CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS
|
|
|
- Francisco José Carrasco de la Fuente
- hace 8 años
- Vistas:
Transcripción
1 CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS En tipo de problema, y de forma general, aplicaremo la conervación del momento angular repecto al eje fijo i lo hay (la reacción del eje, por muy grande que ea, no tiene capacidad de variar el momento angular). Si no hay eje fijo e probable que también tengamo que aplicar la conervación del momento lineal. Empezamo con problema en donde el itema contiene un eje fijo de rotación. Problema 1 Un cilindro de 200 Kg de maa y radio 4 m gira con velocidad angular ω = 2 Rd. Sobre el cilindro y en u periferia etá apoyada una perona de maa 40 Kg y que gira olidariamente con el cilindro, tal como e indica en la figura. En un momento dado, la perona e acerca hata una ditancia de 2 m al eje. Calcular la velocidad angular final del itema y la variación de u energía cinética. Qué ha producido ea variación de energía cinética? 4 m ω = 2 Rd 2 m ω? Página 1 de 8
2 Momento angular inicial L i = I i ω i = ( 1 2 m cilr 2 cil + m p d 2 eje )ω i L i = ( ) 2 = 4480 Kg m2 Momento angular final L f = I f ω f = ( 1 2 m cilr 2 cil + m p d 2 eje )ω f L f = ( ) ω f Y dado que la fuerza que actúan obre el itema no tiene momento repecto del eje (la reacción en el eje paa por él y lo peo on verticale y paralelo al eje por lo que tampoco tienen momento) el momento angular e ha de conervar: 4480 = 1760ω f ω f = 2,54 Rd Energía cinética ante y depué E c.i = 1 2 I iω i 2 = 1 2 ( ) 2 2 = 4480 J E c.f = 1 2 I fω f 2 = 1 2 ( ) 2,54 2 = 5677,41 J Como vemo, la energía cinética del itema ha crecido. La energía cauante de dicho aumento ólo han podido er la fuerza interiore al itema producida por la perona al caminar. Problema 2 Un dico de radio R = 2 m y maa m = 60 Kg decana parado obre un plano horizontal con un eje fijo que paa por u centro geométrico. En u periferia hay un pequeño cuerpo de maa m 1 = 3 Kg y que decana olidariamente obre él. En un momento dado, por efecto Página 2 de 8
3 de una exploión, ete cuerpo ale diparado con velocidad de módulo v = 10 m. Calcular la velocidad angular del cilindro tra el diparo en lo do cao repreentado en la figura donde e repreenta la imagen vita dede arriba. d d 1 30 v = 10 m v = 10 m En ambo cao vamo a aplicar la conervación del momento angular ya que la única fuerza exteriore que actúan obre el itema on la reaccione en el eje, cuyo momento e nulo repecto de él, y lo peo que on fuerza verticale y paralela al eje por lo que también u momento e nulo. Figura de la izquierda: Pue todo etá quieto L i = 0 L f = Iω + mvd = ( 1 2 mr2 ) ω + m 1 vd L f = ω Ya que la ditancia d de la línea donde e apoya mv al eje coincide en ete cao con el radio del cilindro. Igualando amba expreione: ω = 0 ω = 0, 5 Rd Donde el igno meno indica que u entido de giro repecto al eje e de entido contrario al de la maa, yendo por lo tanto el giro del cilindro en entido contrario a la aguja de un reloj. Página 3 de 8
4 Figura de la derecha El razonamiento y la expreione on idéntica alvo que en ete cao la ditancia de la línea de aplicación de mv al eje no coincide con el radio; Problema 3 d 1 30 R = 2 d 1 = 2 co30 = 3 Y aplicando la conervación del momento angular como ante: ω = 0 ω = 0, 43 Rd Un cilindro de 100 kilogramo y radio 15 metro gira repecto a u eje axial vertical con ω = π Rd en el entido a la aguja del reloj. Un niño de 30 kilogramo corre obre una de la tangente al cilindro con v = 8 m tal como indica la figura. El niño alta obre el cilindro y queda obre él girando ambo olidariamente. Calcular la velocidad del conjunto depué del alto: Cilindro vito dede arriba Página 4 de 8
5 Aplicaremo, como en lo problema anteriore, la conervación del momento angular repecto al eje pue, como ante, la reacción en el eje no tiene momento repecto de él y la demá fuerza exteriore on lo peo, verticale y paralelo al eje iendo también u momento nulo. L i = mvd + Iω = ( ) π Fijare que el entido de giro del niño repecto al eje e contrario a la aguja de reloj. Hemo cogido como poitivo el momento angular del cilindro (en el entido de la aguja del reloj) y por ello el momento angular del niño e negativo. E igualando ambo L f = I f ω f = ( )ω f = 18000ω f ω f = 1, 76 Rd Si el niño hubiera venido por la izquierda uperior del cilindro u giro repecto al eje ería en el entido de la aguja del reloj y del mimo entido que el del cilindro. En ee cao, en el momento angular inicial lo hubiéramo pueto poitivo, como el del cilindro, y la velocidad angular final hubiera alido mayor que la inicial. Problema 4 Una polea de maa 30 kilogramo y radio 40 cm. gira repecto a u eje en un plano horizontal con ω = 30 r. p. m. En un momento dado, otra polea de radio 30 cm. y maa 20 kilogramo que no gira cae obre ella llegando en un tiempo a girar olidariamente. Calcular la velocidad angular del conjunto. L i = I i ω i = ( ,42 ) 30 2π 60 = 7,54 Página 5 de 8
6 Donde E igualando ambo 30 r. p. m. = 30 rev 2πRd = 30 mn 60 L f = ( , ,32 ) ω f = 3,3ω f 7,54 = 3,3ω f ω f = 2, 28 Rd Problema 4 Una barra de 10 kilogramo de maa y 2 metro de longitud decana vertical agarrada por un eje que paa por u extremo uperior. Con velocidad v = 15 m y perpendicular a la barra, una maa de 500 gramo e incruta en u extremo inferior. Calcular el ángulo que formará el conjunto con la vertical cuando e pare. Eje 2 m Durante el choque lo peo on verticale y paan por el eje, por lo tanto u momento e cero. La reacción en el eje, como ya e ha dicho mucha vece, no tiene momento repecto del eje. Se conerva por lo tanto el momento angular entre juto ante del choque y juto depué de él. L i = mvd = 0, Página 6 de 8
7 L f = Iω = ( ,5 2 2 )ω E igualando 15 = 15,33ω ω = 0, 98 Rd Para conocer el ángulo que decribe el itema hata parare aplicaremo el teorema de la energía entre el momento juto depué del choque, cuando el itema empieza a girar en poición vertical, hata la poición en que el itema e para. Se trata de una rotación en caída libre. W NC = W eje = 0 Pue la fuerza que ejerce el eje no e deplaza x Eje y h CM final φ L 2 h bloquefinal H = 0 Energía mecánica inicial: Cinética de rotación E cin.i = 1 2 Iω2 = 1 2 ( ,5 2 2 ) 0,98 2 = 7,36 J Potencial gravitatoria Al etar el bloque en altura cero, ólo la de la barra que correponde a la de u centro de maa E pot.i = m barra g h CM = = 100 J Página 7 de 8
8 Por lo que la energía mecánica inicial e Energía mecánica final: E m.i. = 107,36 J Sólo la energía potencial gravitatoria pueto que el itema etá parado: E m.f. = m barra g h CM + m bloque g h bloque Si no fijamo en la figura, la altura final del centro de maa de la barra e: h final CM = L x = L L coφ = 2 1 coφ 2 h final bloque = L y = L Lcoφ = 2(1 coφ) Y llevando eta expreione a la energía mecánica final: E m.f. = (2 1 coφ) + 0,5 10 2(1 coφ) E igualando amba energía: E m.f. = coφ coφ = 107,36 coφ = 102, φ = 21, 1 Página 8 de 8
DINÁMICA FCA 04 ANDALUCÍA
1. Se deja caer un cuerpo de 0,5 kg dede lo alto de una rapa de, inclinada 30º con la horizontal, iendo el valor de la fuerza de rozaiento entre el cuerpo y la rapa de 0,8 N. Deterine: a) El trabajo realizado
respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r
Guía de Fíica I. Vectore. 1. Conidere lo vectore A ByC r r r,. Su valore y aboluto, en unidade arbitraria, on de 3, 2 y 1 repectivamente. Entonce el vector reultante r r r r D = A + B + C erá de valor
SEGUNDO PARCIAL - Física 1 30 de junio de 2010
Intituto de Fíica Facultad de Ingeniería Univeridad de la República SEGUNDO PARCIAL - Fíica 1 30 de junio de 010 g= 9,8 m/ Cada pregunta tiene ólo una repueta correcta. Cada repueta correcta uma 6 punto.
TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A.
Cinemática 9 TEST.- La velocidade v de tre partícula:, y 3 en función del tiempo t, on motrada en la figura. La razón entre la aceleracione mayor y menor e: a) 8 b) / c) 0 d) e) 3.- De la gráfica: a) d)
PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema
COLEGIO LA PROVIDENCIA
COLEGIO LA PROVIDENCIA Hna de la Providencia y de la Inmaculada Concepción 2013 ALLER MOVIMIENO CIRCULAR UNIFORME DOCENE: Edier Saavedra Urrego Grado: décimo fecha: 16/04/2013 Realice un reumen de la lectura
ÓPTICA GEOMÉTRICA. ; 2s s 40 + =
ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto
ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Universal. Actividad 1.- Define movimiento circular uniforme, radio vector y desplazamiento angular.
ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Univeral Actividad 1.- Define movimiento circular uniforme, radio vector y deplazamiento angular. Movimiento circular uniforme (MCU) e el movimiento de
Práctica Tiro Parabólico
página 1/5 Práctica Tiro Parabólico Planteamiento Deeamo etimar la velocidad en un intante determinado de un ólido que cae por una pendiente, bajo la hipótei de movimiento uniformemente acelerado (m.u.a.)
TALLER DE TRABAJO Y ENERGÍA
TALLER DE TRABAJO Y ENERGÍA EJERCICIOS DE TRABAJO 1. Un bloque de 9kg e empujado mediante una fuerza de 150N paralela a la uperficie, durante un trayecto de 26m. Si el coeficiente de fricción entre la
TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.
IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene
s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.
Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura
SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS
SISEMAS INÁMICOS IEMº - Modelo de Sitema Mecánico PROBLEMAS P. Para lo itema mecánico de tralación motrado en la figura, e pide: a uncione de tranferencia entre la fuerza f y la velocidade de la maa. b
Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado?
CIENCIAS (BIOLOGÍA, FÍSICA, QUÍMICA) MÓDULO 3 Eje temático: Mecánica - Fluido 1. Una rueda deciende rodando por un plano inclinado que forma un ángulo α con la horizontal del modo que e ilutra en la figura
1. Cómo sabemos que un cuerpo se está moviendo?
EL MOVIMIENTO. CONCEPTOS INICIALES I.E.S. La Magdalena. Avilé. Aturia A la hora de etudiar el movimiento de un cuerpo el primer problema con que no encontramo etá en determinar, preciamente, i e etá moviendo
LENTE CONVERGENTE 2: Imágenes en una lente convergente
LENTE CONVERGENTE : Imágene en una lente convergente Fundamento En una lente convergente delgada e conidera el eje principal como la recta perpendicular a la lente y que paa por u centro. El corte de eta
Momento angular de una partícula. Momento angular de un sólido rígido
Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular
Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.
æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la
TEMA 4: El movimiento circular uniforme
TEMA 4: El moimiento circular uniforme Tema 4: El moimiento circular uniforme 1 ESQUEMA DE LA UNIDAD 1.- Caracterítica del moimiento circular uniforme. 2.- Epacio recorrido y ángulo barrido. 2.1.- Epacio
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado
Academia de Análisis Mecánico, DSM-DIM. Cinemática de Mecanismos. Análisis de Velocidades de Mecanismos por el Método del Polígono.
Cinemática de Mecanimo Análii de elocidade de Mecanimo por el Método del Polígono. DEFINICION DE ELOCIDAD La velocidad e define como la razón de cambio de la poición con repecto al tiempo. La poición (R)
10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si
Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten
REGULACIÓN AUTOMATICA (8)
REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para
NORMAL SUPERIOR LA HACIENDA
NORMAL SUPERIOR LA HACIENDA DPTO. DE CIENCIAS NATURALES ASIGNATURA: FISICA NIVEL 10 o GRADO DOCENTE: MATÍAS ENRIQUE PUELLO CHAMORRO 1 1. Impulo y Cantidad de movimiento Eta expreión (llamada también ímpetu
Actividades del final de la unidad
Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que
Tema03: Circunferencia 1
Tema03: Circunferencia 1 3.0 Introducción 3 Circunferencia La definición de circunferencia e clara para todo el mundo. El uo de la circunferencia en la práctica y la generación de uperficie de revolución,
Cinemática: parte de la Física que estudia el movimiento de los cuerpos.
CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio
TEST. Cinemática Una partícula tiene un M.C.U. Cuál sería la posible gráfica θ en función del tiempo?
Cinemática 5 TEST.- Una partícula tiene un M.C.U. Cuál ería la poible gráfica θ en función del tiempo? a) d) 5.- ué ditancia recorre P i la polea mayor gira (/4) rad/ en? a) R/4 b) R/ c) R/ d) R/ e) R/5
El momento tiende a provocar una aceleración angular (cambio en la velocidad de giro) en el cuerpo sobre el cual se aplica (puerta, molinete, etc.).
1 ESTATICA MOMENTO DE UNA FUERZA Dada una fuerza F situada a una distancia d de un punto o, se denomina (definición matemática) momento de la fuerza con respecto a un punto o, al producto de la intensidad
1. Calcular el momento de inercia de una. 7. Calcular el momento de inercia de un. cilindro macizo y homogéneo respecto de
1. Calcular el momento de inercia de una lámina rectangular y plana de dimensiones a y b, cuando gira sobre un eje perpendicular a su base a y paralelo a b. 7. Calcular el momento de inercia de un cilindro
FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo
1(7) Ejercicio nº 1 Calcula la altura a la que debe encontrarse una persona de 60 kg para que su energía potencial sea la misma que la de un ratón de 100 g que se encuentra a 75 m del suelo. Ejercicio
2 o Bachillerato. Conceptos básicos
Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos
1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:
0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.
La cantidad de movimiento angular obedece una ley de conservación muy similar a la que obedece el momentum lineal.
En vista de la gran analogía que se han presentado entre la mecánica lineal y la mecánica rotacional, no debe ser ninguna sorpresa que la cantidad de movimiento o momento lineal tenga un similar rotacional.
C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I
C U R S O: FÍSICA COMÚN MATERIAL: FC-2 CINEMÁTICA I La Cinemática etudia el movimiento de lo cuerpo, in preocupare de la caua que lo generan. Por ejemplo, al analizar el deplazamiento de un automóvil,
PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select)
FÍSICA IES Los Álamos PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) 1. Explique y razone la veracidad o falsedad de las siguientes afirmaciones: a. El trabajo realizado por todas las fuerzas que actúan sobre
CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo.
C U R S O: FÍSICA MENCIÓN MATERIAL: FM-3 CINEMÁTICA II CAIDA LIBRE En cinemática, la caída libre e un movimiento dónde olamente influye la gravedad. En ete movimiento e deprecia el rozamiento del cuerpo
TRABAJO Y ENERGÍA. Ejercicios de la unidad 15
TRABAJO Y ENERGÍA Ejercicio de la unidad 5 Cuetione..- Enuera lo diferente tipo de energía que conozca y pon algún ejeplo en el que un tipo de energía e tranfore en otro..- Indica i e verdadero o falo:
Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:
Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de
MOVIMIENTO PARABÓLICO = =
MOVIMIENTO PARABÓLICO Un cuerpo poee oviiento parabólico cuando e lanzado dede la uperficie terretre forando cierto ngulo con la horizontal. El oviiento parabólico e copone de do oviiento: Moviiento de
9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm.
9 Óptica geométrica EJERCICIOS PROPUESTOS 9. Indica la caracterítica de la imagen que oberva una perona que e etá mirando en un epejo plano. La imagen e virtual derecha. Virtual, porque e puede ver pero
Guía de Movimiento Circular Uniforme (M.C.U) b) Tiempo aproximado que emplea uno de los cuerpos en realizar una vuelta completa (periodo).
1 Guía de Movimiento Circular Uniforme (M.C.U) Objetivo: - Aplicar la nocione fíica fundamentale para explicar y decribir el movimiento circular; utilizar la expreione matemática de eta nocione en ituacione
Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r
IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4
Resolución de problemas de equilibrio
Reolución de problema de equilibrio Conideramo olamente fuerza actuando en un plano La condicione de equilibrio on: (1) F = 0, F = 0 τ = i 0 j. 1 Ditribución de peo de un auto Nian 40SX 53% de u peo obre
ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES
CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización
Módulo 1: Mecánica Sólido rígido. Rotación (II)
Módulo 1: Mecánica Sólido rígido. Rotación (II) 1 Segunda ley de Newton en la rotación Se puede hacer girar un disco por ejemplo aplicando un par de fuerzas. Pero es necesario tener en cuenta el punto
Lentes. Como ya sabes, una lente es un medio transparente a la luz que está limitado por dos superficies, al menos una de ellas curva.
Como ya abe, una lente e un medio tranparente a la luz que etá limitado por do uperficie, al meno una de ella curva. La lente e pueden claificar egún Groor orma Radio de curvatura de la uperficie Gruea
Función Longitud de Arco
Función Longitud de Arco Si al extremo final de la curva Lt = t f t dt e deja variable entonce el límite uperior de la a integral depende del parámetro t y e tiene que la longitud de arco de una curva
SOLUCIONES DE LOS EJERCICIOS DE LA OLIMPIADA DEL FASE LOCAL
SOLUCIONES DE LOS EJERCICIOS DE LA OLIMIADA DEL 1. FASE LOCAL ución ejercicio nº 1 Una plataforma circular, colocada horizontalmente, gira con una frecuencia de vuelta por egundo alrededor de un eje vertical
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende
FÍSICA 2º Bachillerato Ejercicios: Interacción gravitatoria
1(9) Ejercicio 1 Un bloque de 50 Kg de masa asciende una distancia de 6 m por un plano inclinado 37 º y que presenta un coeficiente de rozamiento de 0 2, aplicándole una fuerza constante de 490 N paralela
EL GIRÓSCOPO. Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión.
EL GIRÓSCOPO 1. OBJETIVOS Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión. 2. FUNDAMENTO TEÓRICO. Un giróscopo es un disco en rotación construido
CANTIDAD DE MOVIMIENTO LINEAL
NOTAS DE FÍSICA GRADO CANTIDAD DE MOIMIENTO LINEAL CONTENIDO. IMPULSO. COLISIONES O CHOQUES 3. PROBLEMAS PROPUESTOS Contanteente ecuchao y veo choque de auto y oto, nootro alguna vece deprevenido chocao
FUERZAS CENTRALES. Física 2º Bachillerato
FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión
Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010
Medida de Variación o Diperión Dra. Noemí L. Ruiz 007 Derecho de Autor Reervado Reviada 010 Objetivo de la lección Conocer cuále on la medida de variación y cómo e calculan o e determinan Conocer el ignificado
MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV
FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante
Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007
Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física Examen Final - Fisi 3161/3171 Nombre: miércoles 5 de diciembre de 2007 Sección: Prof.: Lea cuidadosamente las instrucciones.
En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente.
TORQUE Y EQUILIBRIO DE CUERPO RÍGIDO. En general un cuerpo puede tener dos tipos distintos de movimiento simultáneamente. De traslación a lo largo de una trayectoria, de rotación mientras se está trasladando,
SOLUCIONES TEMA 9, ÓPTICA GEOMÉTRICA
CUESTIONES SOLUCIONES TEMA 9, ÓPTICA GEOMÉTRICA C C C3 C4 C5 La aproximación paraxial e produce cuando lo rayo de luz inciden obre el elemento óptico con un ángulo muy pequeño repecto del eje óptico. Entonce
Lugar Geométrico de las Raíces
Lugar Geométrico de la Raíce N de práctica: 9 Tema Correpondiente: Lugar geométrico de la raíce Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Reviado por: Autorizado
Describe, en función de la diferencia de fase, qué ocurre cuando se superponen dos ondas progresivas armónicas de la misma amplitud y frecuencia.
El alumno realizará una opción de cada uno de lo bloque. La puntuación máxima de cada problema e de punto, y la de cada cuetión de 1,5 punto. BLOQUE I-PROBLEMAS Se determina, experimentalmente, la aceleración
Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía
Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre
Práctica 1: Dobladora de tubos
Práctica : Dobladora de tubo Una máquina dobladora de tubo utiliza un cilindro hidráulico para doblar tubo de acero de groor coniderable. La fuerza necearia para doblar lo tubo e de 0.000 N en lo 00 mm
MECÁNICA II CURSO 2004/05
1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor
www.fisicaeingenieria.es
1) Epejo cóncavo y convexo 1.1) Criterio de igno en óptica geométrica Lo objetivo principale en óptica geométrica on la determinación, en función de la poición del objeto y u tamaño, de la poición de la
Dinámica en dos o tres dimensiones
7.0.2. Dinámica en dos o tres dimensiones Ejercicio 7.27 Un cuerpo de masa 8kg, describe una trayectoria cuyas ecuaciones paramétrica son: x =2+5t 2t 2 m e y = t 2 m.determinela fuerza aplicada sobre el
ELEMENTOS DEL MOVIMIENTO
1 ELEMENTOS DEL MOVIMIENTO Poición 1.- Ecribe el vector de poición y calcula u módulo correpondiente para lo iguiente punto: P1 (4,, 1), P ( 3,1,0) y P3 (1,0, 5); La unidade de la coordenada etán en el
Física e Química 4º ESO
FÍSICA E QUÍMICA Física e Química 4º ESO Movimiento circular. Las fuerzas. 28/10/11 Nombre: Tipo A 1. Una rueda de 80,0 cm de diámetro gira dando 600 r.p.m. (vueltas por minuto). Calcula: a) Su velocidad
FISICA I HOJA 4 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 4. ESTÁTICA FORMULARIO
4. ESTÁTIC FORMULRIO 4.1) La viga de la figura, que pesa 1.000 kg. y tiene 8 m de larga, hace de carril aéreo. Sobre ella desliza un colgador en el que colocamos 2.000 kg. de carga. Calcular la tensión
E1.3: Energía mecánica
I.E.S. ARQUITECTO PEDRO GUMIEL Física y Química BA1 E1.3: Energía mecánica 1. Se deja caer verticalmente una piedra de kg desde 50 m de altura. Calcula: a) Su energía mecánica en el punto inicial. En el
DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.
DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley
EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II)
C8. Para el itema de la cuetión C6, Qué diría i alguien ugiriera trabajar con el itema en torno al punto de operación (U,Y b )? C9. Se deea controlar la poición del eje de un motor. Para identificar el
La Hoja de Cálculo en la resolución de problemas de Física.
a Hoja de Cálculo en la resolución de problemas de Física. Jesús Ruiz Felipe. Profesor de Física y Química del ES Cristóbal Pérez Pastor de Tobarra (Albacete) CEP de [email protected]
Equilibrio y Movimiento de los objetos
Fundamentos para programación y robótica Módulo 3: Fundamentos de mecánica Capítulo 2: Equilibrio y Movimiento de los objetos. Objetivos: o Conocer del equilibrio de los objetos o Conocer del movimiento
Física para Ciencias: Trabajo y Energía
Física para Ciencias: Trabajo y Energía Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Trabajo (W) En la Física la palabra trabajo se le da un significado muy específico: El trabajo (W) efectuado
PROBLEMAS VISUALES DE FÍSICA PVF13-1**. Contracción de vena líquida
PROBLEMAS VISUALES DE FÍSICA PVF3-**. Contracción de vena líquida Fotografía La fotografía repreenta la trayectoria eguida por el agua que ale en dirección orizontal con una velocidad v o. La regla ituada
CENTRO DE GRAVEDAD DE UN SÓLIDO
CENTRO DE GRAVEDAD DE UN SÓLIDO El centro de gravedad de un sólido es el punto imaginario en el que podemos considerar concentrada toda la masa del mismo. Por tanto, es el punto donde podemos considerar
EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO
INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin
Momento angular o cinético
Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x
2DA PRÁCTICA CALIFICADA
2DA PRÁCTICA CALIFICADA DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE : Ing. CASTRO PÉREZ, Cristian CINÉTICA DE UNA
Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)
Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la
Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r
Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano
QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA
QUÍMICA COMÚN QC- NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA REPRESENTACIÓN DE LOS ELECTRONES MEDIANTE LOS NÚMEROS CUÁNTICOS Como conecuencia del principio de indeterminación e deduce que no e puede
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA TERCERA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 17 DE 2014 SOLUCIÓN Pregunta 1 (8 puntos) P y R señalan
Solución de las actividades de Ondas, luz y sonido
Solución de la actividade de Onda, luz y onido 1. La imagen muetra una cuerda por donde viaja una onda: Teniendo en cuenta la ecala que e indica en el dibujo: a. Mide la amplitud de la ocilación. La amplitud
Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.
Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más
GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones
GEOMETRÍA ANALÍTICA 8. ECUACIONES DE UNA RECTA Para determinar una recta neceitamo una de eta do condicione 1. Un punto P(x, y ) y un vector V = (a,b). Do punto P(x, y ), Q(x 1, y 1 ) Un punto P(x, y )
Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son:
Ejercicio nº 1 Los vectores de posición y velocidad de un móvil en función del tiempo son: R 2 = (20 + 10t)i + (100 4t )j y V = 10i 8t j Calcula: a) osición y velocidad en el instante inicial y a los 4
6299, 2m s ; b) E= -3, J
1 Problemas de Campo gravitatorio. Caso part. Terrestre 2º de bachillerato. Física 1. Plutón describe una órbita elíptica alrededor del Sol Indique para cada una de las siguientes magnitudes si su valor
OLIMPIADA DE FÍSICA 2011 PRIMER EJERCICIO
OLIMPIADA DE FÍSICA 011 PRIMER EJERCICIO Con ayuda de una cuerda se hace girar un cuerpo de 1 kg en una circunferencia de 1 m de radio, situada en un plano vertical, cuyo centro está situado a 10,8 m del
FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas
1(10) Ejercicio nº 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 Kg si le ha comunicado una velocidad de 90 Km/h? Ejercicio nº 2 Un coche de 1000 Kg aumenta su velocidad
Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.
Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector
Docente: Angel Arrieta Jiménez
CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.
