Ley de GAUSS y Aplicaciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ley de GAUSS y Aplicaciones"

Transcripción

1 Fisica III -9 Cátedra de Física Experimental II Fisica III Ley de GAUSS y Aplicaciones Prof. Dr. Victor H. Rios 9

2 Fisica III -9 Contenidos - Fundamentos básicos - Flujo de campo eléctrico. - Ley de Gauss. - Diferencia de potencial electrostático. - Relación entre campo y potencial eléctrico. - Superficies equipotenciales. - Conductores - Aplicaciones -Condensadores, Condensador plano paralelo. - Campo y potencial de una esfera conductora. - Campo, Potencial y Energía de un condensador cargado. - Condensador cilíndrico, capacidad y energía. - Dieléctricos

3 Fisica III -9 Concepto de flujo del campo eléctrico Cuando el vector campo eléctrico E es constante en todos los puntos de una superficie S, se denomina flujo al producto escalar del vector campo por el vector superficie Φ E S El vector superficie es un vector que tiene: c) por módulo el área de dicha superficie d) la dirección es perpendicular al plano que la contiene Fig. 1 Esquema para el cálculo de Φ Cuando el vector campo E y el vector superficie S son perpendiculares el flujo es cero E es variable en S se puede escribir: Φ E. ds

4 Fisica III -9 Ley de Gauss El teorema de Gauss afirma que : El flujo del campo eléctrico a través de una superficie cerrada : Φ E. ds E S es igual al cociente entre la carga que hay en el interior de dicha superficie dividido en ε, es decir : q / ε. Fig.11 Esquema para el uso del teorema de Gauss Ley de Gauss S E. ds q ε

5 Pasos a seguir para el cálculo de E Fisica III A partir de la simetría de la distribución de carga, determinar la dirección del campo eléctrico. La dirección del campo es radial y perpendicular a la línea cargada.- Elegir una superficie cerrada apropiada para calcular el flujo Tomamos como superficie cerrada, un cilindro de radio r y longitud L. Flujo a través de las bases del cilindro: el campo E y el vector superficie S 1 o S forman 9º, luego el flujo es cero Flujo a través de la superficie lateral del cilindro: el campo E es paralelo al vector superficie ds y es constante en todos los puntos de la superficie lateral, E. ds E ds cos E ds S S S E π r L El flujo total es: E π r L

6 Fisica III Determinar la carga que hay en el interior de la superficie cerrada La carga que hay en el interior de la superficie cerrada vale q λ L, donde λ es la carga por unidad de longitud. 4.- Aplicar el teorema de Gauss y despejar el módulo del campo eléctrico E π r L λ L ε E λ π ε r Conclusión El mismo resultado que hemos obtenido previamente, pero de una forma mucho más simple.

7 Fisica III -9 Modelo del átomo de Kelvin-Thomson Actualmente, los libros de texto no suelen mencionar el átomo de Kelvin-Thomson. Sin embargo, durante el periodo que va de 19 a 196 tuvo bastante éxito, hasta que Rutherford demostró que este modelo no podía explicar la dispersión de partículas alfa por los átomos de una lámina de oro. Este modelo simple de átomo explicaba bastante bien la valencia química, la emisión de partículas β por los núcleos de elementos radioactivos, etc. Consideramos el caso más simple, un átomo o ion hidrogenoide con un solo electrón. Suponemos que el átomo tiene forma esférica de radio R, y que la carga positiva Q está uniformemente distribuida en dicha esfera.

8 Fisica III -9 Campo eléctrico de una distribución esférica y uniforme de carga El teorema de Gauss afirma : S E. ds q ε Para una distribución esférica y uniforme de carga, la aplicación del teorema de Gauss requiere los siguientes pasos: 1.- A partir de la simetría de la distribución de carga, determinar la dirección del campo eléctrico. La distribución de carga tiene simetría esférica, la dirección del campo es radial..- Elegir una superficie cerrada apropiada para calcular el flujo Fig. 1 Geometría para usar Gauss Tomamos como superficie cerrada, una esfera de radio r. El campo eléctrico E es paralelo al vector superficie ds, y el campo es constante en todos los puntos de la superficie esférica como se ve en la figura, por lo que:. E 4π r E ds E ds cos E ds S S S El flujo total es : E 4π r

9 Fisica III Determinar la carga que hay en el interior de la superficie cerrada Fig.13 Superficies de Gauss usadas. Para r < R. (figura de la izquierda) Si estamos calculando el campo en el interior de la esfera uniformemente cargada, la carga que hay en el interior de la superficie esférica de radio r es una parte de la carga total ( en color naranja), que se calcula multiplicando la densidad de carga por el volumen de la esfera de radio r. q Q r R 3 3 Para r > R ( figura de la derecha) Si estamos calculando el campo en el exterior de la esfera uniformemente cargada, la carga que hay en el interior de la superficie esférica de radio r es la carga total q Q

10 Fisica III Aplicar el teorema de Gauss y despejar el módulo del campo eléctrico E 4π r q ε se obtiene Q r E ( r < 3 4π ε R Q E ( r > 4π ε r R ) R ) Concluímos El campo en el exterior de una esfera cargada con carga Q, tiene la misma expresión que el campo producido por una carga puntual Q situada en su centro para r > R. E Q r E ( r < 3 4π ε R R ) Q E ( r > 4π ε r R ) r R r

11 Fisica III -9 Potencial Para calcular el potencial en un punto P a una distancia r del centro de la esfera cargada V ( r ), lo haremos de la siguiente manera: Representamos el módulo del campo eléctrico E, en función de la distancia r al centro de la esfera cargada, en los intervalos < r < R y r > R Q E ( r > 4π ε r R ) Fig.14 Grafico del campo E E ( r ) r > R Para hallar el potencial en un punto P que está fuera de la esfera cargada basta hallar el área sombreada (figura de la derecha) V r E. dr r Q Q 4π ε r 4π ε r

12 Fisica III -9 Potencial en r < R Para calcular el potencial en un punto P, en el interior de la esfera cargada, es necesario sumar dos áreas, por ser la función que describe la dependencia del campo E con r, discontinua en el punto r R. (figura de la izquierda) E Q r ( r 3 4π ε R < R ) Q E ( r > 4π ε r R ) Fig.14 Grafico del cam- po E E ( r ) V ( r) R Q r dr + r 3 4π ε R Q π ε R 4 r dr Q 3 r V ( r) ( 4π ε R R )

13 Fisica III -9 Energía de ionización La energía de ionización, es la energía mínima necesaria para sacar al electrón situado en el origen de la esfera cargada hasta el infinito. Q 3 r V ( r) ( 4π ε R R ) V () 3 Q 4π ε R La energía de Ionización será: W 3 q Q q V () Ionización 4π ε R Para un átomo con un electrón q Q e C, R~ 1-1 m, W I J 1.6 ev. Es algo mayor que la energía de ionización del electrón en un átomo de hidrógeno en el estado fundamental, 13.6 ev.

14 Energía de la esfera cargada Fisica III -9 La energía vale entonces W formacion 1 R V ( r) dq Como calculamos dq? r dr 1) Volumen ) Carga τ 4π r 3 3 4π dτ 3 r dr 3 4 π r dr dq dq ρ dτ Q 3 Q r dq dτ 3 τ R dr 3) Potencial Q 3 r V ( r) ( 4π ε R R ) 4) Energia W formacion R 1 Q 3 1 r 3 Q r 3 Q ( ) dr 3 4πε R R R 5 4π ε R

15 Fisica III -9 Energía total del átomo de Kelvin-Thomson La energía total de nuestro modelo de átomo de hidrógeno Q q e, es la diferencia entre dos energías: la energía necesaria para formar la distribución uniforme de carga positiva W formacion la energía necesaria para sacar el electrón de la atracción de dicha carga W ionizacion. W W formación W ionizacion e π ε R

16 Conductores Fisica III -9 Localización del exceso de carga en un conductor Un conductor se caracteriza por que los portadores de carga se pueden mover libremente por el interior del mismo. Si las cargas en un conductor en equilibrio están en reposo, la intensidad del campo eléctrico en todos los puntos interiores del mismo deberá ser cero, de otro modo, las cargas se moverían originando una corriente eléctrica. Dentro de un conductor de forma arbitraria se traza una superficie cerrada S: E. ds S Fig. 15 Conductor CONCLUSION El campo eléctrico E en todos los puntos de dicha superficie. El flujo a través de la superficie cerrada S es cero. * La carga neta q en el interior de dicha superficie es nula. Como la superficie cerrada S la podemos hacer tan pequeña como queramos, concluímos que en todo punto P del interior de un conductor no hay exceso de carga, por lo que esta deberá situarse en la superficie del conductor.

17 Fisica III -9 Aplicaciones de Campo y Potencial eléctrico

18 Fisica III -9 Campo producido por un conductor esférico de cargado q El teorema de Gauss afirma que: E. ds Consideremos una esfera metálica S ε de radio R cargada con una carga Q. 1.-A partir de la simetría de la distribución de carga, determinar la dirección del campo eléctrico. La distribución de carga tiene simetría esférica luego, la dirección del campo es radial.-elegir una superficie cerrada apropiada para calcular el flujo Fig. 1 Esfera metálica Tomamos como superficie cerrada, una esfera de radio r. El campo E es paralelo al vector superficie ds, y el campo es constante en todos los puntos de la superficie esférica por lo que, El flujo total es : E 4π r

19 Fisica III Determinar la carga que hay en el interior de la superficie cerrada r < R No hay carga en el interior de la esfera de radio r < R, q r > R Si estamos calculando el campo en el exterior de la esfera cargada, la carga que hay en el interior de la superficie esférica de radio r es la carga total q Q. 4.- Aplicar el teorema de Gauss y despejar el módulo del campo eléctrico En la fig., se muestra la representación del módulo del campo eléctri-co E en función de la distancia ra-dial r. Fig. Gráfico E E (r)

20 Fisica III -9 Potencial de la esfera conductora Se denomina potencial a la diferencia de potencial entre un punto P a una distancia r del centro de la esfera y el infinito. Como el campo en el interior de la esfera conductora es cero, el potencial es constante en todos sus puntos. El potencial en la superficie de la esfera es el área sombreada (fig. de la derecha) Capacidad Se denomina capacidad de la esfera (más adelante definiremos esta magnitud) al cociente entre la carga y su potencial: C Q / V 4 π ε R

21 Condensador Fisica III -9 Se denomina condensador al dispositivo formado por dos conductores cuyas cargas son iguales pero de signo opuesto. La capacidad C de un condensador se define como el cociente entre la carga Q y la diferencia de potencia V-V existente entre ellos. La unidad de capacidad es el farad o faradio F, aunque se suelen emplear submúltiplos de esta unidad como el microfaradio µf1-6 F, y el picofaradio, pf1-1 F. Un condensador acumula una energía U en forma de campo eléctrico. La fórmula como demostraremos más abajo es Condensador plano-paralelo En primer lugar, calculamos el campo creado por una placa plana indefinida, cargada con una densidad de carga σ, aplicando la ley de Gauss.

22 Fisica III -9 Campo creado por una placa plana indefinida, cargada. Para una placa indefinida cargada, la aplicación del teorema de Gauss requiere los siguientes pasos: 1.- A partir de la simetría de la distribución de carga, determinar la dirección del campo eléctrico. La dirección del campo es perpendicular a la placa cargada, hacia afuera si la carga es positiva y hacia la placa si la carga es negativa..-elegir una superficie cerrada apropiada para calcular el flujo Tomamos como superficie cerrada, un cilindro de base S, cuya generatriz es perpendicular a la placa cargada. El flujo tiene dos contribuciones * Flujo a través de las bases del cilindro: el campo y el vector superficie son paralelos. E S 1 + E S E S cosº E S Flujo a través de la superficie lateral del cilindro. El campo E es perpendicular al vector superficie ds, el flujo es cero. El flujo total es por tanto; E S

23 Fisica III Determinar la carga que hay en el interior de la superficie cerrada La carga (en la figura de color rojo) en el interior de la superficie cerrada vale : q σ S donde σ es la carga por unidad de superficie 4.-Aplicar el teorema de Gauss y despejar el módulo del campo eléctrico El campo producido por una placa infinitamente grande es constante, su dirección es perpendicular a la placa. Esta fórmula la podemos considerar válida para distancias próximas a una placa en comparación con sus dimensiones.

24 Fisica III -9 Campo creado por dos placas planas cargadas con cargas iguales y opuestas. Supondremos que las placas son infinitamente grandes o bien, que la separación entre las placas es pequeña comparada con sus dimensiones. En la figura de arriba, se muestra el campo producido por cada una de las placas y en la figura de abajo, el campo resultante. Sea un condensador formado por dos placas iguales de área S, separadas una distancia d, pequeña en comparación con las dimensiones de las placas. El campo se cancela en la región del espacio situado fuera de las placas, y se suma en el espacio situado entre las placas. Por tanto, solamente existe campo entre las placas del condensador, siendo despreciable fuera de las mismas. Como el campo es constante, la diferencia de potencial entre las placas se calcula multiplicando el módulo del campo por la separación entre las mismas.

25 Fisica III -9 La capacidad del condensador plano-paralelo será donde Q σ S es la carga total de la placa del condensador. La capacidad del condensador solamente depende de su geometría, es decir, del área de las placas S y de la separación entre las mismas d. Energía de un condensador cargado Para cargar un condensador pasamos carga de la placa de menor a la de mayor potencial y requiere, por tanto, el consumo de energía. Imaginemos que el proceso de carga comienza con ambas placas completamente descargadas y después, sacamos repetidamente cargas positivas de una de ellas y la pasamos a la otra.

26 Fisica III -9 Energía de un condensador cargado En un momento dado, tendremos una carga q en las placas y la diferencia de potencial entre las mismas será V tal que: q C V El trabajo necesario para incrementar en dq la carga del condensador será : dw V dq El trabajo total realizado en el proceso de carga, mientras esta aumenta desde cero hasta su valor final Q.

27 Fisica III - 9 Capacidad de un condensador cilíndrico El campo existente entre las armaduras de un condensador cilíndrico de radio interior a, radio exterior b, y longitud L, cargado con cargas +Q y Q, respectivamente, se calcula aplicando la ley de Gauss a la región a < r < b, ya que tanto fuera como dentro del condensador el campo eléctrico es cero. La aplicación del teorema de Gauss, es similar al de una línea cargada requiere los siguientes pasos: 1.- A partir de la simetría de la distribución de carga, determinar la dirección del campo eléctrico. La dirección del campo es radial y perpendicular al eje del cilindro..- Elegir una superficie cerrada a- propiada para calcular el flujo Tomamos como superficie cerrada, un cilindro de radio r, y longitud L. Tal como se muestra en la figura. El cálculo del flujo, tiene dos componentes

28 Fisica III - 9 El cálculo del flujo, tiene dos componentes Flujo a través de las bases del cilindro: el campo y el vector superficie son perpendiculares, el flujo es cero. Flujo a través de la superficie lateral del cilindro. El campo E es paralelo al vector superficie ds, y el campo es constante en todos los puntos de la superficie lateral, por lo que: El flujo total es por tanto : E π r L 3.- Determinar la carga que hay en el interior de la superficie cerrada La carga en el interior de la superficie cerrada vale +Q, que es la carga de la armadura cilíndrica interior 4.- Aplicar el teorema de Gauss y despejar el módulo del campo eléctrico

29 Fisica III - 9 Ahora, es fácil demostrar, aplicando el teorema de Gauss que el campo en las regiones r < a y r > b es nulo. En el primer caso, si tomamos una superficie cilíndrica de radio r < a y de longitud L, dicha superficie no encierra carga alguna. En el segundo caso, si tomamos una superficie cilíndrica de radio r > b y longitud L, la carga total encerrada es +Q Q, es nula, el flujo es cero y el campo es cero. En la figura, se muestra la representación gráfica del campo E en función de la distancia radial r. La diferencia de potencial entre las placas del condensador se calcula integrando, (área sombreada de la figura). La capacidad es :

30 Fisica III - 9 La capacidad solamente depende de la geometría del condensador (radio a y radio b de sus armaduras, y longitud L del condensador) Si el cilindro interior no está completamente introducido en el exterior, sino solamente una longitud x, la capacidad del condensador será Energía del condensador

31 Fisica III - 9 Efecto del dieléctrico en un condensador La mayor parte de los condensadores llevan entre sus láminas una sustancia no conductora o dieléctrica. Un condensador típico está formado por láminas metálicas enrolladas, separadas por papel impregnado en cera. El condensador resultante se envuelve en una funda de plástico. Su capacidad es de algunos microfaradios. La botella de Leyden es el condensador más primitivo, consiste en una hoja metálica pegada en las superficies interior y exterior de una botella de vidrio. Los condensadores electrolíticos utilizan como dieléctrico una capa delgada de óxido no conductor entre una lámina metálica y una disolución conductora. Los condensadores electrolíticos de dimensiones relativamente pequeñas pueden tener una capacidad de 1 a 1 mf.

32 Fisica III - 9 La función de un dieléctrico sólido colocado entre las láminas es triple: Resuelve el problema mecánico de mantener dos grandes láminas metálicas a distancia muy pequeña sin contacto alguno. Consigue aumentar la diferencia de potencial máxima que el condensador es capaz de resistir sin que salte una chispa entre las placas (ruptura dieléctrica). La capacidad de un condensador de dimensiones dadas es varias veces mayor con un dieléctrico que separe sus láminas que si estas estuviesen en el vacío.

33 Fisica III - 9 Sea un condensador plano-paralelo cuyas láminas hemos cargado con cargas +Q y Q, iguales y opuestas. Si entre las placas se ha hecho el vacío y se mide una diferencia de potencial V, su capacidad y la energía que acumula serán Si introducimos un dieléctrico se observa que la diferencia de potencial disminuye hasta un valor V La capacidad del condensador con dieléctrico será donde k se denomina constante dieléctrica La energía del condensador con dieléctrico es : la energía de un condensador con dieléctrico disminuye respecto de la del mismo condensador en vacío.

34 Fisica III - 9 Dieléctrico Constante dieléctrica Ámbar.7-.9 Agua 8.8 Aire 1.59 Alcohol 5. Baquelita Cera de abejas.8-.9 Glicerina 56. Helio 1.7 Mica moscovita Parafina.-.3 Plástico vinílico 4.1 Plexiglás Porcelana electrotécnica 6.5 Seda natural 4-5 Fuente: Manual de física elemental, Koshkin N. I, Shirkévich M. G., Edt. Mir, págs 14-15

35 Fisica III Idea molecular de las cargas inducidas La disminución de la diferencia de potencial que experimenta el condensador cuando se introduce el dieléctrico puede explicarse cualitativamente del siguiente modo. Las moléculas de un dieléctrico pueden clasificarse en polares y no polares. Las moléculas como H, N, O, etc. son no polares. Las moléculas son simétricas y el centro de distribución de las cargas positivas coincide con el de las negativas Por el contrario, las moléculas N O y H O no son simétricas y los centros de distribución de carga no coinciden.

36 Fisica III - 9 Dipolos Inducidos Bajo la influencia de un campo eléctrico, las cargas de una molécula no polar llegan a desplazarse como se indica en la figura, las cargas positivas experimentan una fuerza en el sentido del campo y las negativas en sentido contrario al campo. La separación de equilibrio se establece cuando la fuerza eléctrica se compensa con la fuerza recuperadora ( como si un resorte uniese los dos tipos de cargas ). Este tipo de dipolos formados a partir de moléculas no polares se denominan dipolos inducidos.

37 Fisica III - 9 Moléculas polares en un campo eléctrico Las moléculas polares o dipolos permanentes de un dieléctrico están orientados al azar cuando no existe campo eléctrico, como se indica en la figura. Bajo la acción de un campo eléctrico, se produce cierto grado de orientación. Cuanto más intenso es el campo, tanto mayor es el número de dipolos que se orientan en la dirección del campo.

38 Efecto resultante de la aplicación de un campo a un dieléctrico Fisica III - 9 Sean polares o no polares las moléculas de un dieléctrico, el efecto neto de un campo exterior se encuentra representado en la figura inferior. Al lado de la placa positiva del condensador, tenemos carga inducida negativa y al lado de la placa negativa del condensador, tenemos car-ta inducida positiva. Como vemos en la parte derecha de la figura, debido a la presencia de las cargas inducidas el campo eléctrico entre las placas de un condensador con dieléctrico E es menor que si estuviese vacío E. Algunas de las líneas de campo que abandonan la placa positiva penetran en el dieléctrico y llegan a la placa negativa, otras terminan en las cargas inducidas. El campo y la diferencia de potencial disminuyen en proporción inversa a su constante dieléctrica k є / є E E / k

39 Fisica III - 9 Ejemplo: Se conecta un condensador plano-paralelo a una batería de 1 V. Los datos del condensador son: 1. Condensador en vacío * el área de cada una de sus placas es.7 m, * la distancia entre las mismas es.75 mm. La capacidad del condensador vacío La carga Q y densidad de carga σ f en las placas del condensador es Q C ( V - V ), Q C El campo eléctrico en el espacio comprendido entre las placas del condensador es: E σ f / є, E N / C

40 Fisica III - 9 Capacidad con dieléctrico Se desconecta el condensador de la batería y se introduce un dieléctrico, por ejemplo, baquelita de k 4.6 La capacidad del condensador, aumenta : C k C, C F La diferencia de potencial entre las placas, disminuye : V - V Q / C, V - V.17 V El campo eléctrico E en el espacio comprendido entre las pla-cas del condensador es: E E / k, E N/C Podemos considerar este campo E, como la diferencia entre el campo E producido por las cargas libres existentes en las placas, y el campo E b producido las cargas inducidas en la superficie del dieléctrico, ambos campos son de signos contrarios. E E - E b La densidad de carga inducida en el dieléctrico es σ b C/m

41 Capacitores comerciales Fisica III - 9

42 Capacitores en Serie Los condensadores Ci conectados en serie a un potencial V adquieren la misma carga. La carga +Q del primer condensador induce una -Q en la otra placa, inicialmente descargada; esto sólo es posible si aparece o- tra carga +Q en el segundo condensador y así sucesivamente. Por tanto: i i i i C Q V V Q C La diferencia de potencial total es la suma de las caídas de potencial Vi en los distintos condensadores: n i i n i i n i i C Q C Q V V n i i n i C i C Q Q V Q C y la capacidad equivalente: o, lo que es lo mismo: n n i i C C C C C Fisica III - 9

43 Fisica III - 9 Capacitores en Paralelo Probar que la capacidad equivalente es : C Q V V n i i 1 V C n i 1 C i La capacidad equivalente de un conjunto de condensadores unidos en paralelo es la suma de las capacidades de los condensadores aislados.

44 FIN

Efecto del dieléctrico en un capacitor

Efecto del dieléctrico en un capacitor Efecto del dieléctrico en un capacitor La mayor parte de los capacitores llevan entre sus placas conductoras una sustancia no conductora o dieléctrica. Efecto del dieléctrico en un capacitor Un capacitor

Más detalles

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r)

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r) ENTREGA 2 Dieléctricos Elaborado por liffor astrillo, Ariel Hernández Muñoz, Rafael López Sánchez y Armando Ortez Ramos, Universidad Nacional Autónoma de Managua. Vector de desplazamiento eléctrico Se

Más detalles

4.3 Almacenamiento de energía eléctrica.

4.3 Almacenamiento de energía eléctrica. CAPÍTULO 4 Energía electrostática y capacidad Índice del capítulo 4 4 4. Energía potencial electrostática. 4. Capacidad. 4.3 Almacenamiento de energía eléctrica. 4.4 Asociación de condensadores. 4.5 Dieléctricos.

Más detalles

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES.

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. P1.- P2.- P3.- P4.- P5.- P6.- P7.- P8.- Una batería de 12 V está conectada a dos placas paralelas. La separación entre las dos placas es de 0.30 cm, y

Más detalles

ELECTRICIDAD Y MAGNETISMO

ELECTRICIDAD Y MAGNETISMO 26-9-2011 UNAM ELECTRICIDAD Y MAGNETISMO TEMA DOS ING. SANTIAGO GONZÁLEZ LÓPEZ CAPITULO DOS CAPACITORES Un capacitor es un elemento que almacena carga y capacitancia la propiedad que la determina cuanta

Más detalles

1. V F El producto escalar de dos vectores es siempre un número real y positivo.

1. V F El producto escalar de dos vectores es siempre un número real y positivo. TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de

Más detalles

Temario 4.Campo Eléctrico

Temario 4.Campo Eléctrico Campo Eléctrico 1 1 Temario 4.Campo Eléctrico 4.1 Concepto y definición de campo eléctrico 4.2 Campo eléctrico producido por una y varias cargas puntuales. 4.3 Lineas de Campo 4.4 Un conductor eléctrico

Más detalles

Física 2º Bach. Campo eléctrico 19/02/10

Física 2º Bach. Campo eléctrico 19/02/10 Física 2º ach. ampo eléctrico 19/02/10 EPRTMENTO E FÍSI E QUÍMI Problemas Nombre: [3 PUNTOS /UNO] 1. Una esfera conductora hueca tiene de radio r 1 = 10,00 cm y carga Q 1 = 70,0 n. a) alcula el potencial

Más detalles

FISICA 2º BACHILLERATO CAMPO ELECTRICO

FISICA 2º BACHILLERATO CAMPO ELECTRICO ) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará

Más detalles

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo Física 2º Bach. Campo eléctrico 19/02/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [3 PUNTOS /UNO] 1. Dos conductores esféricos concéntricos huecos, de radios 6,00 y 10,0 cm, están cargados con

Más detalles

DIELÉCTRICOS Y CONDENSADORES

DIELÉCTRICOS Y CONDENSADORES DIELÉCTRICOS Y CONDENSADORES ÍNDICE 1. Introducción 2. Cálculo de la capacidad 3. Asociación de condensadores 4. Energía del campo eléctrico 5. Dipolo eléctrico 6. Descripción atómica de los dieléctricos

Más detalles

CAPACITACIA Y DIELÉCTRICOS

CAPACITACIA Y DIELÉCTRICOS CAPACITACIA Y DIELÉCTRICOS En este tema se analizarán los capacitores, los cuales son dispositivos que almacenan carga eléctrica. Los capacitores se utilizan por lo común en una gran variedad de circuitos

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingeniería Camino de los Descubrimientos s/n 4192 Sevilla Física II Grupos 2 y 3 Bien Mal Nulo El test se calificará sobre 1 puntos, repartidos equitativamente

Más detalles

Campo eléctrico. Fig. 1. Problema número 1.

Campo eléctrico. Fig. 1. Problema número 1. Campo eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

ds = ds = 4πr2 Kq r 2 φ = q ε

ds = ds = 4πr2 Kq r 2 φ = q ε 1 El teorema de Gauss. Supongamos una superficie que es atravesada por las líneas de fuerza de un campo eléctrico. Definimos flujo de dicho campo eléctrico a través de la superficie como φ = E S = E S

Más detalles

CAPÍTULO III Electrostática

CAPÍTULO III Electrostática CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector

Más detalles

DIELÉCTRICO (material no conductor o aislante) en el

DIELÉCTRICO (material no conductor o aislante) en el II. Propiedades Eléctricas de la Materia Estructura Molecular de un Dieléctrico: Cuando un cuerpo conductor se coloca dentro de un campo eléctrico, los electrones libres situados dentro de él se mueven

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física 2º Bacharelato DPARTAMNTO D FÍSICA QUÍMICA lectrostática 11/02/08 Nombre: Problemas 1. n la región comprendida entre dos placas cargadas, x véase la figura, existe un campo eléctrico uniforme de

Más detalles

Física. Campo Eléctrico. El Generador de Van de Graaff

Física. Campo Eléctrico. El Generador de Van de Graaff Física Campo Eléctrico El Generador de Van de Graaff Cuando se introduce un conductor cargado dentro de otro hueco y se ponen en contacto, toda la carga del primero pasa al segundo, cualquiera que sea

Más detalles

6.3 Condensadores y dieléctricos.

6.3 Condensadores y dieléctricos. 6.3 Condensadores y dieléctricos. 6.3.1 CONCEPTO DE DIPOLO. MATERIALES DIELÉCTRICOS. Un material mal conductor o dieléctrico, no posee cargas libres, al contrario de un material conductor, como por ejemplo

Más detalles

Física 2º Bach. Campo eléctrico 11/02/09

Física 2º Bach. Campo eléctrico 11/02/09 Física 2º ach ampo eléctrico 11/02/09 EPRTMENTO E FÍSI E QUÍMI Problemas Nombre: [3 PUNTO /UNO] 1 Una partícula de 2,00 µg y 5,00 p entra perpendicularmente a un campo eléctrico constante producido por

Más detalles

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática.

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática. 11 ÍNDICE GENERAL INTRODUCCIÓN 13 CÁLCULO VECTORIAL 17 Escalares y vectores. Operaciones con vectores. Campos escalares y vectoriales. Sistemas de coordenadas. Transformación de coordenadas. Vector de

Más detalles

Electrotecnia General Tema 4 TEMA 4 CONDENSADORES

Electrotecnia General Tema 4 TEMA 4 CONDENSADORES TEMA 4 CONDENSADORES 4.1. CONDENSADORES. CAPACIDAD Un sistema binario es el constituido por dos conductores próximos entre los cuales se producen fenómenos de influencia. Si la influencia es total, se

Más detalles

Capítulo 16. Electricidad

Capítulo 16. Electricidad Capítulo 16 Electricidad 1 Carga eléctrica. Ley de Coulomb La carga se mide en culombios (C). La del electrón vale e = 1.6021 10 19 C. La fuerza eléctrica que una partícula con carga Q ejerce sobre otra

Más detalles

Conductores, capacidad, condensadores, medios dieléctricos.

Conductores, capacidad, condensadores, medios dieléctricos. Física 3 Guia 2 - Conductores y dieléctricos Verano 2016 Conductores, capacidad, condensadores, medios dieléctricos. 1. Dentro de un conductor hueco de forma arbitraria, se encuentra alojado un segundo

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO FÍSICA C Primera evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO FÍSICA C Primera evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2012-2013 FÍSICA C Primera evaluación SOLUCIÓN Ejercicio 1 (4 puntos) Un par de cargas eléctricas de igual magnitud q y

Más detalles

Física 3. Segundo Cuatrimestre 6 de septiembre de 2017

Física 3. Segundo Cuatrimestre 6 de septiembre de 2017 Si la aplicación de electricidad a una momia cuya antigüedad se remontaba por lo menos a tres o cuatro mil años no era demasiado sensata, resultaba en cambio lo bastante original como para que todos aprobáramos

Más detalles

CAMPO ELÉCTRICO ÍNDICE

CAMPO ELÉCTRICO ÍNDICE CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial

Más detalles

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS 2.1. CAMPO ELECTRICO En lugar de manejar el campo de fuerzas, resulta más cómodo definir un campo vectorial denominado campo eléctrico, E.

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general.

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general. ELECTROSTÁTICA 1 Introducción. 2 Carga eléctrica. 3 Ley de Coulomb. 4 Campo eléctrico y principio de superposición. 5 Líneas de campo eléctrico. 6 Flujo eléctrico. 7 Teorema de Gauss. Aplicaciones.. 1.

Más detalles

29.1. El flujo de un campo vectorial. Capítulo 29

29.1. El flujo de un campo vectorial. Capítulo 29 29 La ley de Gauss La ley de Coulomb se puede usar para calcular E para cualquier distribución discreta o continua de cargas en reposo. Cuando se presenten casos con alta simetría será más conveneinte

Más detalles

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera.

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera. CUESTIONES SOBRE CAMPO ELECTROSTÁTICO 1.- En un campo electrostático, el corte de dos superficies equiescalares con forma de elipsoide, con sus centros separados y un mismo eje mayor: No existe. B. Es

Más detalles

Física II CF-342 Ingeniería Plan Común.

Física II CF-342 Ingeniería Plan Común. Física II CF-342 Ingeniería Plan Común. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Física

Más detalles

AYUDANTÍA N o 3 FÍSICA GENERAL II SEGUNDO SEMESTRE 2014

AYUDANTÍA N o 3 FÍSICA GENERAL II SEGUNDO SEMESTRE 2014 AYUDANTÍA N o 3 FÍSICA GENERAL II SEGUNDO SEMESTRE 2014 1. Dos largas placas paralelas conductoras están separadas por una distancia d y cargadas de modo que sus tensiones son +V 0 y V 0. Una pequeña esfera

Más detalles

PROBLEMAS ELECTROESTÁTICA

PROBLEMAS ELECTROESTÁTICA POBLEMAS DE ELETOESTÁTIA III ampo electrostático en los conductores Prof. J. Martín ONDUTOES AGADOS EN EL AI O Pr obl e ma alcular : a) la capacidad de una superficie esférica de radio ; b) la capacidad

Más detalles

FÍSICA GENERAL III - CURSO 2015 Práctica 5: Electrostática con conductores. Capacidad.

FÍSICA GENERAL III - CURSO 2015 Práctica 5: Electrostática con conductores. Capacidad. FÍSICA GENERAL III - CURSO 2015 Práctica 5: Electrostática con conductores. Capacidad. 1- Las siguientes cuestiones ayudan a comprender el proceso de descarga a tierra. a) Por qué un cuerpo metálico esférico

Más detalles

CAPACITORES. Capacitores o Condensadores

CAPACITORES. Capacitores o Condensadores CAPACITORES Capacitores o Condensadores Un condensador o capacitor no es más que un dispositivo que tiene como función almacenar cargas eléctricas para su posterior utilización. Son utilizados frecuentemente

Más detalles

Trabajo Practico 2 - a: Potencial

Trabajo Practico 2 - a: Potencial 1 Universidad Nacional del Nordeste Facultad de Ingeniería Cátedra: Física III Profesor Adjunto: Ing. Arturo Castaño Jefe de Trabajos Prácticos: Ing. Cesar Rey Auxiliares: Ing. Andrés Mendivil, Ing. José

Más detalles

Capacidad y dieléctricos

Capacidad y dieléctricos Capacidad y dieléctricos Física II Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 211212 Dpto. Física Aplicada III Universidad de Sevilla Índice Introducción Capacidad:

Más detalles

2 Energía electrostática y Capacidad

2 Energía electrostática y Capacidad 2 Energía electrostática y Capacidad M. Mudarra Física III (2A) - M. Mudarra Enginyeria Aeroespacial - p. 1/44 Densidad de energía electrostática 2.2 Campo E en presencia de 2.6 Fuerzas sobre Física III

Más detalles

Tema 7: Polarización. Índice

Tema 7: Polarización. Índice Tema 7: Polarización 1 Índice Introducción Vector polarización Vector desplazamiento Leyes constitutivas Energía en presencia de dieléctricos Fuerzas sobre dieléctricos 2 Introducción Conductores: poseen

Más detalles

Cálculo de campos eléctricos por medio del principio de superposición.

Cálculo de campos eléctricos por medio del principio de superposición. Cálculo de campos eléctricos por medio del principio de superposición. En la clase anterior hemos introducido varios conceptos: Carga. Interacción entre cargas (Ley de Coulomb). Campo campo eléctrico.

Más detalles

Materiales. Eléctricos. Materiales. Dielectricos

Materiales. Eléctricos. Materiales. Dielectricos Materiales Eléctricos Materiales Dielectricos Qué es un dieléctrico? Es un material usado para aislar componentes eléctricamente entre si y actuar como elemento capacitivo. Sirve como elemento físico separador

Más detalles

Medios materiales y desarrollo multipolar.

Medios materiales y desarrollo multipolar. Física Teórica 1 Guia 3 - Medios materiales y multipolos 1 cuat. 2014 Medios materiales y desarrollo multipolar. Medios materiales. 1. Una esfera de radio a está uniformemente magnetizada con densidad

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

Ley de Gauss. Ley de Gauss

Ley de Gauss. Ley de Gauss Objetivo: Ley de Gauss Hasta ahora, hemos considerado cargas puntuales Cómo podemos tratar distribuciones más complicadas, por ejemplo, el campo de un alambre cargado, una esfera cargada, o un anillo cargado?

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011

Más detalles

4.3 - Determine el punto (distinto del infinito) en el cual el campo eléctrico es igual a cero.

4.3 - Determine el punto (distinto del infinito) en el cual el campo eléctrico es igual a cero. Unidad Nº 4 Electrostática Ley de Coulomb Campo eléctrico 4.1 - En las esquinas de un triángulo equilátero existen tres cargas puntuales, fijas, como se ve en la figura, cuyos valores son: q1=2µc, q2=-4µc

Más detalles

Campos Electromagnéticos Estáticos

Campos Electromagnéticos Estáticos Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO CAMPO ELÉCTRICO REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO El concepto físico de campo El concepto campo surge ante la

Más detalles

Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011

Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011 Clase 13 Potencial Eléctrico Cálculo del potencial eléctrico Ejemplo 35: Efecto punta En un conductor el campo eléctrico es mas intenso cerca de las puntas y protuberancias pues el exceso de carga tiende

Más detalles

CAMPO ELÉCTRICO MODELO 2016

CAMPO ELÉCTRICO MODELO 2016 CAMPO ELÉCTRICO MODELO 2016 1- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente

Más detalles

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética.

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. 1 Carga eléctrica Campo léctrico xceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. Un culombio es la

Más detalles

Física 3: Septiembre-Diciembre 2011 Clase 8, Miércoles 5 de octubre de 2011

Física 3: Septiembre-Diciembre 2011 Clase 8, Miércoles 5 de octubre de 2011 Clase 8 Flujo Eléctrico y ley de Gauss Flujo eléctrico El signo del flujo eléctrico Por su definición el flujo eléctrico a través de una cierta superficie puede ser positivo, negativo o nulo. De hecho

Más detalles

r = r + a O O y r y r son los vectores de posición de los puntos de la distribución con respecto a cada uno de los orígenes.

r = r + a O O y r y r son los vectores de posición de los puntos de la distribución con respecto a cada uno de los orígenes. 192 5.3. Problemas 5-1. Demuestre: a) Que si la carga total Q de una distribución es nula, el momento dipolar no depende del origen. b) Que si Q = 0 y p = 0, el momento cuadripolar tampoco depende del

Más detalles

Física II. Capacitores y Dieléctrico. Ejercicios. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA

Física II. Capacitores y Dieléctrico. Ejercicios. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Física II Capacitores y Dieléctrico. Ejercicios UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar EJERCICIOS 1. Un condensador está constituido por dos piezas

Más detalles

AUXILIAR 1 PROBLEMA 1

AUXILIAR 1 PROBLEMA 1 AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener

Más detalles

I. T. Telecomunicaciones Universidad de Alcalá

I. T. Telecomunicaciones Universidad de Alcalá I. T. Telecomunicaciones Universidad de Alcalá Soluciones al Examen de Física Septiembre 2006 Departamento de Física P1) La figura muestra una región limitada por los planos x = 0, y = 0, x = 10 cm, y

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas.

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. CAMPO LÉCTRICO 1. INTRODUCCIÓN Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. Una carga de prueba es una carga considerada siempre positiva, ue

Más detalles

Interacción electromagnética I. Campo eléctrico

Interacción electromagnética I. Campo eléctrico Interacción electromagnética I. Campo eléctrico Cuestiones y problemas 1. Si entre las dos placas de un condensador plano separadas 3 cm entre sí, existe un campo eléctrico uniforme de 7.10 4 N/C: a) Qué

Más detalles

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 5 DE FEBRERO DE 1997. GRUPOS C Y D. TEORÍA T3. Si tenemos 2 cargas puntuales separadas un adistancia l, Hay puntos fuera de la recta que las une en que

Más detalles

EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE GRUPOS C Y D.

EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE GRUPOS C Y D. Página 1 de 14 Al índice de exámenes EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE 1994. GRUPOS C Y D. E1. Deducir la ecuación de dimensiones de las siguientes magnitudes: 1- velocidad; 2-

Más detalles

Magnitud. E Intensidad de campo eléctrico N/C Q Carga que crea el campo eléctrico C

Magnitud. E Intensidad de campo eléctrico N/C Q Carga que crea el campo eléctrico C Fuerza entre dos Cargas (Ley de Coulomb) Fuerza total sobre una determinada carga Intensidad de campo eléctrico creado por una carga puntual en un punto F= K Q. q /r 2. Ko = 1/(4πε o )= = 9. 10 9 N. m

Más detalles

29.1. El flujo de un campo vectorial. Capítulo 29

29.1. El flujo de un campo vectorial. Capítulo 29 29 La ley de Gauss La ley de Coulomb se puede usar para calcular E para cualquier distribución discreta o continua de cargas en reposo. Cuando se presenten casos con alta simetría será más conveneinte

Más detalles

Unidad I: Electrostática (2da parte)

Unidad I: Electrostática (2da parte) Unidad I: Electrostática (2da parte) Potencial electrostático. a) Trabajo de la fuerza electrostática. Considere el sistema de dos cargas formado por las cargas puntuales Q y q, mostrado en la Figura 2.1.

Más detalles

Módulo 1: Electrostática Campo eléctrico

Módulo 1: Electrostática Campo eléctrico Módulo 1: Electrostática Campo eléctrico 1 Campo eléctrico Cómo puede ejercerse una fuerza a distancia? Para explicarlo se introduce el concepto de campo eléctrico Una carga crea un campo eléctrico E en

Más detalles

UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss

UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss FACULTAD REGIONAL ROSARIO UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss Recopilación, revisión y edición: Ing. J. Santa Cruz, Ing.

Más detalles

El Campo Eléctrico. Distribuciones discretas de carga

El Campo Eléctrico. Distribuciones discretas de carga El Campo Eléctrico. Distribuciones discretas de carga 1. A qué distancia deben encontrarse dos cargas de 1 nc para que la fuerza de repulsión entre ellas sea de 0 1 N? DATO: K = 9 10 9 N m 2 /C 2 2. Dos

Más detalles

BACHILLERATO FÍSICA 3. CAMPO ELÉCTRICO. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA 3. CAMPO ELÉCTRICO. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA 3. CAMPO ELÉCTRICO R. Artacho Dpto. de Física y Química Índice CONTENIDOS 1. Interacción electrostática 2. Campo eléctrico 3. Enfoque dinámico 4. Enfoque energético 5. Movimiento de

Más detalles

Repaso de electrostática y magnetostática. 1. En cada una de las siguientes distribuciones de carga:

Repaso de electrostática y magnetostática. 1. En cada una de las siguientes distribuciones de carga: Física Teórica 1 Guia 1 - Repaso 1 cuat. 2015 Repaso de electrostática y magnetostática. Transformaciones de simetría. Ley de Gauss. Ley de Ampere. 1. En cada una de las siguientes distribuciones de carga:

Más detalles

TEMA 2. CAMPO ELECTROSTÁTICO

TEMA 2. CAMPO ELECTROSTÁTICO TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación

Más detalles

Tema 3.- Capacidad y dieléctricos

Tema 3.- Capacidad y dieléctricos Tema 3: Capacidad d y dieléctricos i Física II Ingeniería de Tecnologías Industriales Primer Curso Curso 212/213 Joaquín Bernal Méndez Dpto. Física Aplicada III TSI 1 Índice Introducción Capacidad: condensadores.

Más detalles

Última modificación: 1 de agosto de

Última modificación: 1 de agosto de Contenido LEYES DE GAUSS 1.- Ley de Gauss para campos eléctricos. 2.- Capacitancia. 3.- Ley de Gauss para campos magnéticos. éi 4.- Inductancia. Objetivo.- Al finalizar el tema, el estudiante será capaz

Más detalles

Departamento de Electrónica y Sistemas PARTE I) ELECTROSTÁTICA

Departamento de Electrónica y Sistemas PARTE I) ELECTROSTÁTICA Departamento de Electrónica y Sistemas PARTE I) ELECTROSTÁTICA 1) Capacidad de un conductor aislado 2) Condensadores y su capacidad 1) Condensador plano 2) Condensador cilíndrico 3) Asociación de condensadores.

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas

Más detalles

III A - CAMPO ELÉCTRICO

III A - CAMPO ELÉCTRICO 1.- Una carga puntual de 4 µc se encuentra localizada en el origen de coordenadas y otra, de 2 µc en el punto (0,4) m. Suponiendo que se encuentren en el vacío, calcula la intensidad de campo eléctrico

Más detalles

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en CAMPO ELÉCTRICO 1.- 2015-Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en el vacío colocadas en los puntos A (0,0), B(3,0) y C(0,4),

Más detalles

PROBLEMAS COMPLEMENTARIOS

PROBLEMAS COMPLEMENTARIOS Problema nº1 Indica si dos protones separados por 10-18 m tenderán a acercarse por efecto de la gravedad o a repelerse por efecto electrostático. Datos: G = 6,6 10-11 N m 2 / 2, m p = 1,6 10-27, q p =

Más detalles

Notas para la asignatura de Electricidad y Magnetismo Unidad 1: Electrostática

Notas para la asignatura de Electricidad y Magnetismo Unidad 1: Electrostática Notas para la asignatura de Electricidad y Magnetismo Unidad 1: Electrostática Presenta: M. I. Ruiz Gasca Marco Antonio Instituto Tecnológico de Tláhuac II Agosto, 2015 Marco Antonio (ITT II) México D.F.,

Más detalles

Potencial Eléctrico Preguntas de Multiopción

Potencial Eléctrico Preguntas de Multiopción Slide 1 / 72 Potencial Eléctrico Preguntas de Multiopción Slide 2 / 72 1 Una carga negativa se coloca en una esfera de conducción. Cual de las afirmaciones es verdadera acerca a la distribución de carga?

Más detalles

FÍSICA II. PRÁCTICO 1 Cargas, Ley de Coulomb y Campo Eléctrico

FÍSICA II. PRÁCTICO 1 Cargas, Ley de Coulomb y Campo Eléctrico FÍSICA II PRÁCTICO 1 Cargas, Ley de Coulomb y Campo Eléctrico 1. Dos esferas conductoras sin carga con sus superficies en contacto están apoyadas sobre una tabla de madera bien aislada. Una barra cargada

Más detalles

E.U.I.T.I.Z. Curso Electricidad y Electrometría 1º Electrónicos 1 er parcial /23

E.U.I.T.I.Z. Curso Electricidad y Electrometría 1º Electrónicos 1 er parcial /23 E.U.I.T.I.Z. Curso 2002-03. Electricidad y Electrometría 1º Electrónicos 1 er parcial 31-01-03 1/23 2/23 E.U.I.T.I.Z. Curso 2002-03. Electricidad y Electrometría 1º Electrónicos 1 er parcial 31-01-03 E.U.I.T.I.Z.

Más detalles

Problemas de Potencial Eléctrico

Problemas de Potencial Eléctrico Problemas de Potencial Eléctrico Física de PSI Nombre Multiopción 1. Una carga negativa se coloca en una esfera de conducción. Cual de las afirmaciones es verdadera acerca a la distribución de la carga?

Más detalles

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Módulo 2. Campo electrostático 4. Consideremos dos superficies gaussianas esféricas, una de radio r y otra de radio 2r, que

Más detalles

Campo eléctrico Cuestiones

Campo eléctrico Cuestiones Campo eléctrico Cuestiones C-1 (Junio - 97) Puede existir diferencia de potencial eléctrico entre dos puntos de una región en la cual la intensidad del campo eléctrico es nula? Qué relación general existe

Más detalles

GUIA DE FÍSICA Campo Eléctrico. Es el espacio que rodea a una carga eléctrica y en el cual una carga eléctrica soporta una fuerza eléctrica

GUIA DE FÍSICA Campo Eléctrico. Es el espacio que rodea a una carga eléctrica y en el cual una carga eléctrica soporta una fuerza eléctrica GUIA DE FÍSICA Campo Eléctrico Nombre: Curso. 4º Medio: Profesor: Mario Meneses Señor CAMPO ELECTRICO Es el espacio que rodea a una carga eléctrica y en el cual una carga eléctrica soporta una fuerza eléctrica

Más detalles

CONCEPTOS BÁSICOS DE ELECTRICIDAD

CONCEPTOS BÁSICOS DE ELECTRICIDAD CONCEPTOS BÁSICOS DE ELECTRICIDAD Ley de Coulomb La ley de Coulomb nos describe la interacción entre dos cargas eléctricas del mismo o de distinto signo. La fuerza que ejerce la carga Q sobre otra carga

Más detalles

Principios de Termodinámica y Electromagnetismo

Principios de Termodinámica y Electromagnetismo Facultad de Ingeniería Principios de Termodinámica y Electromagnetismo Proyecto de Investigación Alumnos: CAMPO ELÉCTRICO. Arias Vázquez Margarita Isabel Arroyo Ramírez Rogelio Beltrán Gómez Selvin Eduardo

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática 1(7) Ejercicio nº 1 Supongamos dos esferas de 10 Kg y 10 C separadas una distancia de 1 metro. Determina la fuerza gravitatoria y la fuerza eléctrica entre las esferas. Compara ambas fuerzas. Ejercicio

Más detalles

CAMPO ELÉCTRICO Nm 2

CAMPO ELÉCTRICO Nm 2 CAMPO ELÉCTRICO 1. Dos cargas eléctricas positivas e iguales de valor 3x10-6 C están situadas en los puntos A(0,2) y B(0,-2) del plano XY. Otras dos cargas iguales Q están localizadas en los puntos C(4,2)

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

CAMPO ELÉCTRICO CARGAS PUNTUALES

CAMPO ELÉCTRICO CARGAS PUNTUALES CARGAS PUNTUALES Ejercicio 1. Junio 2.007 Dos partículas con cargas de +1 μc y de -1 μc están situadas en los puntos del plano XY de coordenadas (- 1,0) y (1,0) respectivamente. Sabiendo que las coordenadas

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Técnica Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla Segunda convocatoria. Septiembre-2012 PRLEMAS Problema 1.- Sea una corteza esférica

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

Universidad de Alcalá. Departamento de Física. Solución del Ejercicio propuesto del Tema 4

Universidad de Alcalá. Departamento de Física. Solución del Ejercicio propuesto del Tema 4 Universidad de Alcalá Departamento de Física Solución del Ejercicio propuesto del Tema 4 1) La figura muestra un condensador esférico, cuyas armaduras interna y externa tienen radios R i 1 cm y R e 2 cm.

Más detalles

Practica No. 3. Capacitor de Placas Planas Paralelas

Practica No. 3. Capacitor de Placas Planas Paralelas Objetivos: Experimento 1 Practica No. 3. Capacitor de Placas Planas Paralelas 1.1 Encontrar la diferencia entre las distancias de las placas del capacitor de placas planas. 1.2 Determinar el campo eléctrico

Más detalles

Slide 1 / 66. El Campo Eléctrico, La Energía Potencial, y El Voltaje

Slide 1 / 66. El Campo Eléctrico, La Energía Potencial, y El Voltaje Slide 1 / 66 El Campo Eléctrico, La Energía Potencial, y El Voltaje Slide 2 / 66 Trabajo Q+ Q+ La fuerza cambia mientras las cargas se colocan hacia el uno al otro ya que la fuerza depende en la distancia

Más detalles