Siguiente >>>>> Radicación

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Siguiente >>>>> Radicación"

Transcripción

1 Definición y áreas de interés Proyecto Salón Hogar POTENCIACIÓN Y RADICACIÓN La potenciación es el producto de varios factores iguales. Para abreviar la escritura, se escribe el factor que se repite y en la parte superior derecha del mismo se coloca el número de veces que se multiplica. La operación inversa de la potenciación se denomina radicación. Siguiente >>>>> Radicación Cuando se multiplica un número natural por sí mismo, por ejemplo,, hay otra manera de expresar ese producto: Y se lee "3 al cuadrado", o "3 a la 2". La costumbre de decir "3 al cuadrado" es muy antigua, y la razón por la cual se dice así, tiene que ver con la geometría. Si se tiene un cuadrado cuyo lado mide 3 unidades, su área es : El área de cualquier cuadrado es igual al lado multiplicado por sí mismo, es decir, al cuadrado de la medida de su lado. En los tiempos de la Grecia Antigua, gran parte de las ideas matemáticas eran estudiadas a través de la Geometría, y por eso, cuando se quería encontrar una representación geométrica de algo tan sencillo como el producto de dos números, digamos,, lo que hacían era dibujar un rectángulo de lados y, y así, veían el producto como el área del rectángulo que acababan de dibujar. salonhogar.net/matem/potenciacion_radicacion/25potenc.html 1/7

2 De la misma manera, el producto era visto como el área de un cuadrado de lado, y esta manera de ver las cosas continuó por mucho tiempo, de manera que el número, se siguió llamando "el cuadrado de 5", o "5 al cuadrado". También se tiene que, que es igual a, se lee: "2 al cubo", y la razón para esto proviene también de la visión que tenían los griegos de la Matemática asociada a la Geometría. Si tenemos un cubo de arista 2: su volumen es igual a. Es por esto que aún hoy se lee "2 al cubo", o " 2 elevado al cubo''. El proceso de multiplicar a un número por sí mismo una cierta cantidad de veces, se llama potenciación. En el caso de, se tiene que es llamado la BASE, y es el número que se multiplica por sí mismo. es el EXPONENTE, el número de veces que se multiplica a la base por sí misma. Debe observarse con cuidado que : pues y La potenciación tiene unas propiedades muy importantes que se estudiarán a continuación. Propiedad 1 Si se multiplican dos potencias con igual base, como por ejemplo: se está realizando lo siguiente: Como el producto es asociativo, esto se puede expresar así: y esto es igual a decir que Por eso, se puede salonhogar.net/matem/potenciacion_radicacion/25potenc.html 2/7

3 Propiedad 2 La segunda propiedad se refiere a la potencia de una potencia, es decir, la operación de elevar un número a una potencia, y el resultado se eleva a otra potencia, por ejemplo: Según la primera propiedad ya vista, En resumen, Propiedad 3 Al realizar el siguiente producto, elevado a una potencia: se tiene que la última igualdad es cierta porque el producto es conmutativo y asociativo, y finalmente De manera que se tiene: Propiedad 4 La propiedad que sigue ahora es muy sencilla, pero muy importante: Todo número elevado al exponente a. Por ejemplo: es igual No importa cuál sea la base, si el exponente es, se obtiene como resultado. La razón es muy sencilla: si debe cumplirse siempre la propiedad 1, entonces, por ejemplo: Es decir, multiplicar a por es lo mismo que multiplicarlo por, porque al final se obtiene como resultado el mismo número. Eso quiere decir que. Se puede observar ahora lo que ocurre cuando se multiplican potencias con distintas salonhogar.net/matem/potenciacion_radicacion/25potenc.html 3/7

4 Se puede observar ahora lo que ocurre cuando se multiplican potencias con distintas bases y distintos exponentes. En este caso, no hay ninguna propiedad especial de la potenciación que permita escribir este producto de potencias de otra manera que facilite el cálculo. Sin embargo, hay casos de multiplicación de potencias de distinta base, en los cuales sí se puede aplicar alguna propiedad de la potenciación, como el siguiente: Aún siendo distintas las bases, una de ellas es potencia de la otra ( ), entonces la expresión sí se puede escribir de una manera más sencilla, utilizando las propiedades de la potenciación: Ahora te invitamos a que tomes una hoja de papel y escribas las siguientes expresiones de manera distinta a la dada, usando las propiedades de la potenciación estudiadas hasta ahora: Se han visto hasta ahora propiedades de la potenciación que se refieren a productos de potencias. Se mostró cómo una expresión se puede escribir de una manera más sencilla usando estas propiedades. Es muy natural que se puedan hacer esos cambios, porque la potenciación no es más que una forma abreviada de expresar una multiplicación, y al multiplicar potencias, lo que se hace es multiplicar productos, es decir se está siempre multiplicando. En cambio, cuando se combina la potenciación con la suma o la resta, se están realizando operaciones diferentes y NO siempre se puede aplicar alguna de las propiedades vistas hasta ahora. Por ejemplo: Si se quieren sumar dos potencias de igual base: Se observa que esta operación indica lo siguiente: Aquí están expresadas dos operaciones: la suma y el producto. La manera más sencilla y directa de realizar estas operaciones es simplemente calcular primero las potencias y luego sumarlas. De manera que la expresión más sencilla para la operación anterior es tal como se escribió al principio. Otro caso en el que debe tenerse cuidado es en la suma de potencias como las siguientes: salonhogar.net/matem/potenciacion_radicacion/25potenc.html Es muy importante convencerse para siempre de que 4/7

5 Es muy importante convencerse para siempre de que La manera más segura de convencerse es calculando ambas operaciones: Por otro lado Es evidente, entonces, que, pues. Un argumento geométrico útil para convencerse de que es el siguiente: Se tiene un cuadrado de lado 3 y un cuadrado de lado 7. Se suman sus áreas Esta suma es igual a. Ahora, a esta figura se le añade lo que hace falta para obtener un cuadrado de lado, de la siguiente manera: Qué se obtiene? El cuadrado nuevo tiene lado y su área, como se sabe, es igual a. Se han tenido que añadir rectángulos a la figura original, cuya área es, para salonhogar.net/matem/potenciacion_radicacion/25potenc.html obtener un área igual a, y eso asegura que estas dos cantidades no son 5/7

6 obtener un área igual a iguales., y eso asegura que estas dos cantidades no son La potenciación y sus propiedades tienen gran importancia en las Matemáticas. Hay una leyenda muy interesante acerca del inventor del ajedrez que muestra lo inmensa que puede ser una cantidad obtenida a través de la potenciación. Para reflexionar: Podrías terminar de llenar el tablero usando sólo números que son potencia de 2? Explica. El número de granos requeridos por Sessa es igual a la suma de todos los números que aparecen en el tablero que acabas de llenar. Veamos ahora cómo podemos calcular la suma de todos los números del tablero de ajedrez. Según lo que hemos visto hasta ahora, podemos escribir: Los puntos suspensivos significan que se seguirán sumando todas las demás potencias de 2, hasta llegar a. Sabes por qué la igualdad anterior es cierta? Si no puedes responder alguna de las preguntas anteriores regresa al tablero que llenaste y lee de nuevo cuidadosamente lo que hemos observado después. Es importante tener claro lo hecho hasta aquí para comprender con facilidad lo que sigue. Ahora podemos calcular la suma de los números del tablero. Como: Y la cantidad que está dentro del paréntesis es exactamente la suma de los números del tablero, eso quiere decir que: es el número siguiente a Por lo tanto, el número de granos que Sessa le pidió al Rey es igual a: Para calcular, usaremos las propiedades de la potenciación. salonhogar.net/matem/potenciacion_radicacion/25potenc.html 6/7

7 Para calcular, usaremos las propiedades de la potenciación. En primer lugar, Por qué? Además, usando la misma propiedad de nuevo tenemos: Por lo tanto: Calcula ahora sin utilizar la calculadora, pero usando la propiedad que usamos ya dos veces. Comprueba ahora que: Explica cómo se calculó la potencia lado derecho de la igualdad anterior. y señala por qué aparecieron los factores del En definitiva, para ahorrarte este cálculo final, que es realmente largo, te diremos que: Por lo tanto, la cantidad de granos de trigo que pidió Sessa al Rey es: Siguiente >>>>> Radicación Bibliografía utilizada: Guelli, O., Contando a Historia da Matematica. 1992, Editorial Atica. Bibliografía recomendada: Paredes, B. y Salcedo, A.(1.997). Matemática 7o. Caracas: Santillana S.A. : Fundación Educativa Héctor A. García salonhogar.net/matem/potenciacion_radicacion/25potenc.html 7/7

FRACCION GENERATRIZ. Pasar de decimal exacto a fracción

FRACCION GENERATRIZ. Pasar de decimal exacto a fracción FRACCION GENERATRIZ Un número decimal exacto o periódico puede expresarse en forma de fracción, llamada fracción generatriz, de las formas que indicamos: Pasar de decimal exacto a fracción Si la fracción

Más detalles

Subdirección de Educación Departamento de Educación Contratada Colegio CAFAM Bellavista CED. Pensamiento: Lógico- matemático

Subdirección de Educación Departamento de Educación Contratada Colegio CAFAM Bellavista CED. Pensamiento: Lógico- matemático Subdirección de Educación Departamento de Educación Contratada Colegio CAFAM Bellavista CED GUIA DE APRENDIZAJE Guía No: 2 Pensamiento: Docente: JUAN CARLOS RIAÑO Lógico- matemático Asignatura: matemáticas

Más detalles

Capítulo 3: POTENCIAS Y RAÍCES. TEORÍA. Matemáticas 1º y 2º de ESO

Capítulo 3: POTENCIAS Y RAÍCES. TEORÍA. Matemáticas 1º y 2º de ESO 19 1. POTENCIAS Capítulo 3: POTENCIAS Y RAÍCES.. Matemáticas 1º y 2º de ESO 1.1. Concepto de potencia. Base y exponente Ejemplo 1: María guarda 5 collares en una bolsa, cada 5 bolsas en una caja y cada

Más detalles

TEMA 1: POTENCIAS Y RAICES CUADRADAS

TEMA 1: POTENCIAS Y RAICES CUADRADAS TEMA 1: POTENCIAS Y RAICES CUADRADAS 1. POTENCIAS Una potencia es una forma abreviada de expresar una multiplicación en la que todos los factores son iguales. 2 2 2 2 2 = 2 5 Es una potencia. La base es

Más detalles

5 4 = Potencias de uno y de cero Una potencia, de cualquier base distinta de cero, elevada a cero es igual a 1. exponente. base.

5 4 = Potencias de uno y de cero Una potencia, de cualquier base distinta de cero, elevada a cero es igual a 1. exponente. base. CAPÍTULO 3: POTENCIAS Y RAÍCES 1. POTENCIAS 1.1. Concepto de potencia. Base y exponente María guarda 5 collares en una bolsa, cada 5 bolsas en una caja y cada 5 cajas en un cajón. Tiene 5 cajones con collares,

Más detalles

7 4 = Actividades propuestas 1. Calcula mentalmente las siguientes potencias y escribe el resultado en tu cuaderno: exponente. base.

7 4 = Actividades propuestas 1. Calcula mentalmente las siguientes potencias y escribe el resultado en tu cuaderno: exponente. base. 21 21 CAPÍTULO : Potencias y raíces. Matemáticas 2º de ESO 1. POTENCIAS Ya conoces las potencias. En este aparato vamos a revisar la forma de trabajar con ellas. 1.1. Concepto de potencia. Base y exponente

Más detalles

POTENCIACIÓN Y RADICACIÓN

POTENCIACIÓN Y RADICACIÓN LECCIÓN 3: POTENCIACIÓN Y RADICACIÓN 3.1.- POTENCIAS La potenciación es la operación que permite obtener el valor de una potencia. Una potencia es un producto de factores iguales. TÉRMINOS DE UNA POTENCIA

Más detalles

Potencias y raíces Matemáticas 1º ESO

Potencias y raíces Matemáticas 1º ESO Potencias y raíces Matemáticas 1º ESO ÍNDICE 1. Potencias 2. Propiedades de potencias 3. Cuadrados perfectos 4. Raíces cuadradas 1 1. POTENCIAS Una potencia es una multiplicación en la que todos los factores

Más detalles

MATERIAL DOCENTE MATEMATICAS 8 BASICO: ESTRATEGIAS Y GUIAS DE TRABAJO

MATERIAL DOCENTE MATEMATICAS 8 BASICO: ESTRATEGIAS Y GUIAS DE TRABAJO Especificaciones MATERIAL DOCENTE MATEMATICAS 8 BASICO: ESTRATEGIAS Y GUIAS DE TRABAJO I. Estrategia: se destacan en cada paso II. Contenidos: Repaso contenidos del primer Semestre. III. Esta estrategia

Más detalles

MULTIPLICACIÓN DE POTENCIAS DE IGUAL BASE

MULTIPLICACIÓN DE POTENCIAS DE IGUAL BASE MULTIPLICACIÓN DE POTENCIAS DE IGUAL BASE Ejemplos 1. Resuelva la operación 9. 1 Solución En esta operación hay tres factores. Dos de esos factores tienen la misma base que es base. y el tercer factor

Más detalles

INSTITUCIÓN EDUCATIVA JORGE ROBLEDO PLAN DE APOYO

INSTITUCIÓN EDUCATIVA JORGE ROBLEDO PLAN DE APOYO FECHA:07-0-204 Página de 4 ÁREA/ASIGNATURA: ARITMÉTICA PARA LA PROMOCIÓN ANTICIPADA GRADO: SEXTO AÑO: 207 INSTRUCCIONES: La entrega de la solución, por escrito y bien presentada, es requisito indispensable

Más detalles

UNIDAD DIDÁCTICA #1 CONTENIDO

UNIDAD DIDÁCTICA #1 CONTENIDO UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA

Más detalles

GUIA DE MATERIAL BASICO PARA TRABAJAR CON POTENCIAS. POTENCIAS: CONTENIDOS Y EJERCICIOS

GUIA DE MATERIAL BASICO PARA TRABAJAR CON POTENCIAS. POTENCIAS: CONTENIDOS Y EJERCICIOS GUIA DE MATERIAL BASICO PARA TRABAJAR CON POTENCIAS. POTENCIAS: CONTENIDOS Y EJERCICIOS 1 POTENCIAS. Definición: Potencia: es un producto de factores iguales a n = a a a a... Ejemplo: 2 4 = 2 2 2 2 = 16

Más detalles

POTENCIACION POTENCIA

POTENCIACION POTENCIA POTENCIACION POTENCIA Los babilonios utilizaban la elevación a potencia como auxiliar de la multiplicación, y los griegos sentían especial predilección por los cuadrados y los cubos. Diofanto (III d.c.)

Más detalles

UNIDAD 2. Logaritmos DEFINICION DE LOGARITMO. Definiciones:

UNIDAD 2. Logaritmos DEFINICION DE LOGARITMO. Definiciones: Matemática UNIDAD. Logaritmos Medio GUÍA N 1 DEFINICION DE LOGARITMO Qué valor de x satisface la ecuación x = 7? Fácilmente podemos verificar que x = es una solución para esta ecuación, pues = 7. Pero

Más detalles

UBA. 1. a) Uní con una flecha cada cálculo de la primera columna con todos los equivalentes de la segunda columna sin hacer cuentas.

UBA. 1. a) Uní con una flecha cada cálculo de la primera columna con todos los equivalentes de la segunda columna sin hacer cuentas. CIEEM 017/018 Propiedades de las operaciones con números naturales y cálculo mental. Otras operaciones. 1. a) Uní con una flecha cada cálculo de la primera columna con todos los equivalentes de la segunda

Más detalles

Lic. Manuel de Jesús Campos Boc

Lic. Manuel de Jesús Campos Boc UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICA I Lic. Manuel de Jesús

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números

Más detalles

POTENCIACIÓN Y RADICACIÓN

POTENCIACIÓN Y RADICACIÓN Potenciación POTENCIACIÓN Y RADICACIÓN La potenciación o exponenciación es una multiplicación de varios factores iguales, al igual que la multiplicación es una suma de varios sumandos iguales. En la nomenclatura

Más detalles

POTENCIACIÓN - PROPIEDADES

POTENCIACIÓN - PROPIEDADES POTENCIACIÓN - PROPIEDADES Haga Click sobre la opción que desee ver: 1. Concepto general 2. Propiedades de la potenciación Potencia de exponente cero Potencia de exponente uno Producto (multiplicación)

Más detalles

Lección 2: Notación exponencial

Lección 2: Notación exponencial GUÍA DE MATEMÁTICAS III Lección 2: Notación exponencial En la lección anterior hemos visto cómo trabajar con números reales y cómo para facilitar el trabajo con ellos es conveniente utilizar aproximaciones,

Más detalles

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, }

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, } Los números enteros La unión de los números naturales y los enteros negativos forma el conjunto de los números enteros, que se designa con la palabra Z. Está constituido por infinitos elementos y se representan

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA I : NÚMEROS NATURALES Sistema de numeración romano. Los números naturales. Números naturales como cardinales y ordinales. o Recta numérica. El sistema de numeración decimal.

Más detalles

Guía para maestro. Radicación de números enteros. Compartir Saberes

Guía para maestro. Radicación de números enteros.  Compartir Saberes Guía para maestro Guía realizada por Nury Espinosa Profesional en Matemáticas En matemáticas es importante tener en cuenta que cada una de las operaciones como la suma, la multiplicación y la potenciación

Más detalles

POTENCIAS Y RAÍZ CUADRADA

POTENCIAS Y RAÍZ CUADRADA POTENCIAS Y RAÍZ CUADRADA 1. POTENCIAS. 1.1. CONCEPTO DE POTENCIA. ELEMENTOS. Una potencia es un producto de factores iguales. Las potencias están formadas por: Base: factor que se repite. Exponente: número

Más detalles

UNIDAD 1. Aritmética. ELABORO: JUAN ADOLFO ALVAREZ MARTINEZ

UNIDAD 1. Aritmética.  ELABORO: JUAN ADOLFO ALVAREZ MARTINEZ 1 UNIDAD 1. Aritmética ELABORO: JUAN ADOLFO ALVAREZ MARTINEZ http://www.uaeh.edu.mx/virtual 2 Aprendiendo aritmética. Antes de poder iniciar propiamente con el estudio de los temas de las operaciones que

Más detalles

UNIDAD 4. POLINOMIOS. (PÁGINA 263)

UNIDAD 4. POLINOMIOS. (PÁGINA 263) UNIDAD 4. POLINOMIOS. (PÁGINA 263) LENGUAJE ALGEBRAICO Una expresión algebraica es aquella que combina: números, operaciones y letras. Ejemplos de expresiones algebraicas: 3 + x x 2 y x + y x 2 y LENGUAJE

Más detalles

Potencias de exponente entero I

Potencias de exponente entero I Matemáticas 2.º ESO Unidad 3 Ficha 1 Potencias de exponente entero I Una potencia es un producto de factores iguales. Exponente: n n Base: a an = a a a La base, a, es el factor que se repite, y el exponente,

Más detalles

Lección 7: Propiedades de las operaciones con números reales

Lección 7: Propiedades de las operaciones con números reales Lección 7: Propiedades de las operaciones con números reales En las lecciones de aritmética de este curso y los dos anteriores hemos visto las propiedades que tienen las operaciones entre números naturales,

Más detalles

RADICACIÓN EN LOS REALES

RADICACIÓN EN LOS REALES RADICACIÓN EN LOS REALES La raíz n ésima de un número real es otro número real tal que: n a b si y solo si b n Donde el signo se llama radical, n es el índice, a es el radicando y b es la raíz. En la radicación

Más detalles

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9 Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números

Más detalles

(6x + 8) + (4x + 2) (6x + 8) + (4x + 2) = 10x + 10

(6x + 8) + (4x + 2) (6x + 8) + (4x + 2) = 10x + 10 Operaciones con números complejos Objetivos de aprendizaje Sumar números complejos. Restar números complejos. Multiplicar números complejos. Encontrar conjugados de números complejos. Dividir números complejos.

Más detalles

RESUMEN ALGEBRA BÁSICA

RESUMEN ALGEBRA BÁSICA RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

Potencias y raíces Matemáticas 1º ESO

Potencias y raíces Matemáticas 1º ESO ÍNDICE Potencias y raíces Matemáticas 1º ESO 1. Potencias 2. Propiedades de potencias 3. Cuadrados perfectos 4. Raíces cuadradas 1. POTENCIAS Una potencia es una multiplicación en la que todos los factores

Más detalles

NUMEROS NATURALES. En esta unidad se da un repaso de los diferentes conjuntos de números que existen en matemáticas.

NUMEROS NATURALES. En esta unidad se da un repaso de los diferentes conjuntos de números que existen en matemáticas. LOS NUMEROS En esta unidad se da un repaso de los diferentes conjuntos de números que existen en matemáticas. Un conjunto es una "colección de objetos"; Así, se puede hablar de un conjunto de personas,

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I ARITMÉTICA 1. Números naturales 2. Divisibilidad 3. Números enteros 4. Números decimales 5. Fracciones y números racionales 6. Proporcionalidad 7. Sistema métrico decimal 8. Sistema sexagesimal 9. Números

Más detalles

Los números naturales están ordenados, lo que nos permite comparar dos números naturales:

Los números naturales están ordenados, lo que nos permite comparar dos números naturales: LOS NUMEROS NATURALES. El conjunto de los números naturales está formado por: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...} Con los números naturales contamos los elementos de un conjunto (número cardinal). O

Más detalles

( ) ( ) a) 8 2. b) 9 12 c) 625 : 5 d) 10 : 6. a) 8 2 = 8 2 = 16 = 4. b) 9 12 = 9 12 = c) 625 : 5 = = 125 = d) 10 : 6 = = 6 3

( ) ( ) a) 8 2. b) 9 12 c) 625 : 5 d) 10 : 6. a) 8 2 = 8 2 = 16 = 4. b) 9 12 = 9 12 = c) 625 : 5 = = 125 = d) 10 : 6 = = 6 3 Tema - Hoja : Cálculo de potencias y raíces Calcula las siguientes multiplicaciones y divisiones de radicales: a) 8 9 c) 6 : d) 0 : 6 a) 8 = 8 = 6 = 9 = 9 = 08 6 c) 6 : = = = 0 d) 0 : 6 = = 6 Realiza las

Más detalles

ASIGNATURA: Matemáticas GRADO: 2. BLOQUE: II

ASIGNATURA: Matemáticas GRADO: 2. BLOQUE: II SECRETARÍA DE EDUCACIÓN DE TAMAULIPAS SUBSECRETARÍA DE EDUCACIÓN BÁSICA DIRECCIÓN DE EDUCACIÓN SECUNDARIA ASIGNATURA: Matemáticas GRADO: 2. BLOQUE: II A partir de la fórmula para obtener el volumen del

Más detalles

En el presente taller se estudian propiedades y operaciones que se realizan con la potenciación.

En el presente taller se estudian propiedades y operaciones que se realizan con la potenciación. DEPARTAMENTO DE CIENCIAS MATEMÁTICAS Iniciación al Cálculo Potenciación Presentación En matemáticas existen operaciones básicas que son fundamentales para la solución de diversos problemas. Una de ellas

Más detalles

Elevar a la cuarto potencia. " " raíz Elevar a " " potencia.

Elevar a la cuarto potencia.   raíz Elevar a   potencia. ECUACIONES IRRACIONALES Suponga que su profesor ha dado instrucciones a los miembros de su clase de matemáticas que en parejas, encuentren la longitud de un segmento de línea. Usted recibe unidades de

Más detalles

Subdirección de Educación Departamento de Educación Contratada Colegio CAFAM Bellavista CED PROYECTO TRABAJO COOPERATIVO.

Subdirección de Educación Departamento de Educación Contratada Colegio CAFAM Bellavista CED PROYECTO TRABAJO COOPERATIVO. Subdirección de Educación Departamento de Educación Contratada Colegio CAFAM Bellavista CED Guía No: 3 Docente: Luz Ángela Naranjo Grado: QUINTO MATEMÁTICAS PROYECTO TRABAJO COOPERATIVO. URBANIDAD Y CIVISMO,

Más detalles

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras.

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras. 1.- LOS NÚMEROS REALES Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. El número irracional más

Más detalles

Sumar es reunir varias cantidades en una sola.

Sumar es reunir varias cantidades en una sola. ------ Fichas de trabajo 01-A-1/18 Cálculo. Suma (+) Sumar es reunir varias cantidades en una sola. Signo. Es una cruz griega (+) que se lee más. + = 5 + = Términos. Los números que se suman se llaman

Más detalles

2.- TIPOS DE MATRICES

2.- TIPOS DE MATRICES 2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA.- MATRICES PROFESOR: RAFAEL NÚÑEZ NOGALES.- CONCEPTO DE MATRIZ. Definición de matriz Una matriz real A es un conjunto de números reales

Más detalles

UNIDAD III. EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES.

UNIDAD III. EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. UNIDAD III. EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. Ley asociativa El producto de tres o más números, es el mismo sin importar la manera en que se agrupan al multiplicarlos. abc=(ac)b=c(ab)

Más detalles

Tema 1.- Los números reales

Tema 1.- Los números reales Tema 1.- Los números reales Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se puede expresar en forma de fracción. El número irracional

Más detalles

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares.

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares. 1.- Divisibilidad Teoría (resumen) Múltiplos de un número. Son aquellos que se obtienen al multiplicar dicho número por los números naturales 1, 2, 3,. Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12,

Más detalles

Semana 1: Números Reales y sus Operaciones

Semana 1: Números Reales y sus Operaciones Semana 1: Números Reales y sus Operaciones Taller de Preparación para Prueba PLANEA Ing. Jonathan Quiroga Tinoco Conalep Tehuacán P.T.B. en ADMO, SOMA y EMEC UNIDAD 04 Los números enteros y sus operaciones

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

GUION TÉCNICO AUDIO. Operaciones con expresiones algebraicas. En la Geometría clásica se encontraron diferentes

GUION TÉCNICO AUDIO. Operaciones con expresiones algebraicas. En la Geometría clásica se encontraron diferentes 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. Operaciones con expresiones algebraicas. Leyes de los exponentes En la Geometría clásica se encontraron diferentes

Más detalles

Potencias y raíces. 1º de ESO

Potencias y raíces. 1º de ESO 49 49 1º ESO CAPÍTULO 3: POTENCIAS Y RAÍCES 49 Autora: Ana Lorente Revisora: Adela Salvador 50 50 50 Índice 1. POTENCIAS 1.1. CONCEPTO DE POTENCIA: BASE Y EXPONENTE 1.2. CUADRADOS Y CUBOS 1.3. LECTURA

Más detalles

Lección 8: Exponen tes y notación exponencial

Lección 8: Exponen tes y notación exponencial GUÍA DE MATEMÁTICAS II Lección 8: Exponen tes y notación exponencial En matemáticas es común que se trate de simplificar la notación, al mismo tiempo que se generalizan los conceptos. Por ejemplo, hemos

Más detalles

Multiplicación y División de Números Naturales

Multiplicación y División de Números Naturales Multiplicación y División de Números Naturales I. Multiplicación La multiplicación o producto, es una forma rápida de calcular la suma, cuando los sumandos son iguales. 2+2+2+2 = 2 x 4 = 8. También se

Más detalles

Lic. Manuel de Jesús Campos Boc

Lic. Manuel de Jesús Campos Boc UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 015 Lic. Manuel

Más detalles

LEY DE LOS SIGNOS, TEORÍA DE AGRUPAMIENTO Y ORDEN DE OPERACIONES

LEY DE LOS SIGNOS, TEORÍA DE AGRUPAMIENTO Y ORDEN DE OPERACIONES LEY DE LOS SIGNOS, TEORÍA DE AGRUPAMIENTO Y ORDEN DE OPERACIONES LEY DE LOS SIGNOS SUMA Si los números tienen el mismo signo se suman se deja el mismo signo. 3 + 5 = 8 ( 3) + ( 5) = 8 Si números tienen

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I Fracción Una fracción es el cociente de dos números enteros a y b, que representamos de la siguiente forma: b a denominador, indica el número de partes en que se ha dividido la unidad. numerador, indica

Más detalles

CONJUTOS NÚMERICOS NÚMEROS NATURALES

CONJUTOS NÚMERICOS NÚMEROS NATURALES CONJUTOS NÚMERICOS NÚMEROS NATURALES El conjunto de números naturales tiene gran importancia en la vida práctica ya que con sus elementos se pueden encontrar elementos u objetos de otros conjuntos. El

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (

Más detalles

Potencias de exponente entero o fraccionario y radicales sencillos

Potencias de exponente entero o fraccionario y radicales sencillos Potencias de exponente entero o fraccionario y radicales sencillos I. Potencias de exponente entero La potencia es una operación matemática que sirve para representar la multiplicación de un número por

Más detalles

Radicación. definimos la operación de RADICACION representada con el, en la forma siguiente:

Radicación. definimos la operación de RADICACION representada con el, en la forma siguiente: República Bolivariana de Venezuela Ministerio del Poder popular para la Educación Valencia. Edo. Carabobo Asignatura Matematica 5to Año PROF. Víctor Badillo Muchachos aquí les dejo esta guía la cual contiene

Más detalles

MATRICES. Jaime Garrido Oliver

MATRICES. Jaime Garrido Oliver MATRICES Jaime Garrido Oliver ÍNDICE DE CONTENIDOS ÍNDICE DE CONTENIDOS... 2 MATRICES... 3 1.1. INTRODUCCIÓN.... 3 2. TIPOS DE MATRICES... 4 2.1. Matriz Fila, Matriz Columna... 4 2.2. Matrices cuadradas...

Más detalles

Proyecto Guao PROPIEDADES DE LA POTENCIACIÓN EN Z (NÚMEROS ENTEROS)

Proyecto Guao PROPIEDADES DE LA POTENCIACIÓN EN Z (NÚMEROS ENTEROS) PROPIEDADES DE LA POTENCIACIÓN EN Z (NÚMEROS ENTEROS) Hay 1,000 bacterias presentes en un cultivo. Cuando el cultivo se trata con un antibiótico, el total de bacterias se reduce a la mitad cada 4 horas.

Más detalles

Materia: Matemática de séptimo Tema: El Concepto de Fracciones

Materia: Matemática de séptimo Tema: El Concepto de Fracciones Materia: Matemática de séptimo Tema: El Concepto de Fracciones Una mañana, en el barco de buceo, Cameron comenzó a hablar con otro niño llamado Chet. Chet y su familia eran de Colorado y Chet era apenas

Más detalles

FICHAS DE TRABAJO REFUERZO

FICHAS DE TRABAJO REFUERZO FICHAS DE TRABAJO REFUERZO DEPARTAMENTO DE MATEMATICAS CONTENIDO 1. Números naturales a. Leer y escribir números naturales b. Orden de cifras c. Descomposición polinómica d. Operaciones combinadas e. Potencias

Más detalles

FISICA MECANICA DOCUMENTO DE CONTENIDO MATEMATICAS PARA FISICOS

FISICA MECANICA DOCUMENTO DE CONTENIDO MATEMATICAS PARA FISICOS FISICA MECANICA DOCUMENTO DE CONTENIDO MATEMATICAS PARA FISICOS Objetivo general: Brindar algunas herramientas matemáticas que los estudiantes de física necesitan para su buen desempeño en el curso de

Más detalles

Potencias y raíces. Nivel I

Potencias y raíces. Nivel I 51 FORMACIÓN SECUNDARIA DE PERSONAS ADULTAS. NIVEL I 1. POTENCIAS 51 CAPÍTULO 51 3: POTENCIAS Y RAÍCES Índice 1.1. CONCEPTO DE POTENCIA: BASE Y EXPONENTE 1.2. CUADRADOS Y CUBOS 1.3. LECTURA DE POTENCIAS

Más detalles

TEMA 4 NÚMEROS ENTEROS

TEMA 4 NÚMEROS ENTEROS TEMA 4 NÚMEROS ENTEROS 1 2 3 Recta numérica. -9-8 -7-6 -5-4 -3-2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 Enteros negativos A la izquierda del 0 están los números enteros negativos Enteros positivos A la derecha

Más detalles

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 8 _ 0-0.qxd //0 : Página Números reales INTRODUCCIÓN Los alumnos han trabajado en cursos anteriores con las potencias, y conocen el significado de las potencias de exponente natural y de las partes que

Más detalles

Descubrimos la noción de potencia cuadrada a través del juego Cuántos cuadrados puedes formar?

Descubrimos la noción de potencia cuadrada a través del juego Cuántos cuadrados puedes formar? SEXto GRADO - Unidad 2 - Sesión 09 Descubrimos la noción de potencia cuadrada a través del juego Cuántos cuadrados puedes formar? En esta sesión se espera que los niños y las niñas identifiquen potencias

Más detalles

Módulo 10 Postulados de campo

Módulo 10 Postulados de campo Módulo 10 Postulados de campo OBJETIVO: Conocerá los postulados de campo y su aplicación; utilizara postulados de campo en proposiciones de números reales Ahora, estamos interesados en ver el comportamiento

Más detalles

PAUTA ACTIVIDADES: IDENTIFICANDO PROPIEDADES DE LAS POTENCIAS

PAUTA ACTIVIDADES: IDENTIFICANDO PROPIEDADES DE LAS POTENCIAS PAUTA ACTIVIDADES: IDENTIFICANDO PROPIEDADES DE LAS POTENCIAS Simón y Antonia están trabajando con las potencias y han comenzado a establecer algunas regularidades en el desarrollo de ejercicios. Observe

Más detalles

Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO. Nombre: Curso: Fecha: F Cómo es el polinomio, completo o incompleto?

Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO. Nombre: Curso: Fecha: F Cómo es el polinomio, completo o incompleto? REPASO Y APOYO OBJETIVO 1 3 RECONOCER EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO Nombre: Curso: echa: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los

Más detalles

open green road Guía Matemática POTENCIAS tutora: Jacky Moreno .cl

open green road Guía Matemática POTENCIAS tutora: Jacky Moreno .cl Guía Matemática POTENCIAS tutora: Jacky Moreno.cl 1. Potencias Las matemáticas que utilizamos hoy en día surgieron hace más de 4000 años atrás. Como bien sabemos éstas no nacieron totalmente formadas,

Más detalles

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide

Más detalles

5.1 Números Reales Mate 3041 Milena Salcedo V. Copyright Cengage Learning. All rights reserved.

5.1 Números Reales Mate 3041 Milena Salcedo V. Copyright Cengage Learning. All rights reserved. 5.1 Números Reales Mate 3041 Milena Salcedo V R Copyright Cengage Learning. All rights reserved. Números Reales Números Naturales: N = 1,2,3, Números Enteros no negativos (Cardinales): 0,1,2,3, Números

Más detalles

Fracciones. Contenidos. Objetivos. 1. Fracciones Fracciones Equivalentes Simplificación de Fracciones

Fracciones. Contenidos. Objetivos. 1. Fracciones Fracciones Equivalentes Simplificación de Fracciones Fracciones Contenidos 1. Fracciones Fracciones Equivalentes Simplificación de Fracciones 2. Fracciones con igual denominador Reducción a común denominador Comparación de fracciones 3. Operaciones con fracciones

Más detalles

1. Observa los ejemplos y escribe como se leen las siguientes potencias.

1. Observa los ejemplos y escribe como se leen las siguientes potencias. ACTIVIDADES DE REFUERZO DE MATEMÁTICAS 1º E.S.O. Tema : Potencias y raíces. 1. Observa los ejemplos y escribe como se leen las siguientes potencias. 1 : siete a la uno. 1 : : tres al cuadrado. : : cinco

Más detalles

Matrices. Ejercicio 1. Dada la matriz A = 2. completa: a 11 =, a 31 =, a 23 =, = 3, = 2, = 7.

Matrices. Ejercicio 1. Dada la matriz A = 2. completa: a 11 =, a 31 =, a 23 =, = 3, = 2, = 7. Matrices. Contenido. Matrices. Tipos especiales de matrices.. Suma y diferencia de matrices.. Producto por un número..5 Matriz traspuesta y matriz simétrica..6 Producto de matrices. Propiedades.. Matriz

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

EL LENGUAJE ALGEBRAICO

EL LENGUAJE ALGEBRAICO LENGUAJE ALGEBRAICO Guillermo Ruiz Varela - PT EL LENGUAJE ALGEBRAICO Hasta ahora siempre hemos trabajado en matemáticas con números y signos, es lo que se llama lenguaje numérico. A partir de ahora, vamos

Más detalles

1. Expresiones polinómicas con una indeterminada

1. Expresiones polinómicas con una indeterminada C/ Francisco García Pavón, 16 Tomelloso 1700 (C. Real) Teléfono Fa: 96 51 9 9 Polinomios 1. Epresiones polinómicas con una indeterminada 1.1. Los monomios Un monomio es una epresión algebraica con una

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Estamos acostumbrados a trabajar con números naturales o enteros en la vida cotidiana pero en algunas ocasiones tendrás

Más detalles

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( ) MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

UNIDAD 1 NUMEROS COMPLEJOS

UNIDAD 1 NUMEROS COMPLEJOS UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo

Más detalles

Es un producto de factores iguales. Ejemplos:

Es un producto de factores iguales. Ejemplos: Es un producto de factores iguales. Ejemplos: 3 3 3 3 3 3 3 3 6 6 6 6 6 Abreviadamente escribiríamos: 3 3 3 3 3 3 3 3 = 3 8 6 6 6 6 6 = 6 5 Y leeríamos: 3 8 = 3 elevado a 8 6 5 = 6 elevado a 5 En una potencias

Más detalles

NIVELACIÓN TERCER PERIODO Visita la siguiente página para que visualices el video sobre potenciación

NIVELACIÓN TERCER PERIODO Visita la siguiente página para que visualices el video sobre potenciación NIVELACIÓN TERCER PERIODO 2011 1. MOTIVACIÓN Visita la siguiente página para que visualices el video sobre potenciación http://www.youtube.com/watch?v=a55xwvzvwgy&feature=related Escribe en tu cuaderno

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 1. INTRODUCCIÓN El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por Con los números reales podemos realizar todas las

Más detalles

INSTITUCIÓN EDUCATIVA INSTITUTO AGRICOLA JORNADA DIURNA GUÍA DE TRABAJO # 6 AREA: MATEMÁTICAS AGISNATURA: ARITMÉTICA GRADO: SEXTO

INSTITUCIÓN EDUCATIVA INSTITUTO AGRICOLA JORNADA DIURNA GUÍA DE TRABAJO # 6 AREA: MATEMÁTICAS AGISNATURA: ARITMÉTICA GRADO: SEXTO AREA: MATEMÁTICAS AGISNATURA: ARITMÉTICA GRADO: SEXTO Instrucciones. Lee cuidadosamente los conceptos, los ejemplos y desarrolla los ejercicios propuestos. No olvides guardar esta guía de trabajo en tu

Más detalles

TEMA 4: EXPRESIONES ALGEBRAICAS.

TEMA 4: EXPRESIONES ALGEBRAICAS. TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso

Más detalles

Resolución de problemas mediante ecuaciones.

Resolución de problemas mediante ecuaciones. Resolución de problemas mediante ecuaciones. 1.- La suma de un número con el doble de ese mismo número es 72. Cuál es ese número? 2.- Un señor compró 2 kilos de papas y 3 de tomates. El kilo de papas costaba

Más detalles

Guía para maestro. Potenciación de números enteros. Compartir Saberes

Guía para maestro. Potenciación de números enteros.  Compartir Saberes Guía para maestro Guía realizada por Nury Espinosa. Profesional en Matemáticas La suma es una de las operaciones más elementales de las matemáticas, está presente en numerosos contextos y situaciones de

Más detalles

Semana 4 Bimestre I Número de clases 16 20

Semana 4 Bimestre I Número de clases 16 20 Semana 4 Bimestre I Número de clases 16 20 Clase 16 Tema: La potenciación y la radicación en el conjunto de los números reales Actividad 1 Complete la siguiente tabla: Lado (cm) Área de un cuadrado Volumen

Más detalles

OBJETIVO 1 CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL NOMBRE: CURSO: FECHA: Unidad de millar. Decena de millar

OBJETIVO 1 CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL NOMBRE: CURSO: FECHA: Unidad de millar. Decena de millar OBJETIVO CONOCER LA ESTRUCTURA DEL SISTEMA DE NUMERACIÓN DECIMAL NOMBRE: CURSO: ECHA: El sistema de numeración decimal tiene dos características:. a Es decimal: 0 unidades de un orden forman unidad del

Más detalles