Resolución de problemas de equilibrio

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Resolución de problemas de equilibrio"

Transcripción

1 Reolución de problema de equilibrio Conideramo olamente fuerza actuando en un plano La condicione de equilibrio on: (1) F = 0, F = 0 τ = i 0 j. 1 Ditribución de peo de un auto Nian 40SX 53% de u peo obre la rueda delantera 47% obre la traera La ditancia entre lo eje e de.46m Queremo el centro de gravedad al repecto al eje traero R De la primera condición: F = 0 F = 0.47 w w w = 0 De la egunda condición: w ( ) wl w ( ) τ = m = 0 R cg ( ) = m = 1.30m L cg 1

2 j. quilibrio de una ecalera Una ecalera de longitud 5.0m con un peo de 180N La ecalera forma un ángulo de 53.1 grado con el uelo Un oldado con un peo total de 800N, ubiendo la ecalera, e detenga a 1/3 de la altura Puede atingir la ventana in caer en el foo? Identificamo la fuerza otra que lo peo w ec w old η 1 = fuerza normal a la pared, en la parte uperior de la ecala η = la fuerza normal al uelo debajo de la ecalera f = fuerza de fricción del uelo, proporcional a η (eta fuerza e importante para impedir el delizamiento de la bae de la ecalera) De la primera condición de equilibrio: F = f η1 = 0 f = η1 F η η De la egunda condición (tomando el punto con origen): = 800N 180N = 0 = 980N τ = 0 η1 ( 4.0m) 180N ( 1.5m) 800N ( 1.0m) = 0 η1 = 68N De la primera condición f = η1 deducimo la fuerza de fricción f = 68N el coeficiente mínima de fricción: f = µη f 68N µ = = = 0.7 η 980N

3 La magnitud de la fuerza de contacto ecalera: F en la bae de la ( ) ( ) F = 68N + 980N = 100N η 980N Con dirección: θ = arctan = arctan = 75 68N f Nota que F no etá dirigida a lo largo de la ecalera Si lo era habría un par anti-horario neto al repecto a la parte uperior de la ecalera el equilibrio eria impoible A medida que el oldado ube la ecalera, el brazo de palanca de u peo cambia, aumentando el momento de torión cambiando η 1, η la condicione de equilibrio n particular notamo que a llegar cai arriba de la ecalera (brazo de palanca de 3.0m) el coeficiente límite de fricción debe er mucho má alto µ 0.7 La probabilidad que la ecalera deliza e mu alta Nota que el valor de aluminium) µ necearia no eré tan alta para una ecalera má ligera (ej. ecalera de También, un ángulo maor reduciría el brazo de palanca en de lo peo de la ecalera del oldado, aumentando el brazo de palanca de η 1, reduciendo aí el coeficiente de fricción requerido: el ángulo óptimo e de 75 grado Nota que i hubiéramo upueto fricción en la pared ademá de en el pio, el problema no podría habere reuelto uando ólo la condicione de equilibrio el problema e etáticamente indeterminado (3 ecuacione para 4 incógnita) ta condición correponde a aumir que la ecalera no e rígida Otro ejemplo de un problema etáticamente indeterminado e calcular la fuerza obre la cuatro pata de una mea cuatro pata on demaiado porque tre pata (trepéi), debidamente ituada, on uficiente para la etabilidad 3

4 j. 3 Uo de un garfio Depué de ubir un tramo, el oldado peando n b) vemo el diagrama de fuerza obre el oldado Su cuerpo forma un ángulo de 60 grado con la pared l centro de gravedad e encuentra a 0.85 de u pie La fuerza de la cuerda actúa a 1.3m de u pie La cuerda forma un ángulo de 0 grado como la pared w = 700N e detenga en equilibrio Tomamo el origen al punto el momento de torión τ = rfenφ La egunda condición de equilibrio: τ = 0 ( ) ( )( ) τ = 1.30m Ten m 700N en η+ 0 f = 0 T = 617N Oberve que aí la tenión en la cuerda e meno que el peo del oldado De la primera condición, coniderando que T = Ten0 T = T co0 F = η Ten0 = 0 e F = f + Tco0 700N = 0 A utituir el valor de la tenión: η = 11N e f = 10N Vemo que el oldado no neceita uportar u peo ubiendo de eta manera, pero el f 10 coeficiente de fricción mínima debe er relativamente alto: µ = = = 0.57 η 11 4

5 j. 4 quilibrio ejercicio Conideramo el ejercicio de levantar una mancuerna l antebrazo eta en equilibrio bajo la acción del peo de mancuerna w, la tenión del tendón del bícep la fuerza ejercida obre el antebrazo por la parte uperior del brazo en el codo. Queremo la tenión en el tendón la componente de la fuerza en el codo La componente de la tenión on: T = T coθ T = Tenθ l momento de torión total en torno del codo : Lw τ = Lw DT = 0 T = Tenθ = D Lw T = Denθ Para determinar uamo la primera condición del equilibrio: F 0 T Lw Lw Lw D Lw = = = T = T coθ = coθ = cotθ = = Denθ D D h h F 0 T w Lw L D = = + = w = w D D Reumiendo: T L = w D enθ, L = w h L D = w D l igno negativo muetra que eta vertical hacia abajo (no arriba con el la figura) 5

6 Otra forma de obtener e uar do ecuacione má para el momento de torión Tomando pare al repecto al punto de ujeción del tendón A : τ A = 0 = ( L D ) w + D Tomando pare al repecto al punto : Lw τ = 0 = Lw+ h = h L D = w D Tómeno alguno valore típico: θ = 80 w = 00N (una maa de 0kg), D = 0.050m, L = 0.30m Dado que h θ =, h D θ ( )( ) D = tan = 0.050m 5.67 = 0.8m ( )( ) ( )( ) Lw 0.30m 00N T = 10N Denθ = 0.050m 0.98 = L D 0.30m-0.050m = w = 00N = 1000N D 0.050m ( ) Lw 0.30m 00N = = = 10N h 0.8m La magnitud típica de eta fuerza eré: = + = 100N (maa de 10 kg) 6

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r Guía de Fíica I. Vectore. 1. Conidere lo vectore A ByC r r r,. Su valore y aboluto, en unidade arbitraria, on de 3, 2 y 1 repectivamente. Entonce el vector reultante r r r r D = A + B + C erá de valor

Más detalles

TALLER DE TRABAJO Y ENERGÍA

TALLER DE TRABAJO Y ENERGÍA TALLER DE TRABAJO Y ENERGÍA EJERCICIOS DE TRABAJO 1. Un bloque de 9kg e empujado mediante una fuerza de 150N paralela a la uperficie, durante un trayecto de 26m. Si el coeficiente de fricción entre la

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

Instituto de Física Facultad de Ingeniería Universidad de la República

Instituto de Física Facultad de Ingeniería Universidad de la República Intituto de Fíica Facultad de Ingeniería Univeridad de la República do. PARCIAL - Fíica General 9 de noviembre de 007 VERSIÓN El momento de inercia de una efera maciza de maa M y radio R repecto de un

Más detalles

Objetos en equilibrio - Ejemplo

Objetos en equilibrio - Ejemplo Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo

Más detalles

CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS

CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS En tipo de problema, y de forma general, aplicaremo la conervación del momento angular repecto al eje fijo i lo hay (la reacción del eje, por muy grande

Más detalles

! y teniendo en cuenta que el movimiento se reduce a una dimensión

! y teniendo en cuenta que el movimiento se reduce a una dimensión Examen de Fíica-1, 1 Ingeniería Química Examen final Septiembre de 2011 Problema (Do punto por problema) Problema 1 (Primer parcial): Una lancha de maa m navega en un lago con velocidad En el intante t

Más detalles

Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado?

Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado? CIENCIAS (BIOLOGÍA, FÍSICA, QUÍMICA) MÓDULO 3 Eje temático: Mecánica - Fluido 1. Una rueda deciende rodando por un plano inclinado que forma un ángulo α con la horizontal del modo que e ilutra en la figura

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE LA OLIMPIADA DEL FASE LOCAL

SOLUCIONES DE LOS EJERCICIOS DE LA OLIMPIADA DEL FASE LOCAL SOLUCIONES DE LOS EJERCICIOS DE LA OLIMIADA DEL 1. FASE LOCAL ución ejercicio nº 1 Una plataforma circular, colocada horizontalmente, gira con una frecuencia de vuelta por egundo alrededor de un eje vertical

Más detalles

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo.

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-3 CINEMÁTICA II CAIDA LIBRE En cinemática, la caída libre e un movimiento dónde olamente influye la gravedad. En ete movimiento e deprecia el rozamiento del cuerpo

Más detalles

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A.

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A. Cinemática 9 TEST.- La velocidade v de tre partícula:, y 3 en función del tiempo t, on motrada en la figura. La razón entre la aceleracione mayor y menor e: a) 8 b) / c) 0 d) e) 3.- De la gráfica: a) d)

Más detalles

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1 DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA ÁREA: CONTROL ASIGNATURA: CONTROL II GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº Análii de Etabilidad de lo Sitema

Más detalles

SEGUNDO PARCIAL - Física 1 30 de junio de 2010

SEGUNDO PARCIAL - Física 1 30 de junio de 2010 Intituto de Fíica Facultad de Ingeniería Univeridad de la República SEGUNDO PARCIAL - Fíica 1 30 de junio de 010 g= 9,8 m/ Cada pregunta tiene ólo una repueta correcta. Cada repueta correcta uma 6 punto.

Más detalles

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS SISEMAS INÁMICOS IEMº - Modelo de Sitema Mecánico PROBLEMAS P. Para lo itema mecánico de tralación motrado en la figura, e pide: a uncione de tranferencia entre la fuerza f y la velocidade de la maa. b

Más detalles

Estática. Fig. 1. Problemas números 1 y 2.

Estática. Fig. 1. Problemas números 1 y 2. Estática 1. Un bote está amarrado mediante tres cuerdas atadas a postes en la orilla del río, tal como se indica en la figura 1(a). La corriente del río ejerce una fuerza sobre este bote en la dirección

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago Estática A Fuerzas Si sobre un cuerpo actúan solo dos fuerzas en la misma línea, y el cuerpo está en reposo o moviéndose con velocidad constante, las fuerzas son iguales pero de sentidos contrarios. Si

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real Calcular la zapata ailada de hormigón armado del iguiente upueto, realizando toda la comprobacione necearia egún indica la Intrucción EHE. La zapata tendrá una dimenione de 800 mm de longitud, 00 mm de

Más detalles

Transformaciones geométricas

Transformaciones geométricas Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea

Más detalles

EJERCICIOS DE REFUERZO DE FÍSICA DE 1º BACHILLERATO DINÁMICA

EJERCICIOS DE REFUERZO DE FÍSICA DE 1º BACHILLERATO DINÁMICA EJERCICIOS DE REFUERZO DE FÍSICA DE 1º BACHILLERATO DINÁMICA 1º.- Aplicamo horizontalmente una fuerza F a un mueble de 8 Kg de maa, que etá en repoo obre una uperficie horizontal. Lo coeficiente de rozamiento

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

Un automóvil que tiene una masa de 1000 kg se estrella en un muro de ladrillo en una prueba de seguridad. La defensa se comporta como un resorte de

Un automóvil que tiene una masa de 1000 kg se estrella en un muro de ladrillo en una prueba de seguridad. La defensa se comporta como un resorte de Un automóil que tiene una maa de 1000 kg e etrella en un muro de ladrillo en una prueba de eguridad. La defena e comporta como un reorte de contante de fuerza 5 10 6 N/m y e comprime 3.16 cm cuando el

Más detalles

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES.

EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. EQUILIBRIO DE UN CUERPO RÍGIDO BAJO LA ACCIÓN DE FUERZAS COPLANARES. LA TORCA (O MOMENTUM) alrededor de un eje, debida a una fuerza, es una medida de la efectividad de la fuerza para que esta produzca

Más detalles

DINÁMICA FCA 04 ANDALUCÍA

DINÁMICA FCA 04 ANDALUCÍA 1. Se deja caer un cuerpo de 0,5 kg dede lo alto de una rapa de, inclinada 30º con la horizontal, iendo el valor de la fuerza de rozaiento entre el cuerpo y la rapa de 0,8 N. Deterine: a) El trabajo realizado

Más detalles

DISTRIBUCIONES BIDIMENSIONALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIONES BIDIMENSIONALES DISTRIBUCIOES BIDIMESIOALES. PRIMERO DE BACHILLERATO. TEORÍA Y EJERCICIOS DISTRIBUCIOES BIDIMESIOALES RESULTA DE ESTUDIAR FEÓMEOS E LOS QUE PARA CADA OBSERVACIÓ SE OBTIEE U PAR DE MEDIDAS Y, E COSECUECIA,

Más detalles

1. Determine la tensión en cada una de las cuerdas para el sistema que se describe en cada figura. Figura Nº 2. FiguraNº 1. FiguraNº 3 FiguraNº 4

1. Determine la tensión en cada una de las cuerdas para el sistema que se describe en cada figura. Figura Nº 2. FiguraNº 1. FiguraNº 3 FiguraNº 4 1 1. Determine la tensión en cada una de las cuerdas para el sistema que se describe en cada figura. FiguraNº 1 Figura Nº 2 FiguraNº 3 FiguraNº 4 2. Una bolsa de cemento de 325 N de peso cuelga de tres

Más detalles

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010 Medida de Variación o Diperión Dra. Noemí L. Ruiz 007 Derecho de Autor Reervado Reviada 010 Objetivo de la lección Conocer cuále on la medida de variación y cómo e calculan o e determinan Conocer el ignificado

Más detalles

Instituto de Física Facultad de Ingeniería Universidad de la República

Instituto de Física Facultad de Ingeniería Universidad de la República Intituto e Fíica Faculta e Ingeniería Univeria e la República VERSIÓN Solucione por verión, al final. PRIMER PARCIAL - Fíica General 8 e Mayo e 006 g = 9,8 m/ Pregunta Un equiaor e lanza por una rampa

Más detalles

UNIVERSIDAD MARIANA PROGRAMA DE INGENIERÍA AMBIENTAL PRECALCULO TALLER II 22.

UNIVERSIDAD MARIANA PROGRAMA DE INGENIERÍA AMBIENTAL PRECALCULO TALLER II 22. . Reolver la iguiente ecuacione. UNIVERSIDAD MARIANA PROGRAMA DE INGENIERÍA AMBIENTAL PRECALCULO TALLER II Raúl Córdoba. 4 = +6. 0,(+)+, =,., 0,7 = 0,4( ) + 4. = 4 7. 8 = + 6. ( ) = ( )(9+4) 7. ( 7)(+)

Más detalles

UNIVERSIDAD NACIONAL DE SAN JUAN FACULTAD DE INGENIERÍA

UNIVERSIDAD NACIONAL DE SAN JUAN FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE SAN JUAN FACULTAD DE INGENIERÍA BIOINGENIERÍA CÁTEDRA: "BIOMECÁNICA" GUÍA DE EJERCICIOS Nº 1: Aplicaciones de Mecánica de Cuerpos Rígidos a la Biomecánica: Cinética de la Postura

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

LENTE CONVERGENTE 2: Imágenes en una lente convergente

LENTE CONVERGENTE 2: Imágenes en una lente convergente LENTE CONVERGENTE : Imágene en una lente convergente Fundamento En una lente convergente delgada e conidera el eje principal como la recta perpendicular a la lente y que paa por u centro. El corte de eta

Más detalles

Número Reynolds. Laboratorio de Operaciones Unitarias Equipo 4 Primavera México D.F., 12 de marzo de 2008

Número Reynolds. Laboratorio de Operaciones Unitarias Equipo 4 Primavera México D.F., 12 de marzo de 2008 Número Reynold Laboratorio de Operacione Unitaria Equipo 4 Primavera 2008 México D.F., 12 de marzo de 2008 Alumno: Arlette Mayela Canut Noval [email protected] Francico Joé Guerra Millán [email protected]

Más detalles

Práctica Tiro Parabólico

Práctica Tiro Parabólico página 1/5 Práctica Tiro Parabólico Planteamiento Deeamo etimar la velocidad en un intante determinado de un ólido que cae por una pendiente, bajo la hipótei de movimiento uniformemente acelerado (m.u.a.)

Más detalles

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II)

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II) C8. Para el itema de la cuetión C6, Qué diría i alguien ugiriera trabajar con el itema en torno al punto de operación (U,Y b )? C9. Se deea controlar la poición del eje de un motor. Para identificar el

Más detalles

Describe, en función de la diferencia de fase, qué ocurre cuando se superponen dos ondas progresivas armónicas de la misma amplitud y frecuencia.

Describe, en función de la diferencia de fase, qué ocurre cuando se superponen dos ondas progresivas armónicas de la misma amplitud y frecuencia. El alumno realizará una opción de cada uno de lo bloque. La puntuación máxima de cada problema e de punto, y la de cada cuetión de 1,5 punto. BLOQUE I-PROBLEMAS Se determina, experimentalmente, la aceleración

Más detalles

MOVIMIENTO PARABÓLICO = =

MOVIMIENTO PARABÓLICO = = MOVIMIENTO PARABÓLICO Un cuerpo poee oviiento parabólico cuando e lanzado dede la uperficie terretre forando cierto ngulo con la horizontal. El oviiento parabólico e copone de do oviiento: Moviiento de

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proecto PMME - Curso 007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DEL CARRETEL AUTORES Santiago Duarte, Nicolás Puppo Juan Manuel Del Barrio INTRODUCCIÓN En este

Más detalles

TEMA 3: ESTADÍSTICA BIDIMENSIONAL

TEMA 3: ESTADÍSTICA BIDIMENSIONAL TEMA 3: ESTADÍSTICA BIDIMENSIONAL INTRODUCCIÓN: En curo anteriore e ha etudiado como manejar e interpretar dato que proporcionaba una variable. Ahora vamo a ver cómo lo hacemo i hacemo a cada encuetado,

Más detalles

CORTE EN ELEMENTOS PRETENSADOS

CORTE EN ELEMENTOS PRETENSADOS CORTE EN ELEMENTOS PRETENSADOS Expreione generale para el dimenionamiento y verificación de pieza pretenada 11.1.- Generalidade La pieza ometida a efuerzo de corte deben verificar la condición reitente

Más detalles

ENERGÍA (I) CONCEPTOS FUNDAMENTALES

ENERGÍA (I) CONCEPTOS FUNDAMENTALES ENERGÍA (I) CONCEPTOS UNDAMENTALES IES La Magdalena. Avilé. Aturia La energía e una magnitud de difícil definición, pero de gran utilidad. Para er exacto, podríamo decir que má que de energía (en entido

Más detalles

Física para Ciencias: Dinámica

Física para Ciencias: Dinámica Física para Ciencias: Dinámica Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Método para resolver problemas Dibujar un diagrama sencillo del sistema y predecir la respuesta. Realizar un diagrama

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

TEST. Cinemática Una partícula tiene un M.C.U. Cuál sería la posible gráfica θ en función del tiempo?

TEST. Cinemática Una partícula tiene un M.C.U. Cuál sería la posible gráfica θ en función del tiempo? Cinemática 5 TEST.- Una partícula tiene un M.C.U. Cuál ería la poible gráfica θ en función del tiempo? a) d) 5.- ué ditancia recorre P i la polea mayor gira (/4) rad/ en? a) R/4 b) R/ c) R/ d) R/ e) R/5

Más detalles

( ) 2 = 0,3125 kg m 2.

( ) 2 = 0,3125 kg m 2. Examen de Física-1, 1 Ingeniería Química Examen final Enero de 2014 Problemas (Dos puntos por problema) Problema 1: Un bloque de masa m 1 2 kg y un bloque de masa m 2 6 kg están conectados por una cuerda

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Soluciones del boletín de problemas 6 Problema 1. Varilla deslizándose por una pared. Dado que los extremos de la varilla están forzados a permanecer

Más detalles

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN 1 Considere los tres bloques conectados que se muestran en el diagrama. Si el plano

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen

Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen PRUEBA DE ACCESO A LA UNIVERSIDAD 03 Fíica BACHILLERAO FORMACIÓN PROFESIONAL CICLOS FORMAIVOS DE GRADO SUPERIOR Eamen Criterio de Corrección Calificación UNIBERSIAERA SARZEKO PROBAK 03ko EKAINA FISIKA

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecanimo: PROYECTO DE TEORIA DE MECANISMOS. Análii cinemático y dinámico de un mecanimo plano articulado con un grado de libertad. 6. Cálculo de la velocidade con el método de lo centro intantáneo

Más detalles

Física I : 178 : =2,500

Física I : 178 : =2,500 Guía de Trabajo Momento de Torsión INSTRUCCCIONES: Resuelva de manera clara y ordenada cada uno de los siguientes ejercicios mostrando en detalle su procedimiento. 1._ Encuentre la masa m necesaria para

Más detalles

BIOESTATICA. Llamamos componente X de una fuerza al valor de la X del punto que determina el extremo de la fuerza

BIOESTATICA. Llamamos componente X de una fuerza al valor de la X del punto que determina el extremo de la fuerza UERZAS BIOESTATICA Las fuerzas se representan con flechas. La información que proporcionan es: El tamaño de la flecha es proporcional al módulo, de manera que cuando más intensa sea la fuerza mayor tamaño

Más detalles

GUIA PARA EXAMEN DE EXTRAORDINARIO DE FISICA I

GUIA PARA EXAMEN DE EXTRAORDINARIO DE FISICA I I. Cinemática: MRU, MRUA, MCU, MCUA Teoría: 1. Parte de la mecánica que etudia lo diferente tipo de movimiento de lo cuerpo in atender la caua que lo producen: Cinemática. Cuando etudiamo el movimiento

Más detalles

GUÍA DE EJERCICIOS. Física Aplicada 2 CUERPO RIGIDO. 1º cuatrimestre de 2012 FÍSICA APLICADA II 1

GUÍA DE EJERCICIOS. Física Aplicada 2 CUERPO RIGIDO. 1º cuatrimestre de 2012 FÍSICA APLICADA II 1 GUÍA DE EJERCICIOS Física Aplicada 2 CUERPO RIGIDO 1º cuatrimestre de 2012 1 Modelos en Física Modelos Sólidos Fluidos No se considera su extensión ni orientación Partícula Se considera su extensión y

Más detalles

COLEGIO LA PROVIDENCIA

COLEGIO LA PROVIDENCIA COLEGIO LA PROVIDENCIA Hna de la Providencia y de la Inmaculada Concepción 2013 ALLER MOVIMIENO CIRCULAR UNIFORME DOCENE: Edier Saavedra Urrego Grado: décimo fecha: 16/04/2013 Realice un reumen de la lectura

Más detalles

TRABAJO Y ENERGÍA. Cuestiones. Trabajo y potencia.

TRABAJO Y ENERGÍA. Cuestiones. Trabajo y potencia. TRABAJO Y ENERGÍA Cuetione..- Enuera lo diferente tipo de energía que conozca y pon algún ejeplo en el que un tipo de energía e tranfore en otro..- Indica i e verdadero o falo: a) Siepre que ejerceo una

Más detalles

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los

Más detalles

Tablero Juego de masas Dinamómetro Poleas Aro de fuerzas Escala graduada Cuerda Pivote Balancín

Tablero Juego de masas Dinamómetro Poleas Aro de fuerzas Escala graduada Cuerda Pivote Balancín UNIVERSIDAD COOPERATIVA DE COLOMBIA CURSO FISICA MECANICA PRACTICA DE LABORATORIO PRACTICA No. 10: SUMA DE TORQUES Y EQUILIBRIO ROTACIONAL 1. INTRODUCCION. La aplicación de fuerzas sobre un cuerpo puede

Más detalles

Regresar Wikispaces. Siglo XXI

Regresar Wikispaces. Siglo XXI ísica IV 1 Serie de uerza y Estática Regresar ikispaces Siglo XXI 1. Un cuerpo de 25 kp cuelga del extremo de una cuerda. Hallar la aceleración de dicho cuerpo si la tensión en la cuerda es de: a) 25 kp

Más detalles

Estática. Equilibrio de un cuerpo rígido

Estática. Equilibrio de un cuerpo rígido Estática 5 Equilibrio de un cuerpo rígido Objectivos Escribir las ecuaciones de equilibrio de un cuerpo rígido. Concepto de diagrama de cuerpo libre para un cuerpo rígido. Resolver problemas de equilibrio

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I C U R S O: FÍSICA COMÚN MATERIAL: FC-2 CINEMÁTICA I La Cinemática etudia el movimiento de lo cuerpo, in preocupare de la caua que lo generan. Por ejemplo, al analizar el deplazamiento de un automóvil,

Más detalles

Cilindro neumático telescópico Ø a 2-3 etapas. Alta Tecnología 25-II

Cilindro neumático telescópico Ø a 2-3 etapas. Alta Tecnología 25-II neumático telecópico 25 63 a 2-3 etapa W E N 25 : on c e eri ión de giro ico ic de o o i t p t d la anto o n ipa o an elá cta, t ó n c u e t nte r i de Eq tag lpe a, guie v e i m i a l a Vá rago ca la

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

Mecánica I. Guía 7: Torque, centro de masa y equilibrio Miércoles 13 de junio de Productor vectorial y torque.

Mecánica I. Guía 7: Torque, centro de masa y equilibrio Miércoles 13 de junio de Productor vectorial y torque. Departamento de Física, Facultad de Ciencias, Universidad de Chile Mecánica I Profesor: GONZALO GUTIÉRREZ Ayudantes: HÉCTOR DUARTE, CRISTIAN FARÍAS, GIANINA MENESES Guía 7: Torque, centro de masa y equilibrio

Más detalles

Física: Dinámica Conceptos básicos y Problemas

Física: Dinámica Conceptos básicos y Problemas Física: Dinámica Conceptos básicos y Problemas Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Mecánica Cinemática Descripción del movimiento. Cómo se mueve? Dinámica Causas del movimiento. Por

Más detalles

Estática Sólido rígido momento

Estática Sólido rígido momento Estática Sólido rígido Torque (momento, momento de torsión) Producto Vectorial : Equilibrio de Cuerpos Rígidos Centro de Gravedad Estabilidad y Equilibrio Palancas y Ventaja Mecánica Palancas en el Cuerpo

Más detalles

Módulo 1: Mecánica Sólido rígido. Rotación (II)

Módulo 1: Mecánica Sólido rígido. Rotación (II) Módulo 1: Mecánica Sólido rígido. Rotación (II) 1 Segunda ley de Newton en la rotación Se puede hacer girar un disco por ejemplo aplicando un par de fuerzas. Pero es necesario tener en cuenta el punto

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2015 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2015 Problemas (Dos puntos por problema). Examen de Física-, Ingeniería Química Examen final. Enero de 205 Problemas (Dos puntos por problema). Problema : La posición de una partícula móvil en el plano Oxy viene dada por : x(t) = 2 t 2 y(t) =

Más detalles

F Ext. De acuerdo a la forma como interactúen los cuerpos, en forma directa o debido a campos las fuerzas se pueden clasificar en dos tipos

F Ext. De acuerdo a la forma como interactúen los cuerpos, en forma directa o debido a campos las fuerzas se pueden clasificar en dos tipos Preguntas y problemas propuestos de aplicación de las leyes de Newton 2015-II 1 Leyes de Newton, impulso, la fuerza de gravedad (peso), fuerza elástica, fuerzas disipativas. Leyes de newton o principios

Más detalles

1. El objeto que se muestra en la figura está en equilibrio y tiene un peso W = 80 N. Encuéntrense las tensiones T 1, T 2, T 3 y T 4.

1. El objeto que se muestra en la figura está en equilibrio y tiene un peso W = 80 N. Encuéntrense las tensiones T 1, T 2, T 3 y T 4. TALLER DE DINÁMICA 1. El objeto que se muestra en la figura está en equilibrio y tiene un peso W = 80 N. Encuéntrense las tensiones T 1, T 2, T 3 y T 4. Respuestas: (T1 =37 N; T2=88 N; T 3 =77 N; T4=139

Más detalles

Física para Ciencias: Dinámica: Equilibrio

Física para Ciencias: Dinámica: Equilibrio Física para Ciencias: Dinámica: Equilibrio Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Equilibrio En equilibrio la aceleración a de todos los cuerpos en el sistema es nula. T N T m 1 m 2 f F

Más detalles

CONDICIONES DE EQUILIBRIO ESTATICO

CONDICIONES DE EQUILIBRIO ESTATICO 1 CONDICIONES DE EQUILIBRIO ESTATICO Departamento: Ciencias Básicas Laboratorio: Física y Química Asignatura: Física Objetivos específicos Analizar gráficamente y comprender las relaciones: a). El momento

Más detalles

En un ciclo completo el cuerpo se mueve de x=a a x= A y regresa en x= A El movimiento armónico simple esta caracterizado por: PERIODO (T): es el

En un ciclo completo el cuerpo se mueve de x=a a x= A y regresa en x= A El movimiento armónico simple esta caracterizado por: PERIODO (T): es el En un ciclo copleto el cuerpo e ueve de A a A y regrea en A El oviiento arónico iple eta caracterizado por: PERIODO (): e el tiepo que tarda un ciclo. En el SI la unidad del periodo e el egundo (). RECUENCIA

Más detalles

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante Ejercicios de Física Dinámica, . Un bloque de 5 kg está sostenido por una cuerda y se tira de él hacia arriba con una aceleración de m/ s. a) Cuál es la tensión de la cuerda? b) Una vez que el bloque se

Más detalles

PROBLEMAS PROPUESTOS

PROBLEMAS PROPUESTOS PROBLEMAS PROPUESTOS En los problemas que a continuación se proponen, el campo gravitacional de intensidad g actúa verticalmente en el plano que coincide con la hoja de papel. 1.- La esfera A de radio

Más detalles

ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Universal. Actividad 1.- Define movimiento circular uniforme, radio vector y desplazamiento angular.

ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Universal. Actividad 1.- Define movimiento circular uniforme, radio vector y desplazamiento angular. ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Univeral Actividad 1.- Define movimiento circular uniforme, radio vector y deplazamiento angular. Movimiento circular uniforme (MCU) e el movimiento de

Más detalles

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior).

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior). íica de 2º Bachillerato Actividad Para ver un objeto con mayor detalle, utilizamo un dipoitivo compueto de una única lente, llamado corrientemente lupa. [a] Indica el tipo de lente que debemo utilizar

Más detalles

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad

Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Problemas propuestos: Estatica condiciones de equilibrio,centro de gravedad Curso Fisica I 1. Una barra de masa M y de largo L se equilibra como se indica en la figura 1. No hay roce. Determine el ángulo

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA PRIMERA EVALUACIÓN DE FÍSICA A DICIEMBRE 10 DE 2014 SOLUCIÓN TEMA 1 (8 puntos) Una persona corre

Más detalles

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz

Más detalles

PROBLEMAS ESTÁTICA FARMACIA

PROBLEMAS ESTÁTICA FARMACIA PBLEMAS ESÁICA AMACIA PBLEMA 1 La figura muestra el diagrama de fuerzas sobre la cadera izquierda de una persona de 70 kg puesta en pie que apoya todo su peso sobre el pie izquierdo (ha encogido la pierna

Más detalles

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO

FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO 4. ESTÁTIC FORMULRIO 4.1) La viga de la figura, que pesa 1.000 kg. y tiene 8 m de larga, hace de carril aéreo. Sobre ella desliza un colgador en el que colocamos 2.000 kg. de carga. Calcular la tensión

Más detalles

EXAMEN FINAL DE FÍSICA

EXAMEN FINAL DE FÍSICA EXAMEN FINAL DE FÍSICA 1 er parcial Lic. En Química 7 - febrero 00 CUESTIONES PROBLEMAS 1 3 4 5 Suma 1 Suma Total APELLIDOS.NOMBRE.GRUPO. Cuestiones (1 punto cada una) 1. Qué energía hay que proporcionar

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 SOLUCIÓN Analice las siguientes preguntas

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 1: MECÁNICA DE SÓLIDOS Y FLUIDOS

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 1: MECÁNICA DE SÓLIDOS Y FLUIDOS Facultad de Ciencia Curo 00-0 SOLUCIONES PROBLEMAS FÍSICA. TEMA : MECÁNICA DE SÓLIDOS Y FLUIDOS. Una gota eférica de mercurio de radio,0 mm e diide en do gota iguale. Calcula a) el radio de la gota reultante

Más detalles