TEMA 2: MÉTODO MONTE CARLO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 2: MÉTODO MONTE CARLO"

Transcripción

1 TEMA 2: MÉTODO MONTE CARLO Introducción al tema: En esta sección continuaremos estudiando los elementos necesarios que sustentan el método Monte Carlo. Ya en el tema anterior se vio la aplicación de la ley de los grandes números, ahora con base en el Teorema del Límite Central, veremos la fortaleza o debilidad de éste método, y empezaremos a aplicarlo a algunos problemas, incluyendo integrales múltiples. 2.1 Método Monte Carlo: Ve a la biblioteca y busca el libro de Ross, Sheldon M. Introduction to probability models. Sheldon M. Ross. Décima edición. Academic Realiza la lectura sobre el teorema del límite central e intervalos de confianza, sus hipótesis y sus aplicaciones. Hasta ahora hemos aproximado el valor de integrales y valores esperados, pero, qué tan buenos son estos resultados? De acuerdo con el Teorema del Límite Central, si X 1, X 2,... son v.a.i.i.d. con media común µ y varianza finita σ² se tiene. Actividad 7ª: Recuerdas la normal estándar? Qué debo hacer? Entra en el siguiente ejercicio y selecciona la respuesta correcta. Ya que a la larga, cómo debe definir Z m, a partir de, para que Z m ~ Normal(0, 1)? Elija la respuesta correcta. Z m = a.

2 b. c. d. Recomendación: Para los problemas siguientes, es muy conveniente que tengas a la mano una calculadora, computadora o tablas en donde puedas obtener valores de la distribución normal estándar. Actividad 7b: intervalos de confianza: Qué debo hacer? Entra en el siguiente ejercicio y selecciona la respuesta correcta. 1. Si Z 1. ~ Normal(0, 1), entonces P( Z < 1.96) Si Z ~ Normal(0, 1), entonces el valor de x tal que P( Z < x) = 0.99, con una

3 aproximación a dos lugares decimales, es Ahora si Z m = ~"Normal(0,1)" entonces un intervalo del 95% de confianza para Z m centrado en es Actividad 7c. Integrales múltiples Descarguen el documento anexo, que contiene las instrucciones de la actividad que deberán realizar. Conclusión de la actividad 7: En general, se tiene que si X 1, X 2,... son v.a.i.i.d. con media común μ y varianza finita σ² entonces

4 es un intervalo de confianza 100(1-α)% y es la puntuación z correspondiente. Una consecuencia del teorema de Slutsky dice que, para el intervalo de confianza anterior se puede utilizar la desviación estándar muestral, s, en lugar de σ, y se conserva el intervalo cuando m es grande. Así que el intervalo que se propone en la práctica, ante la ausencia del conocimiento de σ², es el intervalo como un intervalo de confianza de m con 100(1-α)% de confianza. 2.2 Aplicaciones del Método Monte Carlo En el ejercicio se desarrolló el experimento de lanzar un dado, que es un hexaedro (un poliedro regular de seis caras). Recuerda que otro poliedro regular es el dodecaedro, tiene doce caras y cada una es un pentágono regular. Supón que tienes un dado en forma de dodecaedro y numeras sus caras del 1 al 12. Supón que este dado es legal. Realiza el mismo experimento del ejercicio, es decir, simula el tiro de un par de estos dados, sea X la variable aleatoria cuyo valor es la suma del resultado de cada uno de los dados. Aproxima el valor de E[X] simulando el tiro de M tiros. Llena la tabla siguiente: M (Límite inferior, Límite Superior) Longitud del intervalo Tabla 1. Simulación del tiro de un par de dados en forma de dodecaedro para estimar E[X] y construcción de un intervalo del 95% de confianza. Para calcular de manera eficiente la media aritmética y la varianza muestral (y por tanto, la desviación estándar muestral) lee el libro de Sheldon Ross, Simulación o el de Patricia Saavedra y Víctor Ibarra, Método Monte Carlo aplicado a finanzas. Actividad 8. Tiro de Dados

5 Qué debo hacer? De acuerdo a los resultados de la tabla, comenta sobre el valor de pueda existir entre los valores M, longitud del intervalo y E[X]. a E[X], y la relación que Conclusión del tema: En esta parte del curso hemos sentado las bases del método Monte Carlo, y cómo, por lo regular, deben presentarse los resultados realizados en un estudio de Simulación. Se comentaron las ventajas y desventajas del método Monte Carlo, y su amplio espectro de aplicación, así como fórmulas recursivas para el cálculo de la media aritmética y la varianza muestrales, útiles cuando se utiliza el método Monte Carlo. Ya con este fundamento, en las siguientes secciones del curso se resolverán casos prácticos. Bibliografía: Saavedra, P. e Ibarra V. Método Monte Carlo y su aplicación a finanzas Libro electrónico. Glasserman, P. (2003) Monte Carlo Methods in Financial Engineering. Estados Unidos. Springer. Herzog, Thomas y Lord, G. (2002) Applications of Monte Carlo Methods to Finance and Insurance. Actex publications. Ross, Sheldon M., Introduction to probability models / Sheldon M. Ross, décima edición. Academic, 2010.

Inferencia Estadística

Inferencia Estadística EYP14 Estadística para Construcción Civil 1 Inferencia Estadística El campo de la inferencia estadística está formado por los métodos utilizados para tomar decisiones o para obtener conclusiones sobre

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

Representación de números enteros: el convenio signo y magnitud

Representación de números enteros: el convenio signo y magnitud Representación de números enteros: el convenio signo y magnitud Apellidos, nombre Martí Campoy, Antonio ([email protected]) Departamento Centro Informàtica de Sistemes i Computadors Escola Tècnica Superior

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. b) Las medias muestrales de tamaño n se distribuyen según la normal

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. b) Las medias muestrales de tamaño n se distribuyen según la normal 1 DISTRIBUCIÓN DE LA MEDIA MUESTRAL La mayoría de estos problemas han sido propuestos en exámenes de selectividad de los distintos distritos universitarios españoles. 1. Considérese una población en la

Más detalles

Estimación. Intervalos de Confianza para la Media y para las Proporciones

Estimación. Intervalos de Confianza para la Media y para las Proporciones Estimación. Intervalos de Confianza para la Media y para las Proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Estimación El objetivo

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

Manejo de la Información

Manejo de la Información Los juegos de azar Manejo de la Información Que las y los estudiantes deduzcan y argumenten que la probabilidad de que un evento suceda está relacionada con la frecuencia en que ocurre el resultado esperado

Más detalles

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS 1) INTRODUCCIÓN El análisis de varianza es una técnica que se puede utilizar para decidir si las medias de dos o más poblaciones son iguales. La prueba se

Más detalles

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA SEGUNDA PRUEBA PARCIAL Profesor: Hugo S. Salinas. Primer Semestre 2009 1. Resolver los siguientes

Más detalles

Solución ESTADÍSTICA. Prueba de evaluación contínua 2 - PEC2

Solución ESTADÍSTICA. Prueba de evaluación contínua 2 - PEC2 Semestre set04 - feb05 Módulos 11-17 Prueba de evaluación contínua 2 - PEC2 Solución Presentación i objetivos Enunciados: descripción teórica de la práctica a realizar Materiales Criterios de evaluación

Más detalles

Ejemplo: Ing. Raúl Canelos. Solución CONFIABILIDAD SEP 1

Ejemplo: Ing. Raúl Canelos. Solución CONFIABILIDAD SEP 1 Ejemplo: Basándose en ciertos estudios una compañía a clasificado de acuerdo con la posibilidad de encontrar petróleo en tres tipos de formaciones. La compañía quiere perforar un pozo en determinado lugar

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 7 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

QUÉ ES UN NÚMERO DECIMAL?

QUÉ ES UN NÚMERO DECIMAL? QUÉ ES UN NÚMERO DECIMAL? Un número decimal representa un número que no es entero, es decir, los números decimales se utilizan para representar a los números que se encuentran entre un número entero y

Más detalles

Medidas de tendencia Central

Medidas de tendencia Central Medidas de tendencia Central 7.1 Media 7.1.1 Media para un conjunto de datos no agrupados Este parámetro lo usamos con tanta cotidianidad que nos será muy familiar, aunque también aprenderemos algunas

Más detalles

MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL

MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL Las medias de tendencia central o posición nos indican donde se sitúa un dato dentro de una distribución de datos. Las medidas de dispersión, variabilidad o variación

Más detalles

Se enfría una sandía al ponerla abierta al sol?

Se enfría una sandía al ponerla abierta al sol? Se enfría una sandía al ponerla abierta al sol? RESUMEN Realizamos este experimento para comprobar una afirmación que se solía comentar mucho en nuestra localidad. La mayoría de la gente mayor de Villafranca

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS 1) Reseña histórica Abrahan De Moivre (1733) fue el primero en obtener la ecuación matemática de la curva normal. Kart Friedrich Gauss y Márquez De Laplece (principios

Más detalles

Probabilidades y Estadística (Computación) Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ana M. Bianco y Elena J.

Probabilidades y Estadística (Computación) Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ana M. Bianco y Elena J. Generación de Números Aleatorios Números elegidos al azar son útiles en diversas aplicaciones, entre las cuáles podemos mencionar: Simulación o métodos de Monte Carlo: se simula un proceso natural en forma

Más detalles

Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones

Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Introducción Las Compañías aseguradoras determinan sus precios basadas en modelos y en información histórica

Más detalles

Partida doble. Veamos los siguientes ejemplos:

Partida doble. Veamos los siguientes ejemplos: Partidadoble El objetivo de la contabilidad es la elaboración de los reportes o estados financieros. Para realizarlos, se tienen que ir registrando cada una de las transacciones que realiza un ente económico

Más detalles

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio Refo 07 2004 15 al 19 de noviembre 2004 Colegio Alexander von Humboldt - Lima Tema: La enseñanza de la matemática está en un proceso de cambio La enseñanza de la matemática debe tener dos objetivos principales:

Más detalles

T.1 CONVERGENCIA Y TEOREMAS LÍMITE

T.1 CONVERGENCIA Y TEOREMAS LÍMITE T.1 CONVERGENCIA Y TEOREMAS LÍMITE 1. CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIA CONVERGENCIA CASI-SEGURA CONVERGENCIA EN PROBABILIDAD CONVERGENCIA EN MEDIA CUADRÁTICA CONVERGENCIA EN LEY ( O DISTRIBUCIÓN)

Más detalles

capitulo3 MARCO TEÓRICO Para el diseño de la reubicación de los procesos se hará uso de la Planeación

capitulo3 MARCO TEÓRICO Para el diseño de la reubicación de los procesos se hará uso de la Planeación capitulo3 MARCO TEÓRICO Para el diseño de la reubicación de los procesos se hará uso de la Planeación Sistemática de Layout, SLP por sus siglas en inglés. Se hará uso de la simulación para comparar el

Más detalles

1. MEDIDAS DE TENDENCIA CENTRAL

1. MEDIDAS DE TENDENCIA CENTRAL 1. MEDIDAS DE TENDENCIA CENTRAL Lo importante en una tendencia central es calcular un valor central que actúe como resumen numérico para representar al conjunto de datos. Estos valores son las medidas

Más detalles

Planes Estratégicos Individualizados para PYMES de la Provincia de Granada

Planes Estratégicos Individualizados para PYMES de la Provincia de Granada Planes Estratégicos Individualizados para PYMES de la Provincia de Granada Retos de las empresas en la provincia de Granada Ante la actual situación por la que pasan las mayorías de las economías a nivel

Más detalles

CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de

CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de CAPITULO 4 JUSTIFICACION DEL ESTUDIO En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de estudios previos y los alcances que justifican el presente estudio. 4.1. Justificación.

Más detalles

CORRELACIÓN Y PREDICIÓN

CORRELACIÓN Y PREDICIÓN CORRELACIÓN Y PREDICIÓN 1. Introducción 2. Curvas de regresión 3. Concepto de correlación 4. Regresión lineal 5. Regresión múltiple INTRODUCCIÓN: Muy a menudo se encuentra en la práctica que existe una

Más detalles

Tema 2: Estimación puntual

Tema 2: Estimación puntual Tema 2: Estimación puntual 1 (basado en el material de A. Jach (http://www.est.uc3m.es/ajach/) y A. Alonso (http://www.est.uc3m.es/amalonso/)) Planteamiento del problema: estimador y estimación Insesgadez

Más detalles

Elementos de Estadística stica Financiera para Análisis de Riesgo

Elementos de Estadística stica Financiera para Análisis de Riesgo TERCER ENCUENTRO TÉCNICO SOBRE LA ESTRUCTURACIÓN DE PROYECTOS DE ASOCIACIÓN PÚBLICO-PRIVADA Elementos de Estadística stica Financiera para Análisis de Riesgo Heinz G. Roque Loyola BID/PIAPPEM 20, 21 y

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.4.2 ED lineales homogéneas con coeficientes constantes de orden n 3 En la sección anterior hemos obtenido las soluciones de la ED lineal homogénea

Más detalles

Introducción a la Econometría

Introducción a la Econometría Introducción a la Econometría Curso 2009/2010 Seriedeproblemas1 1.- Considere la siguiente distribución de probabilidad: Llueve (X=0) No llueve (X=1) Total Tiempo de viaje largo (Y=0) 0.15 0.07 0.22 Tiempo

Más detalles

TEMA 7: Análisis de la Capacidad del Proceso

TEMA 7: Análisis de la Capacidad del Proceso TEMA 7: Análisis de la Capacidad del Proceso 1 Introducción Índices de capacidad 3 Herramientas estadísticas para el análisis de la capacidad 4 Límites de tolerancia naturales 1 Introducción La capacidad

Más detalles

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

Calidad de los textos entregados

Calidad de los textos entregados ENCUESTA DE SATISFACCIÓN A LOS CLIENTES RESULTADOS DE LA ENCUESTA DE SATISFACCIÓN A LOS CLIENTES INK Multilingual Solutions lanzó una encuesta de satisfacción a sus clientes, distribuida por primera vez

Más detalles

Tema 1: Test de Distribuciones de Probabilidad

Tema 1: Test de Distribuciones de Probabilidad Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

Ejercicio de estadística para 3º de la ESO

Ejercicio de estadística para 3º de la ESO Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población

Más detalles

Como comprar una casa. Tu casa. es la meta. www.enfacilyenchileno.cl

Como comprar una casa. Tu casa. es la meta. www.enfacilyenchileno.cl Tu casa es la meta. La casa propia: tu mayor inversión. Comprar una casa es una de las mejores decisiones que puedes tomar, ya que su valor suele aumentar con el tiempo. Además evitarás perder dinero en

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadística Matemáticas B º E.S.O. TEMA 9 ESTADÍSTICA TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS EJERCICIO : En un grupo de personas hemos preguntado por el número

Más detalles

PROBLEMAS RESUELTOS DEL TEMA 1

PROBLEMAS RESUELTOS DEL TEMA 1 PROBLEMAS RESUELTOS DEL TEMA Problema nº Dibuje la forma extensiva del laberinto de la figura y a continuación resuélvalo para uno y para dos jugadores. Entrada a b Caldero de oro Para un jugador der D

Más detalles

Empresa de telefonía celular: Transintelcel

Empresa de telefonía celular: Transintelcel Empresa de telefonía celular: Transintelcel El proceso metodológico de esta investigación de mercados está dividido en las siguientes etapas: 1. Datos generales de la empresa 2. Planteamiento del problema

Más detalles

Unidad 5 Estudio gráfico de funciones

Unidad 5 Estudio gráfico de funciones Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =

Más detalles

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE MIAS ESCUELA DE LA INGENIERÍA DE LA ORGANIZACIÓN

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE MIAS ESCUELA DE LA INGENIERÍA DE LA ORGANIZACIÓN UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE MIAS ESCUELA DE LA INGENIERÍA DE LA ORGANIZACIÓN TALLER PREPARATORIO: SEGUNDO EXAMEN DE INVERSIONES BAJO RIESGO 1. Usted es el encargado de administrar

Más detalles

ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión

ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión Descargado desde www.medwave.cl el 13 Junio 2011 por iriabeth villanueva Medwave. Año XI, No. 3, Marzo 2011. ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión Autor:

Más detalles

Análisis y cuantificación del Riesgo

Análisis y cuantificación del Riesgo Análisis y cuantificación del Riesgo 1 Qué es el análisis del Riesgo? 2. Métodos M de Análisis de riesgos 3. Método M de Montecarlo 4. Modelo de Análisis de Riesgos 5. Qué pasos de deben seguir para el

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

RESULTADOS DE LA ENCUESTA DE SATISFACCIÓN A EMPRESAS CON ACUERDOS O CONTRATOS DE SERVICIOS GESTIONADOS POR EL SERVICIO DE INFRAESTRUCTURAS 2014

RESULTADOS DE LA ENCUESTA DE SATISFACCIÓN A EMPRESAS CON ACUERDOS O CONTRATOS DE SERVICIOS GESTIONADOS POR EL SERVICIO DE INFRAESTRUCTURAS 2014 Resultado de la encuesta Número total de potenciales encuestados 15 Número de encuestas respondidas: 12 Número de encuestas totalmente completadas: 12 Porcentaje de participación: 80% Ficha Técnica. Realización:

Más detalles

Educación y capacitación virtual, algo más que una moda

Educación y capacitación virtual, algo más que una moda Éxito Empresarial Publicación No.12 marzo 2004 Educación y capacitación virtual, algo más que una moda I Introducción Últimamente se ha escuchado la posibilidad de realizar nuestra educación formal y capacitación

Más detalles

TRAZABILIDAD EN MEDIDAS FÍSICAS MEDIANTE CALIBRACIÓN DIRECTA: CALIBRACIÓN DE UNA BALANZA

TRAZABILIDAD EN MEDIDAS FÍSICAS MEDIANTE CALIBRACIÓN DIRECTA: CALIBRACIÓN DE UNA BALANZA TRAZABILIDAD EN MEDIDAS FÍSICAS MEDIANTE CALIBRACIÓN DIRECTA: CALIBRACIÓN DE UNA BALANZA Jordi Riu, Ricard Boqué, Alicia Maroto, F. Xavier Rius Departamento de Química Analítica y Química Orgánica Instituto

Más detalles

ESTIMACION DE INTERVALOS DE CONFIANZA

ESTIMACION DE INTERVALOS DE CONFIANZA pag 3. Prohibida su reproducción ESTIMACION DE INTERVALOS DE CONFIANZA Una muestra permite realizar estimaciones puntuales de los parámetros de la población. Utilizando las propiedades de las distribuciones

Más detalles

Profr. Efraín Soto Apolinar. Función Inversa

Profr. Efraín Soto Apolinar. Función Inversa Función Inversa Una función es una relación entre dos variables, de manera que para cada valor de la variable independiente eiste a lo más un único valor asignado a la variable independiente por la función.

Más detalles

Nombre...Apellidos... Grado en:...grupo:...

Nombre...Apellidos... Grado en:...grupo:... ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA - Soluciones Estadística- Curso 01/1. 9 de Julio de 01 Nombre...Apellidos... Grado en:...grupo:... 1. Considera la variable aleatoria (v.a.) X cuyos posibles

Más detalles

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere

Más detalles

Series de Tiempo. Una Introducción

Series de Tiempo. Una Introducción Series de Tiempo. Una Introducción Series de Tiempo Muchas veces, sobretodo para realizar pronósticos, resulta conveniente no suponer un modelo explícito para que explique la variables de interés, sino

Más detalles

6. Modelos Actuariales para Riesgo de Crédito

6. Modelos Actuariales para Riesgo de Crédito 6. Modelos Actuariales para Riesgo de Crédito Minicurso para el VIII Coloquio Internacional de Estadística Métodos Estadísticos Aplicados a Finanzas y Gestión de Riesgo Norman Giraldo Escuela de Estadística

Más detalles

Problemas resueltos del Tema 3.

Problemas resueltos del Tema 3. Terma 3. Distribuciones. 9 Problemas resueltos del Tema 3. 3.1- Si un estudiante responde al azar a un examen de 8 preguntas de verdadero o falso Cual es la probabilidad de que acierte 4? Cual es la probabilidad

Más detalles

El problema del cumpleaños

El problema del cumpleaños El problema del cumpleaños Vicent Giner i Bosch 26 de febrero de 2004 Dedicado a mis alumnos de la Escuela Técnica Superior de Ingeniería del Diseño de la Universidad Politécnica de Valencia, en quienes

Más detalles

Caracterización geométrica

Caracterización geométrica Caracterización geométrica Ahora vamos a centrar nuestra atención en la elipe. Esta figura geométrica tiene la misma esencia que la circunferencia, pero ésta está dilatada en uno de sus ejes. Recuerda

Más detalles

EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO

EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO 1º) Considérese un número estrictamente positivo del sistema de números máquina F(s+1, m, M, 10). Supongamos que tal número es: z = 0.d 1 d...d s 10 e Responde

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 280

13Soluciones a los ejercicios y problemas PÁGINA 280 Soluciones a los ejercicios y problemas PÁGINA 0 Pág. P RACTICA Muy probable, poco probable Tenemos muchas bolas de cada uno de los siguientes colores: negro (N), rojo (R), verde (V) y azul (A), y una

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo

Más detalles

PRUEBA DE HIPÓTESIS CON CHI CUADRADO EMPLEANDO EXCEL Y WINSTATS

PRUEBA DE HIPÓTESIS CON CHI CUADRADO EMPLEANDO EXCEL Y WINSTATS PRUEBA DE HIPÓTESIS CON CHI CUADRADO EMPLEANDO EXCEL Y WINSTATS La finalidad de una prueba de k muestras es evaluar la aseveración que establece que todas las k muestras independientes provienen de poblaciones

Más detalles

Potencial eléctrico. du = - F dl

Potencial eléctrico. du = - F dl Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula

Más detalles

1.- Primitiva de una función (28.01.2015)

1.- Primitiva de una función (28.01.2015) 1.- Primitiva de una función (28.01.2015) 1.1. Definición. Sea f : I R. Se dice que F : I R es una primitiva de f si F es derivable y F = f en I. En ese caso escribimos F (x) = f(x)dx Si F es una primitiva

Más detalles

Problemas de Probabilidad resueltos.

Problemas de Probabilidad resueltos. Problemas de Probabilidad resueltos. Problema 1 El profesor Pérez olvida poner su despertador 3 de cada 10 dias. Además, ha comprobado que uno de cada 10 dias en los que pone el despertador acaba no levandandose

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 2013-2014 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

Determinación del tamaño muestral

Determinación del tamaño muestral Investigación: Determinación del tamaño muestral 1/6 Determinación del tamaño muestral Pita Fernández S. Unidad de Epidemiología Clínica y Bioestadística. Complexo Hospitalario Juan Canalejo. A Coruña.

Más detalles

Teoría de Probabilidad

Teoría de Probabilidad Matemáticas Discretas L. Enrique Sucar INAOE Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para las que no existe

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

La Pirámide Humana. En el Norte de Ecuador hay una tradición. Cada 18 de septiembre los hombres del pueblo entre 22 y 30 años hacen una pirámide.

La Pirámide Humana. En el Norte de Ecuador hay una tradición. Cada 18 de septiembre los hombres del pueblo entre 22 y 30 años hacen una pirámide. La Pirámide Humana En el Norte de Ecuador hay una tradición. Cada 18 de septiembre los hombres del pueblo entre 22 y 30 años hacen una pirámide. Esta pirámide es una torre de varias personas. Cada persona

Más detalles

Código/Título de la Unidad Didáctica: MATEMÁTICAS BASICAS APLICADAS EN EL MECANIZADO. Actividad nº/título: REGLA DE TRES y SISTEMAS DE COORDENADAS

Código/Título de la Unidad Didáctica: MATEMÁTICAS BASICAS APLICADAS EN EL MECANIZADO. Actividad nº/título: REGLA DE TRES y SISTEMAS DE COORDENADAS Código/Título de la Unidad Didáctica: MATEMÁTICAS BASICAS APLICADAS EN EL MECANIZADO Actividad nº/título: REGLA DE TRES y SISTEMAS DE COORDENADAS Introducción a la actividad Material Didáctico: Tiempo:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3,

Más detalles

Líneas de espera. Introducción.

Líneas de espera. Introducción. Líneas de espera. Introducción. En este capítulo se aplica la teoría de colas. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Páginas 74-75 Lanzamiento de varios dados Comprobación de que: Desviación típica de n dados = (Desv. típica para un dado) / 1,71 n = 1,1 1,71 n = 3 0,98

Más detalles

Probabilidad. Relación de problemas 5

Probabilidad. Relación de problemas 5 Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas

Más detalles

La corte de derecho familiar

La corte de derecho familiar La corte de derecho familiar Si los padres de familia deciden que ya no pueden seguir viviendo juntos, es posible que decidan separarse y vivir en distintos hogares. Si están casados y ya no quieren vivir

Más detalles

1. Números Reales 1.1 Clasificación y propiedades

1. Números Reales 1.1 Clasificación y propiedades 1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,

Más detalles

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO EXAMEN COMPLETO INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El examen presenta dos opciones: A y B. El alumno deberá elegir una de ellas y contestar razonadamente a los cuatro ejercicios de que

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

Ambas componentes del sistema tienen costos asociados que deben de considerarse.

Ambas componentes del sistema tienen costos asociados que deben de considerarse. 1. Introducción. En este trabajo se aplica la teoría de colas. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas de espera particulares

Más detalles

ANÁLISIS DESCRIPTIVO CON SPSS

ANÁLISIS DESCRIPTIVO CON SPSS ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística ANÁLISIS DESCRIPTIVO CON SPSS 1.- INTRODUCCIÓN Existen dos procedimientos básicos que permiten describir las propiedades de las distribuciones:

Más detalles

CAPÍTULO IV MARCO METODOLÓGICO. Se empleará el método explicativo, el cual buscará medir

CAPÍTULO IV MARCO METODOLÓGICO. Se empleará el método explicativo, el cual buscará medir CAPÍTULO IV MARCO METODOLÓGICO 4.1 Diseño Metodológico: 4.1.1 Diseño de la investigación: Se empleará el método explicativo, el cual buscará medir el grado de comprensión del Lenguaje de Señas en niños

Más detalles

Lección 22: Probabilidad (definición clásica)

Lección 22: Probabilidad (definición clásica) LECCIÓN 22 Lección 22: Probabilidad (definición clásica) Empezaremos esta lección haciendo un breve resumen de la lección 2 del libro de primer grado. Los fenómenos determinísticos son aquellos en los

Más detalles

MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO

MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO EJERCICIO 1 Primero analizamos el equilibrio bajo el monopolio. El monopolista escoge la cantidad que maximiza sus beneficios; en particular, escoge la cantidad

Más detalles

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación.

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación. Ejercicio 1. Saludo. El programa preguntará el nombre al usuario y a continuación le saludará de la siguiente forma "Hola, NOMBRE" donde NOMBRE es el nombre del usuario. Ejercicio 2. Suma. El programa

Más detalles

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente

Más detalles

ESTADÍSTICA EMPRESARIAL

ESTADÍSTICA EMPRESARIAL ASIGNATURA DE GRADO: ESTADÍSTICA EMPRESARIAL Curso 2015/2016 (Código:65022076) 1.PRESENTACIÓN DE LA ASIGNATURA La asignatura Estadística Empresarial es de carácter obligatorio y se ubica en el segundo

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

ADMINISTRACION FINANCIERA. Cálculo Financiero. CPN. Juan Pablo Jorge Ciencias Económicas Tel. (02954) 456124/433049 [email protected].

ADMINISTRACION FINANCIERA. Cálculo Financiero. CPN. Juan Pablo Jorge Ciencias Económicas Tel. (02954) 456124/433049 jpjorge@speedy.com. ADMINISTRACION FINANCIERA Cálculo Financiero CPN. Juan Pablo Jorge Ciencias Económicas Tel. (02954) 456124/433049 [email protected] 1 Cálculo Financiero - Sumario 1. La tasa de interés. Valor del dinero

Más detalles