones y calcule el área de las mismas. a. { y sen x y 0 0 x π b. { y ln x y = 0 1 x 2 y x 2 + 2x c. { y = 3 y 3x + 6 y 2x2 d. { y x a. Indique analítica y gráficamente los cambios de coordenadas que puede realizar en el cálculo de áreas de regiones en R 2 por integrales dobles. b. Proporcione un ejemplo de región plana en el que utilice los cambios de coordenadas mencionados en el apartado a. dxdy 6. alcule, donde R es el recinto dado por x 2 + y 2 2x 0. R (4 x 2 y 2 ) alcule el área de las regiones dadas a continuación a. d. 4 x 2 + y 2 16 b. c. e. { 9x2 + 25y x 0 x 2 + y 2 = 9x 8. a Encuentre la masa y el centro de masa de una lámina triangular con vértices (0,0), (1,0) y (0,2) si la función densidad está dada por: σ(x, y) = 1 + 3x + y b. Utilizando los datos del apartado anterior, calcule el centro de masa considerando: σ(x, y) = 1 ompare las coordenadas obtenidas en ambos apartados. 9. Escriba la expresión que permite calcular por integrales triples la masa de un sólido con densidad σ(x, y, z). 10. Encontre el volumen de la región acotada por los tres planos coordenados y el plano x + 2y + 3z = 6. Año

3 11. alcule x + y dxdy, si R es la región acotada por las respectivas rectas R y x, y x y x Determine el volumen o la masa de los siguientes sólidos a. b. La masa del sólido de densidad σ(x, y) = x + Planos coordenados y + z = 2 y 2 limitado por: 0 x a { 0 y b 0 z c x = 4 c. d. 2x + y + z = 4 Planos coordenados 13. a. Indique analítica y gráficamente los cambios de coordenadas que puede realizar en el cálculo de volúmenes de regiones en R 3 por integrales triples. b. Deduzca la expresión del Jacobiano e indique su significado geométrico. 14. alcule el volumen encerrado por la superficie z 2 = x 2 + y 2 y el plano z = alcule el volumen de los sólidos definidos a continuación a. b. c. { x2 + y 2 = z 0 z 4 z = 9 (x 2 + y 2 ) { x2 + y 2 = 2y 0 z 5 Año

4 d. e. f. 4 x 2 + y 2 + z 2 16 { z = 10 x2 y 2 z = 1 z 2 = x 2 + y 2 { x 2 + y 2 = 25 z = 0 g. h. 4x y z 2 = 36 x 2 + y 2 + z 2 = 2 z = 1 x 2 + y 2 = z Plantee las integrales triples para hallar masa y centro de gravedad de un sólido acotado por las ecuaciones: x = 0, x = b, y = 0, y = b, z = 0 y z = b a. onsiderar σ(x, y, z) = k xy, siendo k una constante cualquiera. b. Qué pasa si σ(x, y, z) = k? qué puede concluir del centro de gravedad? Año

5 INTEGRALES DE LÍNEA 1. Escriba en forma paramétrica la ecuación de. a. Una recta en el plano b. Una circunferencia c. Una recta en el espacio d. Una elipse 2. uál es el concepto físico a partir del cual se define integral curvilínea para campos vectoriales? Indique la expresión que permite calcular F dr. 3. alcule el trabajo realizado por la fuerza F = (x 2 y 2 )i + 2xyj, para mover una partícula desde el punto (1,0) al punto (2,2), a lo largo de la curva y = x 2 x. 4. alcule las integrales de línea de los campos siguientes. a. F (x, y) = yi + xj, a lo largo de la curva : x 2 + y 2 = 3 recorrida en forma negativa desde ( 3, 0) hasta ( 3, 0). b. F (x, y, z) = xi + yzj (xy zx)k, a lo largo del segmento de recta de extremos(0,0,0) y (1,2,2). c. F (x, y) = xy 2 i (x 2)j, a lo largo de la curva. y = x 3 2x, desde el punto (2,4) al punto (1,-1). d. 8xdx (4x y)dy, siendo : 4x 2 + y 2 = 4 y = 1 x e. F (x, y) = yi xj, a lo largo de la curva. { x = 3t2 4 y = 3t + 1, con 1 3 t Un hombre que pesa 85 kg asciende por una escalera helicoidal. Da tres vueltas completas y transporta un balde de pintura de 20 litros (30 kg). Se considera que x = 3 cos t la ecuación de la escalera es { y = 3 sen t z = 2t a. uál es el trabajo que efectúa el hombre, en contra de la gravedad, para subir por la escalera? Año

6 b. Suponiendo que el balde de pintura tiene un orificio en su parte inferior, por el cual se van perdiendo 0.6 litros (0.9 kg) de pintura continuamente, encuentre el trabajo realizado. onsidere la función de pérdida f(x, y, z) = 20 (x2 +y 2 ). 6. omplete. a. f(x, y)ds =... b. La interpretación física que puede darse al resultado anterior es.. 7. alcule las integrales de línea con respecto a la longitud de arco dadas a continuación. a. x 3 ds b. xy 2 ds y. y = x 3 1 entre los puntos (-1,-2) y (2,7). ( 5, 2 5 ) y ( 5, 0). 2 y. x 2 + y 2 = 5 recorrida en sentido positivo entre los puntos c. (x y)ds y el triángulo de vértices (0,0), (1,0) y (0,1), recorrido en sentido negativo. z+1 8. a. uáles son las consecuencias del Primer Teorema Fundamental de Integrales de Línea? b. Para qué se usa el Segundo Teorema Fundamental de Integrales de Línea? c. uándo un campo vectorial es gradiente? d. ómo es el trabajo de un campo gradiente a lo largo de diferentes trayectorias entre dos puntos? e. uánto vale el trabajo de un campo conservativo a lo largo de una trayectoria cerrada? Justifique su respuesta. f. Indique la expresión de las funciones potenciales de los campos siguientes y las condiciones que se deben cumplir, F (x, y) y F (x, y, z). 9. Dado el campo F (x, y) = (2x + y 2 + 4)i + (2xy + 4y 5)j, a. alcule la integral del campo F a lo largo de. i.. y = x desde (0,0) hasta (1,1). ii.. y = x 2 desde (0,0) hasta (1,1). iii.. x = y 3 desde (0,0) hasta (1,1). b. Existirá otra trayectoria a lo largo de la cual la anterior también valga igual? (1,1) c. Use el teorema correspondiente para resolver F dr. (0,0) Año

7 10. El campo F (x, y) = (2xy y 3 )i + (2x 2 y 3xy 2 + 2y)j es conservativo? Si lo es, hallar la función potencial. 11. Dado el campo F (x, y) = (2xy 2 y 2 )i + (2yx 2 2xy)j, a. Determine si el campo es conservativo. Halle la función potencial, en caso de existir. (1,2) b. alcule F dr. ( 3, 1) 12. Dada la función f(x, y, z) = xyz 2 ( 1,5, 8) x sen y + 8z, calcule f dr. (2,3,4) Justifique. 13. alcule el trabajo realizado por el campo F (x, y) = (8y + 2x)i + 8xj a lo largo de x 2 + y 2 = 1, desde (0,1) a (-1,0), recorrida en sentido positivo. Si puede, aplique algún teorema para resolver el problema. 14. alcule las integrales curvilíneas aplicando el teorema de Green. a. F (x, y) = 4xyi + j y el triángulo de vértices (0,0); (1,0) y (1, 2). b. F (x, y) = (y x)i + (y 2 x)j y la frontera de la región 2 x 2 + y 2 3, x 0, y 0. c. El ejercicio 5 d (Ayuda: plantee la integral en coordenadas cartesianas) 15. alcule las integrales de línea de los campos dados a continuación, a. F (x, y) = (y x)i + xj y el segmento que une los puntos (5,45) y (10, 22). b. sen x dx + (sen x + y cos x)dy y. 2x 2 + 4y 2 = 2, recorrida en sentido positivo. c. F (x, y) = xi + yj y. x 2 + y 2 = 2y desde el punto (0,0) al punto (1,1). Año

8 INTEGRALES DE SUPERFIIE 1. Indique la expresión de ds, si la superficie está dada. a. En forma explícita z = f(x, y) b. En forma implícita S(x, y, z) = 0 2. alcule el área lateral de las superficies dadas a continuación. a. 2x + y + 4z = 8 en el primer octante b. y 2 + z 2 = 4, 0 x 6 c. y = x 2 + z 2, 0 y 2 d. x 2 + y 2 = z 2, 0 z 3 e. x 2 + y 2 + z 2 = 36 f. x 2 + y 2 = 4, 0 z 1 3. alcule el flujo de los campos siguientes. a. F (x, y, z) = 3xi 8j + zk, con S: x + y + z = 3 en el primer octante b. F (x, y, z) = xi + 2yj + 3zk, siendo S el cubo de vértices (±1, ±1, ±1) c. F (x, y, z) = xi + yj + zk, siendo S la esfera de ecuación x 2 + y 2 + z 2 = 4 4. Dado el campo F (x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k a. Indique la expresión que permite calcular la divergencia b. uál es la interpretación física? 5. Dado el campo F (x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k a. Indique la expresión que permite calcular el rotor b. uál es la interpretación física? 6. Sea f(x, y, z) un campo escalar y F (x, y, z) un campo vectorial. Diga si cada una de las expresiones siguientes tiene significado. Si no es así, explique la razón. Si tienen significado, indique si el resultado es un campo escalar o vectorial a. f b. F c. F d. f e. ( f) f. ( f) 7. Dado el campo vectorial F (x, y, z) = e x sen y i + e x cos y j + zk, determine su divergencia. 8. alcule la divergencia y el rotor del campo F (x, y, z) = (2y z)i + ( 2x + z)j + xy 2 k. Este campo es incompresible o irrotacional. Justifique. 9. Dada la siguiente figura y considerando que representa a un campo vectorial F, responda. Año

9 a. Los puntos P 1 y P 2 son fuentes o sumideros para F? Proporcione una explicación basada sólo en la figura. b. Teniendo en cuenta que F (x, y) = x 2 i + y 2 j, aplique la definición de divergencia para comprobar su respuesta en a. 10. alcule el flujo de los campos siguientes a través de las superficies indicadas. a. F (x, y, z) = e x i ye x j + yz 2 k, S: y 2 + z 2 x 2 = 0, 0 x 2 b. F (x, y, z) = y 2 i xe y j + 2k, S: x + z = 4, 0 y 3 c. F (x, y, z) = x 2 yi + xy 2 j + 2xyzk, S: x 2 + y = z, 0 z 5 d. F (x, y, z) = xyi + 3y 2 j + yx 2 k, S: x 2 + z 2 = 16 y 0 y 1 e. Repetir el cálculo del ejercicio 3c, utilizando el teorema correspondiente. 11. Enuncie el Teorema de Stokes, distinguiendo hipótesis y tesis Qué tipo de integrales relaciona? 12. alcular el flujo del rotor de los campos siguientes a través de las superficies indicadas. a. F (x, y, z) = z 2 i + yj + xzk, a través de la superficie S: z = 4 x 2 y 2 x b. F (x, y, z) 2 + y 2 = 1 = xzi + yzj + xyk, siendo. { x 2 + y 2 + z 2 = 4 c. F (x, y, z) = yzi + xzj + zk, a través de la superficie S: z = x 2 + y 2 con z 1 d. F (x, y, z) = xyi + yzj + xzk, a través de la superficie S: z = 1 x 2 con 0 y 1 e. F (x, y, z) = y 2 i + xj + z 2 y + z = 2 k, siendo. { x 2 + y 2 = 1 (Figura) Año

PRÁCTICA TEMA 2 INTEGRALES MÚLTIPLES. Ejercicio 1. Escriba la expresión que permite calcular por integrales dobles.

PRÁCTICA TEMA 2 INTEGRALES MÚLTIPLES. Ejercicio 1. Escriba la expresión que permite calcular por integrales dobles. PRÁCTICA TEMA 2 INTEGRALES MÚLTIPLES Ejercicio 1. Escriba la expresión que permite calcular por integrales dobles. a. El área de una región plana R. b. El volumen de un sólido V, de altura z = f(x,y).

Más detalles

Ejercicios típicos del segundo parcial

Ejercicios típicos del segundo parcial Ejercicios típicos del segundo parcial El segundo examen parcial consiste en tres ejercicios prácticos y dos teóricos, aunque esta frontera es muy difusa. Por ejemplo, el primer ejercicio de esta serie,

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 álculo diferencial e integral 4 Guía 4 1. alcular la divergencia y el rotacional de los siguientes campos vectoriales: a) V (x, y, z) = yzi + xzj + xyk. b) V (x, y, z) = x 2 i + (x + y) 2 j + (x + y +

Más detalles

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8 ANALISIS MATEMATIO II (iencias- 2011) Integrales sobre curvas (o de línea) Trabajo Práctico 8 1. Evaluar las siguientes integrales curvilíneas γ f ds. (a) f(x, y, z) = x + y + z ; r(t) = (sen t, cos t,

Más detalles

Tarea 4-Integral de línea

Tarea 4-Integral de línea Tarea 4-Integral de línea I. alcular la integral de línea del campo vectorial f a lo largo del camino que se indica. (Apostol TomoII Pag. 37-10.5) 1. f (x, y) = (x xy)i + (y xy)j a lo largo de la parábola

Más detalles

3. Expresar las siguientes figuras en (i) coordenadas cilíndricas (ii) coordenadas esféricas (a) x 2 + y 2 + z 2 = 25 (b) z 2 = 2(x 2 + y 2 ) B + 3

3. Expresar las siguientes figuras en (i) coordenadas cilíndricas (ii) coordenadas esféricas (a) x 2 + y 2 + z 2 = 25 (b) z 2 = 2(x 2 + y 2 ) B + 3 ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA DEPARTAMENTO ACADÉMICO DE INGENIERÍA ELÉCTRICA ACADEMIA DE MATEMÁTICAS GUÍA DE LA MATERIA DE CÁLCULO VECTORIAL TURNO VESPERTINO Junio 2011 I. SISTEMAS

Más detalles

SERIE # 4 CÁLCULO VECTORIAL

SERIE # 4 CÁLCULO VECTORIAL SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el

Más detalles

Ejercicios Tercer Parcial del curso MA-1003.

Ejercicios Tercer Parcial del curso MA-1003. Ejercicios para MA 1003: álculo III 1 UNIVERIDAD DE OTA RIA FAULTAD DE IENIA EUELA DE MATEMÁTIA DEPARTAMENTO DE MATEMÁTIA APLIADA MA-1003 álculo III I ILO 2018 Ejercicios Tercer Parcial del curso MA-1003.

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE PLANO TANGENTE Y VECTOR NORMAL. AREA DE UNA SUPERFICIE 1) En cada uno de los siguientes ejercicios se presenta una S dada en forma paramétrica,

Más detalles

Problemas de Análisis Vectorial y Estadístico

Problemas de Análisis Vectorial y Estadístico Relación 1. Funciones Γ y β 1. Función Gamma Definimos la función gamma Γ(p) como: Demostrar que: Γ(p) = t (p 1) e t dt para p> a) Γ(1) = 1 b) Integrando por partes, ver que Γ(p) = (p 1)Γ(p 1) para p>1

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green ANÁLISIS MATEMÁTIO II - Grupo iencias 018 Práctica 9 ampos conservativos - Teorema de Green A. ampos conservativos 1. Mostrar que F x, y) = y cos x) i + x sen y) j no es un campo vectorial gradiente..

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. Asignatura: álculo II PRUEBAS DE EVALUAIÓN NOTA: En todos los ejercicios se deberá justificar la respuesta eplicando el procedimiento seguido en la resolución del ejercicio. URSO 010 011 JUNIO URSO 10

Más detalles

CÁLCULO VECTORIAL SEMESTRE

CÁLCULO VECTORIAL SEMESTRE SERIE # 3 ÁLULO VETORIAL SEMESTRE 009- ÁLULO VETORIAL SEMESTRE: 009-1 Página 1) Sea el campo vectorial F (x, y,z)= ( 3x+ yz)i+( x+ y ) j + ( xz) k F d r. alcular x = + y lo largo de la curva :, del punto

Más detalles

gradiente de una función? Para esos valores, calcule la función potencial.

gradiente de una función? Para esos valores, calcule la función potencial. CAMPOS CONSERVATIVOS. FUNCIÓN POTENCIAL 1. Sea F = 4xy 3x ( z (, 2x (, 2x, z. Demuestre que Fdl trayectoria C. es independiente de la 2. Dado el campo vectorial F = 3x ( + 2y y ( e 3, 2x 2ye 3. Es posible

Más detalles

Contenido 1. Integrales Dobles 2. Integrales Triples

Contenido 1. Integrales Dobles 2. Integrales Triples Integración Contenido 1. Integrales Dobles 2 1.1. Integrales iteradas............................. 2 1.2. Regiones en R 2.............................. 3 1.3. Volumen..................................

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

PRACTICO A.M. II 2014

PRACTICO A.M. II 2014 PRATIO 4- - A.M. II 014 INTEGRALES DE LINEA INTEGRAL DE LINEA DE AMPOS ESALARES 1. alcule las siguientes integrales de línea a) f ds donde es el arco de parábola x 4 desde (-, -1) hasta (5, ), f está dada

Más detalles

Del tema 2 sobre campos vectoriales realiza los siguientes ejercicios: Propuestos número 2, 3, 5

Del tema 2 sobre campos vectoriales realiza los siguientes ejercicios: Propuestos número 2, 3, 5 Este documento contiene las actividades no presenciales propuestas al terminar la clase del día que se indica. Se sobreentiende que también se debe realiar el estudio de lo explicado en clase aunque no

Más detalles

CAMPOS VECTORIALES CONSERVATIVOS

CAMPOS VECTORIALES CONSERVATIVOS 1 CAMPOS VECTORIALES CONSERVATIVOS DEFINICION DE CAMPO VECTORIAL. Sean M y N funciones de las variables x e y definidas en una región R del plano. La función definida por F(x, y) = Mi + Nj se llama campo

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

1. Funciones de más de una variable

1. Funciones de más de una variable Universidad de Pamplona Facultad de iencias Básicas Departamento de matemáticas Ejercicios propuestos álculo Multivariable 1. Funciones de más de una variable 1. Encuentre el dominio de las siguientes

Más detalles

Lista de Ejercicios Complementarios

Lista de Ejercicios Complementarios Lista de Ejercicios omplementarios Matemáticas VI (MA-3) Verano. ean α >, β > y a, b R constantes. ea la superficie que es la porción del cono de ecuación z = α x + y que resulta de su intersección con

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva:

1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: 1. Trace la curva definida por las ecuaciones paramétricas y elimine el parámetro para deducir la ecuación cartesiana de la curva: a) x = senθ, y = cosθ, 0 θ π t b), t x = e y = e + 1 c) x = senθ, y =

Más detalles

con tiene recta tangente de ecuación y 4 x 2. Análisis Matemático II ( ) Final del 14/07/ dz planteada en coordenadas cilíndricas,

con tiene recta tangente de ecuación y 4 x 2. Análisis Matemático II ( ) Final del 14/07/ dz planteada en coordenadas cilíndricas, Análisis Matemático II (95-0703) Finales tomados durante el Ciclo lectivo 05 Son 0 (die fechas de final, desde el 6/05/5 al 9/0/6 inclusive Análisis Matemático II (95-0703) Final del 6/05/05 Condición

Más detalles

1.5. Integral de línea de un campo Vectorial.

1.5. Integral de línea de un campo Vectorial. .5. Integral de línea de un campo Vectorial. Sea F ( xyz,, un campo vectorial continuo sobre R donde F representa un campo de fuerzas aplicado sobre una partícula cuya trayectoria puede ser descrita por

Más detalles

3 Integración en IR n

3 Integración en IR n a t e a POBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CUSO 29 21 3 Integración en I n 3.1 Integral múltiple. Problema 3.1 Calcula f en los siguientes casos: Q i) f(x, y) =

Más detalles

Integración sobre curvas

Integración sobre curvas Problemas propuestos con solución Integración sobre curvas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Integral de línea de campos escalares 1

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar.

1. Dar la definición de la integral de línea y de la integral de superficie de un campo vectorial y de un campo escalar. NOTAS DE LASE ÁLULO III Unidad 4: INTEGRALES DE LINEA, DE SUPERFIIE, TEOREMAS FUNDAMENTALES Guía de Estudio Doris Hinestroza 1 Índice 1. INTEGRALES DE LINEA, DE SUPERFIIE, TEO- REMAS FUNDAMENTALES DEL

Más detalles

MA2112 Departamento de Matemáticas. f.ds = γ. ABC, con A(1, 0, 2), B(1, 3, 0), C(0, 1, -1) y f = (P, Q, R) = ( z, x+y, x).

MA2112 Departamento de Matemáticas. f.ds = γ. ABC, con A(1, 0, 2), B(1, 3, 0), C(0, 1, -1) y f = (P, Q, R) = ( z, x+y, x). VRANO D 24 UNIVRSIDAD SIMON BOLIVAR P2A.- un segundo examen parcial de alguna fecha anterior. 1.- Calcule la integral : γ f.ds = γ Pdx+Qdy+Rdz, siendo γ la poligonal ABC, con A(1,, 2), B(1, 3, ), C(, 1,

Más detalles

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =

Más detalles

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple

El Teorema de Green. Una curva dada por r(t) = x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) Curva no simple El Teorema de Green Una curva dada por r(t) x(t) i + y(t) j, a t b, se dice simple si no se corta consigo misma, es decir, r(c) r(d) si c d. urva simple urva no simple urva orientada positivamente La curva

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2017 Práctica 5 - Polinomio de Taylor. Extremos de funciones de varias variables

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2017 Práctica 5 - Polinomio de Taylor. Extremos de funciones de varias variables ANÁLISIS MATEMÁTIO II - Grupo iencias 07 Práctica 5 - Polinomio de Taylor. Extremos de funciones de varias variables A. Polinomio de Taylor. Hallar el polinomio de Taylor de segundo orden para las siguientes

Más detalles

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera

EJERCICIOS DE CA LCULO II PARA GRADOS DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera EJECICIOS E CA LCULO II PAA GAOS E INGENIEI A Elaborados por omingo Pestana y Jose Manuel odrı guez, con Arturo de Pablo y Elena omera 3 3. Integracio n en n Integral mu ltiple. f en los siguientes casos:

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. Cálculo III, Examen Final. Semestre Primavera 1 Tiempo: 11 min. Problema 1 [1,5 puntos] La curvatura de una trayectoria

Más detalles

TEMA 1 05/12/95. Indique bajo que hipótesis vale la regla de derivación de funciones compuestas. dz a) Demuestre que. f x y cte o bien x f yf

TEMA 1 05/12/95. Indique bajo que hipótesis vale la regla de derivación de funciones compuestas. dz a) Demuestre que. f x y cte o bien x f yf TEMA 1 05/1/95 1- Dada la superficie S de ecuación X = u, v, u + v ) con u, v) R y la curva de ecuación X = t, t, t ) con t R y X = x, y, z) R 3 a) Demuestre que en el punto A = 1, 1, ) la recta tangente

Más detalles

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO CÁLCULO II. Ejercicio de Examen Final Temas 1 y : Cálculo Diferencial y Optimización FECHA: 1/07/1 TIEMPO RECOMENDADO: 40 m Puntuación/TOTAL:,5/10 ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO w w 1. Dada

Más detalles

Práctica 7. sen 2 x cos x dx. c) 3x 2 x 2 dx. f) 3. Hallar el área encerrada por las curvas:

Práctica 7. sen 2 x cos x dx. c) 3x 2 x 2 dx. f) 3. Hallar el área encerrada por las curvas: ANÁLISIS I MATEMÁTICA ANÁLISIS (Computación) Práctica 7 I. epaso: integración en una variable. Calcular: sen x. b) π sen x. c) El área entre las curvas y = sen x, y =, x =, x = π.. Calcular: x sen x. b)

Más detalles

MATE1207 Preparación Examen Final MATE MATE1207 Cálculo Vectorial

MATE1207 Preparación Examen Final MATE MATE1207 Cálculo Vectorial MATE07 Preparación Eamen Final MATE-07 Universidad de los Andes Departamento de Matemáticas MATE07 álculo Vectorial Eamen Final: Martes de Mao 0 7:00 9:00 a.m. Sección Profesor Salón 0 José Ricardo Arteaga

Más detalles

1 05/12/95. Indique bajo que hipótesis vale la regla de derivación de funciones compuestas. a) Demuestre que dz fxy cte obien xf yf

1 05/12/95. Indique bajo que hipótesis vale la regla de derivación de funciones compuestas. a) Demuestre que dz fxy cte obien xf yf 1 05/1/95 1.- Dada la superficie S de ecuación X= ( u, v, u + v ) con ( u, v) R y la curva C de ecuación X= ( t, t, t ) con t R y X= ( xyz,, ) R 3. Demuestre que en el punto A = ( 1, 1, ) la recta tangente

Más detalles

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican:

INTEGRACION EN VARIAS VARIABLES: Integrales dobles. 1. e x+y dy dx. 3. Evaluar las siguientes integrales en los recintos que se indican: INTEGACION EN VAIAS VAIABLES: Integrales dobles.. Evaluar las siguientes integrales iteradas: (x y + y )dy dx xye x+y dy dx ( x ln y)dy dx ln [((x + )(y + )] dx dy. 3 ; ; ; ln. 5. Sea I = [, ] [, 3]. Calcular

Más detalles

MÉTODOS MATEMÁTICOS II

MÉTODOS MATEMÁTICOS II MÉTODOS MATEMÁTICOS II (Licenciatura de Física. Curso 2007-2008) Boletín de problemas a evaluar correspondientes a los Temas I y II Fecha de entrega: Viernes, 23 de Noviembre de 2007 1. Calcula los siguientes

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

ANALISIS II 12/2/08 COLOQUIO TEMA 1

ANALISIS II 12/2/08 COLOQUIO TEMA 1 ANALISIS II //08 COLOQUIO TEMA Sea f : R R un campo vectorial C y C la curva parametrizada por: γ(t) = (cost, 0, sent) con t ɛ [0, π] Sabiendo que C f ds = 6 y que rot( f( ) = (z, ), calcular la integral

Más detalles

Integración múltiple: integrales triples

Integración múltiple: integrales triples Problemas propuestos con solución Integración múltiple: integrales triples ISABEL MARRERO epartamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Integrales iteradas 1. Teorema

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Programa de Ampliación de Cálculo. Curso 2014/15 1. Cálculo de integrales múltiples Integrales dobles en rectángulos;

Más detalles

Tema 4A: Integración Doble ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Tema 4A: Integración Doble ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO Ejercicio de Seguimiento de Aprendizaje Tema 4A: Integración Doble FECHA: 8/05/1 TIEMPO RECOMENDADO: 1/ Hora Puntuación/TOTAL:,5/10 Halle el área total encerrada por la curva: Y RESPUESTA AL EJERCICIO:

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Índice general Programa III Tema 1. Enunciados 1 Tema 2. Enunciados 6 Tema 3. Enunciados 12 Tema 4. Enunciados

Más detalles

FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Ingeniería Técnica Industrial. Especialidades Electricidad, Electrónica y Mecánica. EUP Sevilla Curso

FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Ingeniería Técnica Industrial. Especialidades Electricidad, Electrónica y Mecánica. EUP Sevilla Curso FUNDAMENTOS MATEMÁTIOS DE LA INGENIERÍA Ingeniería Técnica Industrial. Esecialidades Electricidad, Electrónica y Mecánica. EUP Sevilla urso 8-9 Bloque III: álculo diferencial e integral de funciones de

Más detalles

de C sobre el plano xy tiene ecuación

de C sobre el plano xy tiene ecuación Análisis Matemático II (95-0703) Finales tomados durante el Ciclo lectivo 017 Son 10 (die fechas de final, desde el 4/05/17 al 7/0/18 inclusive Análisis Matemático II (95-0703) Final del 4/05/17 Condición

Más detalles

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2.

INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS. 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. INTEGRALES INTEGRALES DOBLES E ITERADAS SOBRE RECTANGULOS 1.- Evalué (, ), donde f es la función dada, y = (, ): 1 4, 0 2. 1 1 4, 0 1 a.- (, ) = 2 1 4, 1 2 2 1 < 3, 0 < 1 b.- (, ) = 1 1 < 3, 1 2 3 3 4,

Más detalles

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2 Ejemplos de parcial de Análisis Matemático II Los ítems E1, E, E3 E4 corresponden a la parte práctica Los ítems T1 T son teóricos (sólo para promoción) T1) Sea F : IR IR diferenciable tal que F(,) 00 =

Más detalles

Matemáticas III Tema 5 Integrales de ĺınea

Matemáticas III Tema 5 Integrales de ĺınea Matemáticas III Tema 5 Integrales de ĺınea Rodríguez Sánchez, F.J. Muñoz Ruiz, M.L. Merino órdoba, S. 2014. OW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia reative ommons Attribution- Nonomercial-ShareAlike

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

Tema 4: Integración de funciones de varias variables

Tema 4: Integración de funciones de varias variables Departamento de Matemáticas. Universidad de Jaén. Análisis Matemático II. Curso 29-21. Tema 4: Integración de funciones de varias variables 1. Evaluar las siguientes integrales iteradas e) f ) g) 1 2 1

Más detalles

Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. Solución: ( )

Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. Solución: ( ) SERIE DE ÁLULO VETORIAL 1 PROFESOR: PEDRO RAMÍREZ MANNY TEMA 1 Para las siguientes funciones obtenga los puntos críticos y establezca la naturaleza de cada uno de ellos. f x, y = x + y 6x + 6y + 8 1) (

Más detalles

Tema 3. Integrales dobles y triples y sus aplicaciones Septiembre {(x,y)/0 x 2, 0 y } x. I = f(x, y)dydx. 2 4 x. 2 4 x.

Tema 3. Integrales dobles y triples y sus aplicaciones Septiembre {(x,y)/0 x 2, 0 y } x. I = f(x, y)dydx. 2 4 x. 2 4 x. CÁLCULO III (05) Tema. Integrales dobles y triples y sus aplicaciones eptiembre 06. Dibuje la región de integración y calcule las integrales dobles siguientes: d. e. f. g. yda, donde es la región limitada

Más detalles

MATEMÁTICAS 2. Curso 2016/17. Integración en varias variables.

MATEMÁTICAS 2. Curso 2016/17. Integración en varias variables. MATEMÁTICA 2. Curso 2016/17. Integración en varias variables. 1. Calcular para = [0, 1] [0, 3] las integrales (a) xydxdy. (b) xe y dxdy. (c) y 2 sin xdxdy. 2. Calcular las integrales dobles siguientes

Más detalles

Integración en una variable (repaso)

Integración en una variable (repaso) Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 2 Práctica 8: Integración Integración en una variable (repaso). Calcular: sen x. 2π sen x. El área entre las curvas y = sen x, y =, x =, x

Más detalles

Cálculo Integral Agosto 2015

Cálculo Integral Agosto 2015 Cálculo Integral Agosto 5 Laboratorio # Antiderivadas I.- Halle las siguientes integrales indefinidas. ) (x 5 8x + 3x 3 ) ) (y 3 6y 6 5 + 8) dy 3) (y 3 + 5)(y + 3) dy 4) (t 3 + 3t + ) (t 3 + 5) dt 5) (3y

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16. Integración en varias variables.

AMPLIACIÓN DE MATEMÁTICAS. Curso 2015/16. Integración en varias variables. AMPLIACIÓN DE MATEMÁTICA. Curso 2015/16. Integración en varias variables. 1. Calcular para = [0, 1] [0, 3] las integrales (a) xydxdy. (b) xe y dxdy. (c) y 2 sin xdxdy. 2. Calcular las integrales dobles

Más detalles

INTEGRALES MÚLTIPLES. 9 xy c) 4

INTEGRALES MÚLTIPLES. 9 xy c) 4 de 6 TRABAJO PRÁCTICO Nº A.M. II - INTEGRALES MÚLTIPLES INTEGRALES DOBLES - Calcule las siguientes integrales: a d d d d d b d d sen e 6 d d --. Grafique la región de integración eprese la integral invirtiendo

Más detalles

Solution: Sea R = r = x 2 +y 2 +z 2. (b) Cálculo directo. 1 x2 +y 2 +z 2 = 1 R. (c) f =

Solution: Sea R = r = x 2 +y 2 +z 2. (b) Cálculo directo. 1 x2 +y 2 +z 2 = 1 R. (c) f = Universidad de los Andes Departamento de Matemáticas MAT7 Cálculo Vectorial Tarea 3 Individual ntregue en clase a su profesor de la MAGISTRAL la semana 5 (Ma. 3 Vi. 6 Dic.). (4 points) [Rotacional, Divergencia,

Más detalles

Campos vectoriales - Parte B

Campos vectoriales - Parte B apítulo 6 ampos vectoriales - Parte B 6.6 Teorema de Green El Teorema de Green relaciona una integral de línea a lo largo de una curva cerrada en el plano, con una integral doble sobre la región encerrada

Más detalles

Teorema de Stokes Introducción

Teorema de Stokes Introducción EIÓN 1 1.1 Introducción En la presente sesión se revisa el último teorema clave del cálculo vectorial, el teorema de tokes. Este teorema establece una relación entre una integral de línea sobre una curva

Más detalles

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 1 Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 215-1 El material relativo al temario puede ser consultado en la amplia bibliografía que allí se menciona o en alguno de los muchísimos

Más detalles

CAPITULO I : FUNCIONES VECTORIALES DE VARIABLE REAL.

CAPITULO I : FUNCIONES VECTORIALES DE VARIABLE REAL. BALOTARIO(PDF) APITULO I : FUNIONES VETORIALES DE VARIABLE REAL. t t t.-dadas las curvas : f ( t) ( e cos t; e sent; e ), 0t, : g ( t ) ( t ; t ; t ) a) Hallar el punto de intersección de. b) Si desde

Más detalles

A) Hallar el volumen del sólido formado cuando la región del primer cuadrante limitada por Z 4. 1 x 4 1 dx. Z b. p (x) h (x) dx.

A) Hallar el volumen del sólido formado cuando la región del primer cuadrante limitada por Z 4. 1 x 4 1 dx. Z b. p (x) h (x) dx. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA I.T.I. Especialidad en Electricidad. Curso 4-5. Soluciones al Segundo Parcial de Fundamentos Matemáticos de la Ingeniería. PROBLEMA.- A) Hallar el volumen del

Más detalles

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química UAM I Grupo 911 Febrero 213 Ejercicios Resueltos del Tema 2.2.6 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: 1 7 y 9 12. Nota: Los ejercicios pueden contener errores,

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

OBJETIVO Lograr la comprensión conceptual y desarrollar la habilidad para plantear y aplicar los teoremas de Green, Divergencia y Stokes.

OBJETIVO Lograr la comprensión conceptual y desarrollar la habilidad para plantear y aplicar los teoremas de Green, Divergencia y Stokes. EPARTAMENTO E IENIA BÁIA ALULO VETORIAL Y MULTIVARIAO TALLER 4 TEOREMA E GREEN, TEOREMA E LA IVERGENIA Y TEOREMA E TOKE BIBLIOGRAFÍA UGERIA ALULO, JAME TEWART ALULO, THOMA FINNEY OBJETIVO Lograr la comprensión

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas III GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Considera la integral doble π π ibuja la región del plano XY en la que se está integrando. Usa el teorema

Más detalles

GUÍA DE CÁLCULO VECTORIAL Academia de Matemáticas y Física I.C.

GUÍA DE CÁLCULO VECTORIAL Academia de Matemáticas y Física I.C. 1. Considere los siguientes vectores a = (2,3,1), b = (4, 1,3). Calcule: a) a + b b) 2a + 3b c) 3a b d) a + b e) 3a 2b f) 2 a + b 2. Halle las longitudes de los lados del triángulo ABC y determine si son

Más detalles

Integración en una variable (repaso)

Integración en una variable (repaso) Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 28 Práctica 8: Integración Integración en una variable (repaso). Calcular: xsen x. sen 2 x cos x. xe x2. e x sen x. 3x 2 x 2 + x 2. ln x. 2.

Más detalles

Universidad Nacional Autónoma de México Facultad de Ingeniería División de Ciencias Básicas Coordinación de Matemáticas Cálculo Vectorial

Universidad Nacional Autónoma de México Facultad de Ingeniería División de Ciencias Básicas Coordinación de Matemáticas Cálculo Vectorial Semestre: 16- Nombre: Universidad Nacional Autónoma de México Facultad de Ingeniería División de Ciencias Básicas Coordinación de Matemáticas Cálculo Vectorial Primer Examen Final Colegiado Tipo A Duración

Más detalles

Gu ıa Departamento Matem aticas U.V.

Gu ıa Departamento Matem aticas U.V. Universidad de Valparaíso Instituto de Matemáticas Guía de Cálculo en Varias Variables Integración. Sean = [,] [,] {(x,y) : (x,y) < } y f : continua. a) Escriba lafuncióncaracterísticaχ demedianteunafunciónporparte,análogamente

Más detalles

Aplicaciones físicas

Aplicaciones físicas Problemas propuestos con solución Aplicaciones físicas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ulles Índice 1 Integral doble: valor medio 1 2 Integral doble:

Más detalles

Problemas y ejercicios de Mecánica Leyes de conservación

Problemas y ejercicios de Mecánica Leyes de conservación Problemas y ejercicios de Mecánica Leyes de conservación 1. Dada la función escalar f(x, y, z) = x 2 + y 2 2z 2 + z ln x; encuentre el gradiente de f en el punto (1; 1; 1). (R. f = 3î + 2ĵ 4ˆk) 2. Si f(x,

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

son dos elementos de Rⁿ, definimos su suma, denotada por

son dos elementos de Rⁿ, definimos su suma, denotada por 1.1 Definición de un vector en R², R³ y su Interpretación geométrica. 1.2 Introducción a los campos escalares y vectoriales. 1.3 La geometría de las operaciones vectoriales. 1.4 Operaciones con vectores

Más detalles

CAPÍTULO 11. Teoremas Integrales.

CAPÍTULO 11. Teoremas Integrales. CAPÍTULO 11 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

Remark Las mismas definiciones podemos dar para el caso de : I R 2 t t xt, yt a la que denominaremos curva plana.

Remark Las mismas definiciones podemos dar para el caso de : I R 2 t t xt, yt a la que denominaremos curva plana. Profesor: Roque Molina Legaz Tema 3. LA INTEGRAL DE LÍNEA. APLICACIONES. Como ya hemos visto, el concepto de integral simple de Riemann se estableció para funciones reales definidas y acotadas en un intervalo

Más detalles

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites

Más detalles

De x = 1 a x = 6, la recta queda por encima de la parábola.

De x = 1 a x = 6, la recta queda por encima de la parábola. Área entre curvas El área comprendida entre dos funciones es igual al área de la función que está situada por encima menos el área de la función que está situada por debajo. Ejemplos 1. Calcular el área

Más detalles

Guía n 0: Herramientas de Física y Matemáticas

Guía n 0: Herramientas de Física y Matemáticas Guía n 0: Herramientas de Física y Matemáticas Problema Dadas dos partículas en el espacio ubicadas en los puntos de coordenadas p = (0,5, 2) y p 2 = (2,3,). Hallar el vector posición de la partícula respecto

Más detalles

SERIE # 2 CÁLCULO VECTORIAL

SERIE # 2 CÁLCULO VECTORIAL SERIE # CÁLCULO VECTORIAL SERIE 1) Calcular las coordenadas del punto P de la curva: en el que el vector P 1, 1, r t es paralelo a r t Página 1 t1 r t 1 t i ( t ) j e k ) Una partícula se mueve a lo largo

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

UNIVERSIDAD NACIONAL Facultad de Ciencias Departamento de Matemáticas. TALLER IV Profesor: H. Fabian Ramirez Cálculo Vectorial INTEGRALES TRIPLES

UNIVERSIDAD NACIONAL Facultad de Ciencias Departamento de Matemáticas. TALLER IV Profesor: H. Fabian Ramirez Cálculo Vectorial INTEGRALES TRIPLES UNIVERSIA NAIONAL Facultad de iencias epartamento de Matemáticas 1. alcule TALLER IV Profesor: H. Fabian Ramirez álculo Vectorial INTEGRALES TRIPLES 3dV, donde está limitado por las superficies z =, y

Más detalles

Encuentre para el alambre: a. Las coordenadas de su centro de masa. (3 puntos) b. Su momento de inercia respecto al eje x.

Encuentre para el alambre: a. Las coordenadas de su centro de masa. (3 puntos) b. Su momento de inercia respecto al eje x. CÁLCULO INTERMEDIO APLICADO (64) PRIMER PARCIAL (%) 5//9 Encuentre el área de la cerca indicada en la figura, que tiene por base la curva en coordenadas polares de ecuación r = + cos( θ ), con θ y se encuentra

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles