Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín"

Transcripción

1 UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS-ESCUELA DE FÍSICA FÍSICA DE OSCILACIONES ONDAS Y ÓPTICA MÓDULO # 14: ÓPTICA GEOMÉTRICA-SFI (SUPERFICIES REFLECTORAS)- Diego Luis Aristizábal R., Roberto Restrepo A., Tatiana Muñoz H. Profesores, Escuela de Física de la Universidad Nacional de Colombia Sede Medellín 1 Temas Introducción La ley de reflexión desde la refracción Espejos esféricos Aspecto 1: Propiedades focales para las superficies reflectoras Aspecto 2: Fórmula de Gauss para los espejos esféricos Aspecto 3: Ecuación del constructor para los espejos esféricos Aspecto 4: Trazado de imágenes en los espejos esféricos Aspecto 5: Aumento en los espejos esféricos Espejos planos Taller sobre espejos Introducción En este módulo se estudiará los espejos esféricos en aproximación paraxial. El tema se aborda desde una visión moderna, considerando el fenómeno de reflexión como un caso particular del fenómeno de refracción, lo que permite articular mejor los conceptos sobre Sistemas Formadores de Imágenes (SFI). Sin embargo, para enriquecer la comprensión de los SFI, se hará paralelamente un análisis de estos SFI tal y como normalmente aparecen en los textos de física básica. La ley de reflexión desde la refracción La reflexión se puede interpretar como la refracción desde un medio de índice de refracción n hacia otro medio de índice de refracción n =-n. Para mostrar esto se deducirá a continuación la ley de reflexión a partir de la ley de refracción con base es esa interpretación. En la Figura 1 (a) se ilustra la ley de reflexión mediante un rayo que incide con ángulo y el cual se refleja con un ángulo tal que según esta ley se cumple, φ = φ' En la Figura 1 (b) se ilustra la ley de reflexión desde la interpretación que se propone en este módulo. Para la demostración se está empleando las normas DIN de convención de signos para la óptica geométrica.

2 2 Figura 1 Aplicando la ley de Snell para el rayo que incide desde un medio de índice de refracción n con ángulo y se refracta hacia el medio de índice de refracción n = -n con ángulo se obtiene, sen φ sen φ' = n' n sen φ -n = sen φ' n n sen φ = n sen (- φ') φ = - φ' Como se sabe de las normas DIN si se observa la Figura 1, el ángulo es positivo y el ángulo es negativo, por lo tanto, φ = φ' que corresponde a la ley de reflexión. Con base en esta interpretación las expresiones obtenidas para las superficies refractoras esféricas se aplican a las superficies reflectoras reemplazando en ellas n por n. Nota: Una posible interpretación física que se le podría dar al artificio empleado (hacer n = - n) es que la reflexión se puede interpretar como una refracción en donde la onda de luz viaja al refractarse (al pasar al material de índice n =-n) desde el medio de índice n hacia el mismo material de donde incidió (de índice n), es decir, es como si se regresara en la refracción, Figura 2. Sin embargo se debe tener cuidado que como se está interpretando aquí el signo MENOS del índice de refracción no es afirmando que se están considerando materiales con índices de refracción negativos (n < -1). Actualmente la física permite hablar de materiales que si se les puede asignar índices negativos pero en un contexto diferente al que se interpreta en este módulo. Se insiste, en este módulo es un simple artificio que permite analizar más integralmente los SFI.

3 3 Figura 2 Espejos esféricos Hay dos tipos de espejos esféricos: cóncavos y convexos, Figura 3. En esta Figura V es el vértice del espejo y C el entro de curvatura. Bajo la convención DIN para el espejo cóncavo R es negativo y para el convexo R es positivo. Las superficies reflectoras como SFI, es decir, como espejos, tienen el espacio objeto y el espacio imagen del mismo lado (en la convención DIN, a la izquierda). Figura 3 Aspecto 1: Propiedades focales para las superficies reflectoras Qué forma debe tener una superficie reflectora para que rayos que incidan paralelos al eje óptico al reflejarse converjan a un punto (que se denominará foco imagen del espejo)? En el módulo # 13 se mostró que las superficies refractoras enfocan bien si son sus superficies cónicas, hipérbolas o elipses, cuya excentricidad es,

4 n e = n' y que por lo tanto si n > n deben ser superficies refractoras elípticas y si n < n hipérbolas. También se mostró que las superficies refractoras se pueden considerar que enfocan bien bajo aproximación paraxial. En el caso de las superficies reflectoras haciendo n =n se obtiene que, e 1 4 Indicando que las superficies reflectoras enfocan bien si son parábolas, Figura 4. Es decir los espejos parabólicos son los ideales para lograr enfoques perfectos. Esta es la razón del porque las antenas de TV tienen esta forma. Figura 4 En este módulo se consideran espejos esféricos bajo aproximación paraxial. Cuando se alejan de esta aproximación aparece la denominada aberración esférica, en donde el enfoque de un conjunto de rayos que inciden paralelos no convergen a un punto y se forma es una mancha, Figura 5. Los espejos cóncavos son convergentes y los convexos divergentes. Figura 5

5 Aspecto 2: Fórmula de Gauss para los espejos esféricos Este módulo considera las superficies reflectoras esféricas bajo aproximación paraxial. En el módulo # 13 se dedujo la fórmula de Gauss para las superficies refractoras esféricas (SRE) bajo aproximación paraxial, n' n n' - n - = s' s R Para espejos esféricos bajo aproximación paraxial se obtiene la fórmula de Gauss haciendo n =-n en la expresión anterior, 5 -n n -n - n - = s' s R = [1] s' s R Aspecto 3: Ecuación del constructor para los espejos esféricos En el módulo # 13 se obtuvieron las ecuaciones del constructor para SRE bajo aproximación paraxial, f ' = n' R n' - n n f = - R n' - n En donde f y f corresponden a las distancias focales objeto e imagen de la SRE. Para el caso de los espejos esféricos se hace n =-n en las expresiones anteriores, R f ' = 2 R f = 2 Es decir, R f = f ' = 2 Es decir, bajo aproximación paraxial los focos imagen y objeto coinciden en la ubicación. Esta es aproximadamente la mitad del segmento entre el centro de curvatura y el vértice del espejo. En la práctica se habla entonces de que el espejo solo tiene un foco ubicado a la distancia focal f,

6 R f = [2] 2 Combinando las ecuaciones [1] y [2] se obtiene, = [3] s' s f 6 Ecuación básica para resolver el cálculo de las posiciones del objeto y la imagen en un espejo esférico bajo aproximación paraxial. Para el caso de espejos planos, R es infinito ( R ) por lo que, s' = - s En la Figura 6 se observa la gráfica 1/s VS 1/s correspondiente a la ecuación [3]. Se confirma lo afirmado en el módulo # 13 para sistemas convergentes y divergentes, Tabla 1. Se debe anotar que el espejo cóncavo es convergente y su foco es REAL mientras que el espejo convexo es divergente y su foco es VIRTUAL. Tabla 1 OBJETO IMAGEN SISTEMA CONVERGENTE SISTEMA DIVERGENTE SISTEMA PLANO REAL REAL ES POSIBLE ES IMPOSIBLE ES IMPOSIBLE REAL VIRTUAL ES POSIBLE ES POSIBLE ES POSIBLE VIRTUAL REAL ES POSIBLE ES POSIBLE ES POSIBLE VIRTUAL VIRTUAL ES IMPOSIBLE ES POSIBLE ES IMPOSIBLE Figura 6 En la Figura 7 se ilustra la convergencia de los rayos paralelos al eje óptico del espejo. En los cóncavos convergen en el foco y en el convexo divergen (convergen virtualmente) desde el foco.

7 7 Figura 7 Forma tradicional de obtener las expresiones [1], [2] y [3] para espejos esféricos Como ilustración se harán las demostraciones de las expresiones [1], [2] y [3] como normalmente se abordan en los textos de física general. Para esto observar la Figura 8. Se supone un objeto puntual real ubicado en el eje óptico. Para encontrar la imagen se trazaron dos rayos: uno que sigue el camino del eje óptico y por lo tanto su ángulo de incidencia es cero y se regresa por el mismo eje óptico (ángulo de reflexión vero); el oro rayo se toma inclinado un ángulo respecto al eje óptico y se refleja en el espejo esférico en el punto P (ángulo de incidencia y ángulo de reflexión ). Del triángulo OPC se obtiene, β = α + φ Figura 8 Del triángulo O CP se obtiene, α' = β + φ'

8 Atendiendo la convención de signo de la DIN, todos los ángulo son negativos excepto el ángulo que es positivo. Por lo tanto las dos ecuaciones anteriores toman la siguiente forma, - β = - α - φ - α = - β + φ' Combinando estas dos últimas ecuaciones con la ley de reflexión (teniendo en cuenta la convención de la DIN), 8 φ = - φ' Se obtiene, α' + α = 2β Para aproximación paraxial se cumple, h h α' tan α' = s' - x s' h h α tan α = s - x s h h β tan β = R - x R Y por lo tanto de α' + α = 2β se obtiene, = s' s R Observar ahora la Figura 9. Se trata de un rayo que incide paralelo al eje óptico y por lo tanto refleja por el Foco F. Los ángulo y son lo de incidencia. Figura 9

9 Como los ángulos y son alternos internos se obtiene, φ = β Por ley de reflexión, φ = φ ' 9 Por lo tanto, φ' = β Y se concluye que el triángulo CPF es isósceles, es decir, CF = FP Además en aproximación paraxial, FP FV concluyéndose, CF FV es decir, el foco F está aproximadamente ubicado en el centro del segmento CV, es decir, R f= 2 y por lo tanto también se llega a, = s' s f Aspecto 4: Trazado de imágenes en los espejos esféricos Los tres rayos notables para un espejo esférico son, Rayo 1 Rayo que incide paralelamente al eje óptico se refleja real o virtualmente por el foco F. Rayo 2 Rayo que incide real o virtualmente por el foco se refleja en el espejo y continúa paralelo al eje óptico. Rayo 3 Rayo que incide por el centro de curvatura del espejo, no cambia de dirección al reflejarse. Formación de imágenes Para formar la imagen de un objeto puntual basta con trazar la trayectoria seguida por sólo dos rayos, y donde se corten REAL o VIRTUALMENTE queda ubicada la imagen puntual correspondiente. Es útil emplear dos de los tres rayos notables. En la Figura 10 se ilustran la formación de imágenes de objetos REALES con los espejos esféricos. Para facilitar su construcción se trazó una línea

10 tangente en el vértice del espejo y perpendicular al eje óptico: los rayos incidentes se prolongaron hasta ésta (esto es posible por la aproximación paraxial). Se observa que en el caso de los espejos cóncavos (convergentes) es posible obtener de objetos REALES imágenes REALES mayores, iguales y menores al objeto; imágenes VIRTUALES mayores que el objeto y si el objeto se ubica en el foco no se forma la imagen (es decir, se forma en el infinito). Para el caso de espejos convexos (divergentes) sólo es posible obtener de objetos REALES imágenes VIRTUALES de menor tamaño que el objeto. 10 Figura 10 Ejemplo 1: Explicar el funcionamiento del MIRASCOPE, Figura 12. Figura 12

11 Solución: Este aparato se compone de dos espejos parabólicos. El vértice de un espejo corresponde al foco del otro, Figura 13. Al ubicar un objeto sobre el vértice del espejo inferior (V 1 ), sus rayos partirán del foco del espejo superior (F 2 ) por lo que al reflejarse en éste continuarán paralelos a su eje óptico; seguidamente estos rayos al incidir paralelamente al eje óptico del espejo inferior se reflejarán en éste continuando a converger en su foco (F 1 ) concentrándose en una imagen de mucha intensidad luminosa (imagen REAL): causa impacto porque no estamos acostumbrados a observar imágenes reales sin ayuda de una pantalla de proyección. 11 Figura 13 Aspecto 5: Aumento en los espejos esféricos En el módulo # 13 se obtuvo la fórmula del aumento para las superficies refractoras esféricas bajo aproximación paraxial, y' M= = y ns' n's Para obtener la fórmula del aumento para los espejos esféricos bajo aproximación paraxial se reemplaza n =-n, y' s' M= = - [4] y s De esta expresión se concluye que, Las imágenes REALES de objetos REALES son invertidas. Las imágenes VIRTUALES de objetos REALES son derechas

12 Forma tradicional de demostrar la expresión para el aumento en los espejos 12 Figura 14 En la Figura 14 se ilustra la formación de la imagen empleando dos rayos principales: el que incide paralelo al eje óptico que refleja por el foco y el que incide por el centro de curvatura que se al reflejarse se regresa sin cambiar su dirección. Adicionalmente se ilustra un rayo que incide desde la cabeza del objeto y hacia el vértice del espejo; obviamente al reflejarse debe dirigirse hacia la cabeza de la imagen. Con base en esta Figura se obtiene, y tan φ = s y' tan φ' = s' Pero de la ley de reflexión (con la norma de signos DIN) se tiene, φ = -φ' entonces, tan φ = tan -φ' tan φ = - tan φ' y por lo tanto, y y ' s s ' M= y' s' y s

13 Simulaciones: Analizar la simulación de SimulPhysics correspondientes a la formación de imágenes con los espejos esféricos. Para acceder a ellas hacer clic con el mouse en el ítem señalado en la Figura 15. En ésta hacer las variaciones permitidas y observar detenidamente los resultados Figura 15 Ejemplo 2: Sobre una pantalla se desea proyectar mediante un espejo esférico cóncavo que dista de ella 10.0 m, la imagen de un objeto, de modo que la imagen sea cuatro veces mayor. Determinar la distancia del espejo a que se debe colocar el objeto, así como el radio de curvatura del mismo. Hacer también un análisis gráfico. Solución: Para poder proyectar la imagen generada por el espejo en una pantalla debe ser REAL. Adicionalmente como debe ser de mayor tamaño que el objeto, éste tiene que ubicarse entre el centro de curvatura y el foco del espejo cóncavo. En la Figura 16 se ilustra la formación de esta imagen, en donde se emplearon dos rayos principales: un rayo que incide por el centro de curvatura del espejo, el cual se refleja regresando en la misma dirección y un rayo que incide paralelamente al eje óptico, el cual se refleja por el foco.

14 14 Figura 16 Analíticamente se emplean las siguientes dos ecuaciones, = (1) s' s f y' s' M = = - (2) y s Como la imagen es REAL de un objeto REAL es invertida (también se observa en la Figura 16), M=-4, y por lo tanto de la ecuación (2) se obtiene, s' -4 = - (3) s Sabiendo que s =-10,0 m, de las ecuaciones (1) y (3) se obtiene, s = - 2,50 m f = - 2,00 m Como, f= R 2 se obtiene, R = - 4,00 m Por lo tanto, el objeto debe ubicarse a 2,50 m delante del espejo esférico cóncavo y éste debe tener un radio de curvatura igual 4,00 m.

15 Espejos planos Los espejos planos son espejos esféricos de radio de curvatura infinito ( R ). Con base en esto se pueden encontrar sus fórmulas con base en la de los espejos esféricos, = s' s R Reemplazando R se obtiene para espejos planos, 15 s' = -s Es decir, para espejos planos la imagen de un objeto REAL es virtual y se encuentra a la misma distancia del espejo que el objeto pero atrás de éste. En cuanto al aumento, como s =-s se obtiene, s' M = - 1 s Es decir la imagen del objeto REAL formada por un espejo plano es VIRTUAL, DERECHA y de igual tamaño que el objeto. Forma tradicional de demostrar las expresiones del espejo plano Figura 17

16 Observar la Figura 17. El objeto puntual O y la imagen también puntual O. La imagen fue obtenida mediante el trazado de dos rayos: uno perpendicular al espejo y al reflejarse se devuelve en la misma dirección y el otro incidiendo oblicuo al espejo con un ángulo y al reflejarse lo hace con un ángulo cumpliendo la ley de reflexión, =. Por geometría (paralelas cortadas por secante) se tiene, φ = α 16 φ' = α' y por lo tanto, α = α' Es decir el triangulo OO V es isiscéles en cuyo caso su altura es mediatriz, conluyéndose, s = s' Si se tiene en cuenta las normas DIN, s' = -s Observar la Figura 18. El triángulo VAO es igual al triangulo VA O ya que tienen sus tres ángulos iguales y su base igual. Por lo tanto, y y' Figura 18

17 De la definición de aumento, y' M = = +1 y Ejemplo 3: Qué tamaño debe tener un espejo plano orientado verticalmente para que una persona de altura h se observe completamente en él? Calcular además la altura a la que debe estar ubicado del piso. 17 Solución: Figura 19 Observar la Figura 19. Para lograr reflejarse la persona entera en el espejo plano es necesario que los rayos OP y AP incidan en la superficie de éste. A su vez estos rayos reflejados deben lograr entrar al ojo. Analizando la construcción de la imagen se deduce que el tamaño del espejo debe ser PP y estar a una altura sobre el piso igual a P V. Por geometría el triángulo PBP es semejante al triángulo O BA (tiene sus bases paralelas y el ángulo en B común). Por lo tanto se puede establecer la siguiente proporción, h1 h = s 2s Y por lo tanto,

18 h h 1 = 2 Un análisis análogo con los BA A y P A V triángulos permite establecer la proporción, h2 h' s = 2s h' h 2 = 2 18 Es decir, para que la persona se pueda observar completamente, el espejo debe tener la mitad del tamaño de la ella y estar su parte inferior a una distancia del piso igual a la mitad de la distancia que hay del éste a sus ojos. Ejemplo 4: Mostrar que si un espejo plano es desplazado una distancia x en la dirección de la normal, la imagen se mueve 2x. Solución: Figura 20 Observar la Figura 20. Inicialmente el objeto estaba a una distancia s del espejo y a igual distancia se ubica su imagen detrás de éste. Si se desplaza el espejo una distancia x, el objeto se encontrará ya a una distancia s + x y a igual distancia se ubicará su imagen detrás de éste. Por lo tanto de la geometría se obtiene,

19 d = 2 s + x - 2s d = 2x Es decir si el espejo se desplaza x la imagen se desplaza 2x. Ejemplo 5: 19 Mostrar que cuando un espejo plano gira un ángulo los rayos reflejados giran 2. Solución: Figura 21 Observar la Figura 21. El ángulo que rota el espejo es igual al ángulo que rota la normal. Antes de rotar el espejo el ángulo de incidencia del rayo y por ende el de reflexión es ; después de rotar el espejo el ángulo de incidencia y el de reflexión del rayo es, α = φ + θ Por geometría de los ángulos el ángulo que rota el rayo reflejado es, β = 2α - 2φ β = 2 φ + θ - 2φ β = 2θ que es lo se pedía demostrar.

20 Taller sobre espejos 1. Completar la tabla 1 para espejos esféricos bajo aproximación paraxial. Todas las distancias están en mm. R es el radio de curvatura, f es la distancia focal, s la distancia objeto, s la distancia imagen. Resolver analítica y gráficamente. Tabla 1 TIPO R s s f Sistema convergente o divergente Focos reales o virtuales Imagen real o virtual? Imagen derecha o invertida? Aumento CONVEXO VIRTUAL DERECHA 0,75 PLANO -300 CÓNCAVO CONVEXO ,5 48 CÓNCAVO -50 REAL 1,5 20 FIN. Este módulo se lo dedico a mi gran amigo, mi perrito BRUNO, que el día de hoy me tocó despedirlo con mucha tristeza pero con profundo amor para evitarle sufrimientos. Siempre que estaba escribiendo o realizando simulaciones me acompañabas. Dios te bendiga por habernos dado tanta felicidad. Mayo 6 de 2013 Diego A.

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC: ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen

Más detalles

Óptica geométrica: conceptos generales

Óptica geométrica: conceptos generales Óptica geométrica: conceptos generales Para comprender las imágenes y su formación, sólo necesitamos el modelo de rayos de la luz, las leyes de reflexión y refracción, y un poco de geometría y trigonometría

Más detalles

ÓPTICA GEOMÉTRICA MODELO 2016

ÓPTICA GEOMÉTRICA MODELO 2016 ÓPTICA GEOMÉTRICA MODELO 2016 1- Se desea obtener una imagen virtual de doble tamaño que un objeto. Si se utiliza: a) Un espejo cóncavo de 40 cm de distancia focal, determine las posiciones del objeto

Más detalles

10. Óptica geométrica (I)

10. Óptica geométrica (I) 10. Óptica geométrica (I) Elementos de óptica geométrica Centro de curvatura: centro de la superficie esférica a la que pertenece el dioptrio esférico Radio de curvatura: radio de la superficie esférica

Más detalles

Óptica geométrica: conceptos generales

Óptica geométrica: conceptos generales Óptica geométrica: conceptos generales Para comprender las imágenes y su formación, sólo necesitamos el modelo de rayos de la luz, las leyes de reflexión y refracción, y un poco de geometría y trigonometría

Más detalles

Junio Pregunta 5A.- a) b) Junio Pregunta 3B.- a) b) Modelo Pregunta 4A.- a) b) Septiembre Pregunta 4B.

Junio Pregunta 5A.- a) b) Junio Pregunta 3B.- a) b) Modelo Pregunta 4A.- a) b) Septiembre Pregunta 4B. Junio 2013. Pregunta 5A.- A 10 cm de distancia del vértice de un espejo cóncavo de 30 cm de radio se sitúa un objeto de 5 cm de altura. a) Determine la altura y posición de la imagen b) Construya la imagen

Más detalles

Deducción de las leyes de reflexión y refracción Imagen de un objeto puntual: refracción en una superficie esférica

Deducción de las leyes de reflexión y refracción Imagen de un objeto puntual: refracción en una superficie esférica Deducción de las leyes de reflexión y refracción Imagen de un objeto puntual: refracción en una superficie esférica 1 Deducción de las leyes de reflexión y refracción Mucho antes de que Maxwell desarrollara

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 1 octubre 2013

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 1 octubre 2013 2014-Modelo A. Pregunta 4.- Utilizando una lente convergente delgada que posee una distancia focal de 15 cm, se quiere obtener una imagen de tamaño doble que el objeto. Calcule a qué distancia ha de colocarse

Más detalles

Resumen de Optica. Miguel Silvera Alonso. Octubre de 2000

Resumen de Optica. Miguel Silvera Alonso. Octubre de 2000 Resumen de Optica Miguel Silvera Alonso Octubre de 2000 Índice 1. Sistemas Opticos ideales 2 1.1. Espejo Plano................. 2 1.2. Espejo Esférico................ 2 1.3. lámina delgada................

Más detalles

Física basada en Álgebra

Física basada en Álgebra Slide 1 / 66 Slide 2 / 66 ísica basada en Álgebra Óptica Geométrica 2015-12-01 www.njctl.org Tabla de ontenidos Slide 3 / 66 lick sobre el tópico para ir al tema Reflexión Espejo Esférico Refracción y

Más detalles

Ley de reflexión y refracción de la luz.

Ley de reflexión y refracción de la luz. Física 1 Químicos - Óptica Geométrica Ley de reflexión y refracción de la luz. 1. (a) Un haz de luz se propaga en cierto tipo de vidrio. Sabiendo que la velocidad de la luz es c = 3 10 8 m/s, la longitud

Más detalles

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes:

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes: ONDAS LUMINOSAS La luz que nos llega del sol (luz blanca), está compuesta por rayos de luz de diferentes colores. Este conjunto de rayos constituye lo que se llama espectro visible, el cual, es una zona

Más detalles

A-PDF Manual Split Demo. Purchase from to remove the watermark

A-PDF Manual Split Demo. Purchase from  to remove the watermark 0 A-PD Manual Split Demo. Purchase from www.a-pd.com to remove the watermark 86 ÓPTIA GEOMÉTRIA j Sigue practicando. a) onstruya gráficamente la imagen obtenida en un espejo cóncavo de un objeto situado

Más detalles

ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión.

ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión. ÓPTICA GEOMÉTRICA 1. Conceptos básicos. 2. Espejos planos. 3. Espejos esféricos. 4. Dioptrios. 5. Lentes delgadas. 6. La visión. Física 2º bachillerato Óptica geométrica 1 ÓPTICA GEOMÉTRICA La óptica geométrica

Más detalles

Bolilla 12: Óptica Geométrica

Bolilla 12: Óptica Geométrica Bolilla 12: Óptica Geométrica 1 Bolilla 12: Óptica Geométrica Los contenidos de esta bolilla están relacionados con los principios primarios que rigen el comportamiento de los instrumentos ópticos. La

Más detalles

Reflexión. Física basada en Álgebra. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Reflexión. Física basada en Álgebra. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 ísica basada en Álgebra Óptica Geométrica 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Tabla de ontenidos lick sobre el tópico para ir al tema Reflexión Refracción y Ley

Más detalles

IV - ÓPTICA PAU.98 PAU.98

IV - ÓPTICA PAU.98 PAU.98 1.- Dónde debe colocarse un objeto para que un espejo cóncavo forme imágenes virtuales?. Qué tamaño tienen estas imágenes?. Realiza las construcciones geométricas necesarias para su explicación PAU.94

Más detalles

ESPEJOS ESFERICOS. Figura 29. Definición de términos para los espejos esféricos.

ESPEJOS ESFERICOS. Figura 29. Definición de términos para los espejos esféricos. ESPEJOS ESFERICOS Los mismos métodos geométricos aplicados a la reflexión de la luz desde un espejo plano se pueden utilizar para un espejo curvo. El ángulo de incidencia sigue siendo igual que el ángulo

Más detalles

Sistema óptico: sistema a través del cual puede pasar la luz y que separa dos medios de distinto índice de refracción Sistemas centrados

Sistema óptico: sistema a través del cual puede pasar la luz y que separa dos medios de distinto índice de refracción Sistemas centrados Óptica geométrica. Formación de imágenes en espejos y lentes. La longitud de onda de la luz suele ser muy peueña en comparación con el tamaño de obstáculos o aberturas ue se encuentra a su paso. Esto permite

Más detalles

ÓPTICA GEOMÉTRICA DIOPTRIO PLANO

ÓPTICA GEOMÉTRICA DIOPTRIO PLANO DIOPTRIO PLANO Ejercicio 1. Junio 2.013 Un objeto se encuentra delante de un espejo plano a 70 cm del mismo. a. Calcule la distancia al espejo a la que se forma la imagen y su aumento lateral. b. Realice

Más detalles

TEMA 11 : ÓPTICA GEOMÉTRICA

TEMA 11 : ÓPTICA GEOMÉTRICA . INTRODUCCIÓN A LA ÓPTICA GEOMÉTRICA Las leyes sobre las que se estructura la óptica geométrica son: Ley de propagación rectilínea de la luz Ley de independencia de los rayos luminosos. Cada rayo es independiente

Más detalles

Física II- Curso de Verano. Clase 7

Física II- Curso de Verano. Clase 7 Física II- Curso de Verano Clase 7 Formación de imágenes: ESPEJOS PLANOS Leyes de reflexión Imagen virtual, formada por la prolongación de los rayos Distancia imagen = distancia objeto d o =d i No invierte

Más detalles

Un espejo plano es una superficie plana pulimentada que puede reflejar la luz que le llega.

Un espejo plano es una superficie plana pulimentada que puede reflejar la luz que le llega. INSTITUCION EDUCATIVA INEM JOSE CELESTINO MUTIS ASIGNATUA FISICA GRADO 11 DOCENTE: Carlos Alberto Gutiérrez Gómez ARMENIA 8 Agosto de 2012 Guía de Espejos Esféricos ESPEJOS PLANOS Un espejo plano es una

Más detalles

Seminario de Física. 2º bachillerato LOGSE. Unidad 6. Óptica

Seminario de Física. 2º bachillerato LOGSE. Unidad 6. Óptica A) Óptica Física 1.- Un haz de luz roja penetra en una lámina de vidrio de 30 cm de espesor con un ángulo de incidencia de 45 º. a) Explica si cambia el color de la luz al penetrar en el vidrio y determina

Más detalles

ÓPTICA ÓPTICA GEOMÉTRICA

ÓPTICA ÓPTICA GEOMÉTRICA ÓPTICA ÓPTICA GEOMÉTRICA IES La Magdalena. Avilés. Asturias En la óptica geométrica se estudian los cambios de dirección experimentados por los rayos de luz cuando son reflejados o refractados mediante

Más detalles

Ejercicio 1. y el ángulo de refracción será:

Ejercicio 1. y el ángulo de refracción será: Ejercicio 1 Un rayo de luz que se propaga en el aire entra en el agua con un ángulo de incidencia de 45º. Si el índice de refracción del agua es de 1,33, cuál es el ángulo de refracción? Aplicando la ley

Más detalles

Capítulo 1 SEMINARIO ÓPTICA GEOMÉTRICA

Capítulo 1 SEMINARIO ÓPTICA GEOMÉTRICA Capítulo 1 SEMINARIO 1. Un foco luminoso se encuentra situado en el fondo de una piscina de 3,00 metros de profundidadllena de agua. Un rayo luminoso procedente del foco que llega al ojo de un observador

Más detalles

Porqué es útil estudiar los espejos y las lentes como elementos ópticos? A qué se le conoce como distancia focal de una lente o espejo?

Porqué es útil estudiar los espejos y las lentes como elementos ópticos? A qué se le conoce como distancia focal de una lente o espejo? Porqué es útil estudiar los espejos y las lentes como elementos ópticos? A qué se le conoce como distancia focal de una lente o espejo? Cómo depende la distancia focal del material que forma un espejo?

Más detalles

ESPEJOS. Segundo Medio Física Marzo 2012

ESPEJOS. Segundo Medio Física Marzo 2012 ESPEJOS Segundo Medio Física Marzo 2012 ESPEJOS Los espejos son superficies que pueden reflejar en forma ordenada, hasta el 100% de la luz que a ellos llega Los espejos se dividen en 2 : - Espejos Planos

Más detalles

Física 2 Biólogos y Geólogos - Curso de Verano 2006 Turno: Tarde

Física 2 Biólogos y Geólogos - Curso de Verano 2006 Turno: Tarde Física 2 Biólogos y Geólogos - Curso de Verano 2006 Turno: Tarde Serie 2: Objetos. Formación de imágenes. Imágenes. Dioptras esféricas y planas. Espejos esféricos y planos. Lentes delgadas, sistemas de

Más detalles

Seminario 4: Óptica Geométrica

Seminario 4: Óptica Geométrica Seminario 4: Óptica Geométrica Fabián Andrés Torres Ruiz Departamento de Física,, Chile 7 de Abril de 2007. Problemas. (Problema 5, capitulo 36,Física, Raymond A. Serway, V2, cuarta edición) Un espejo

Más detalles

TEMA 7. ÓPTICA GEOMÉTRICA.

TEMA 7. ÓPTICA GEOMÉTRICA. TEMA 7. ÓPTICA GEOMÉTRICA. I. CONCEPTOS BÁSICOS. La óptica geométrica es la parte de la Física que estudia la trayectoria de la luz cuando experimenta reflexiones y refracciones en la superficie de separación

Más detalles

Óptica Geométrica. Slide 1 / 55. Slide 2 / 55. Slide 3 / 55. El Modelo de Rayos de la Luz. Reflexión. θ i. θ r

Óptica Geométrica. Slide 1 / 55. Slide 2 / 55. Slide 3 / 55. El Modelo de Rayos de la Luz. Reflexión. θ i. θ r Slide 1 / 55 Óptica Geométrica ' El Modelo de Rayos de la Luz Slide 2 / 55 La luz puede viajar en una linea recta. Representamos esto con rayos, cuales son lineas rectas emitidos por una fuente de luz

Más detalles

n = 7, s 1 λ = c ν = , = 4, m

n = 7, s 1 λ = c ν = , = 4, m . (Andalucía, Jun. 206) Un rayo de luz con una longitud de onda de 300 nm se propaga en el interior de una fibra de vidrio, de forma que sufre reflexión total en sus caras. a) Determine para qué valores

Más detalles

Óptica Eddie L. Segura C. ÓPTICA GEOMÉTRICA

Óptica Eddie L. Segura C. ÓPTICA GEOMÉTRICA ÓPTICA GEOMÉTRICA 1. INTRODUCCIÓN A LA ÓPTICA GEOMÉTRICA Las leyes sobre las que se estructuró la óptica geométrica son: Ley de propagación rectilínea de la luz Ley de independencia de los rayos luminosos.

Más detalles

Prismas y lentes CAPÍTULO 5. Editorial Contexto - - Canelones

Prismas y lentes CAPÍTULO 5. Editorial Contexto -  - Canelones CAPÍTULO 5 56 Capítulo 5 PRISMAS Y LENTES interacciones campos y ondas / física 1º b.d. Prismas y lentes Rayo incidente n 1 Prismas En este capítulo estudiaremos qué sucede con la luz cuando atraviesa

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS I TÉRMINO PRIMERA EVALUACION DE FISICA D. Nombre: Nota: Paralelo:

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS I TÉRMINO PRIMERA EVALUACION DE FISICA D. Nombre: Nota: Paralelo: ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS I TÉRMINO 2012 2013 PRIMERA EVALUACION DE FISICA D Nombre: Nota: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos

Más detalles

Reflexión y refracción en superficies planas y curvas

Reflexión y refracción en superficies planas y curvas Física II (Biólogos y Geólogos) SERIE 1 Reflexión y refracción en superficies planas y curvas 1. Considere un conjunto de 10 superficies planas paralelas separadas entre sí por la misma distancia d. Cada

Más detalles

Colegio Madre Carmen Educar con Amor y Sabiduría para Formar Auténticos Ciudadanos OPTICA REFLEXIÓN DE LA LUZ

Colegio Madre Carmen Educar con Amor y Sabiduría para Formar Auténticos Ciudadanos OPTICA REFLEXIÓN DE LA LUZ Área/Asignatura: Física Grado: 11 Docente: Luis Alfredo Pulido Morales Fecha: Eje Temático: óptica Periodo: 01 02 03 REFLEXIÓN DE LA LUZ Rayos de luz Para explicar los fenómenos de interferencia, difracción

Más detalles

9 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN

9 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN 9 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN OBJETIVOS Uso de instrumentos ópticos. Comprobación de las leyes de la reflexión y la refracción. Estudio de la desviación de la luz en un prisma. Determinación

Más detalles

Observar los fenómenos de reflexión y refracción en espejos y lentes para determinar las características básicas de la formación de imágenes.

Observar los fenómenos de reflexión y refracción en espejos y lentes para determinar las características básicas de la formación de imágenes. Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Física General Práctica # 4 Espejos y lentes I. Introducción. Los fenómenos de reflexión y refracción están presentes en nuestra vida diaria:

Más detalles

Unidad 5: Óptica geométrica

Unidad 5: Óptica geométrica Unidad 5: Óptica geométrica La óptica geométrica estudia los fenómenos luminosos utilizando el concepto de rayo, sin necesidad de considerar el carácter electromagnético de la luz. La óptica geométrica

Más detalles

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: FECHA:

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE:   FECHA: ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: ACÚSTICA Resuelva cada uno de los siguientes problemas haciendo el proceso completo. 1. Un estudiante golpea

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas V: imágenes en espejos y lentes

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas V: imágenes en espejos y lentes SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Ondas V: imágenes en espejos y lentes SGUICES027CB32-A16V1 Solucionario guía Ondas V: imágenes en espejos y lentes Ítem Alternativa Habilidad 1 A Reconocimiento 2 D Reconocimiento

Más detalles

1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º

1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º 1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º. Encuentra el ángulo refractado ( n agua = 1, 33 ).. Encuentra el ángulo límite para la reflexión total interna

Más detalles

FORMACIÓN DE IMÁGENES EN ESPEJOS

FORMACIÓN DE IMÁGENES EN ESPEJOS FORMACIÓN DE IMÁGENES EN ESPEJOS La reflexión que producen los objetos depende de las características de los cuerpos, de esta forma existen dos tipos de reflexiones a saber: 1.- Reflexión especular o regular.

Más detalles

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un rayo de luz de frecuencia 5 10¹⁴ Hz incide con un ángulo de incidencia de 30 sobre una lámina de vidrio de caras plano-paralelas de espesor

Más detalles

TALLER DE LENTES LENTES

TALLER DE LENTES LENTES Docente: Edier Saavedra Urrego Fecha: julio 25 de 2013 Asignatura: física TALLER DE LENTES 1. Realice un resumen de la siguiente lectura en su cuaderno. Y con base en la misma, discuta en grupo (máximo

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u) 1)

Más detalles

Qué es la reflexión de la luz?

Qué es la reflexión de la luz? OLEGIO REAL-ROYAL ROYAL SHOOL ESP. VITOR SANTANDER V. LA RELEXIÓN DE LA LUZ: ESPEJOS OLEGIO REAL-ROYAL ROYAL SHOOL ESP. VITOR SANTANDER V. LA RELEXIÓN DE LA LUZ: ESPEJOS OLEGIO REAL-ROYAL-SHOOL Qué es

Más detalles

1. El (los) espejo(s) que puede(n) formar una imagen virtual, derecha y de igual tamaño que el objeto observado, es (son)

1. El (los) espejo(s) que puede(n) formar una imagen virtual, derecha y de igual tamaño que el objeto observado, es (son) Programa Estándar Anual Nº Guía práctica Ondas V: imágenes en espejos y lentes Ejercicios PSU 1. El (los) espejo(s) que puede(n) formar una imagen virtual, derecha y de igual tamaño que el objeto observado,

Más detalles

Solucionario de las actividades propuestas en el libro del alumno FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO

Solucionario de las actividades propuestas en el libro del alumno FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO Solucionario de las actividades propuestas en el libro del alumno.. FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO Página 53. En la imagen que se forma en un espejo plano de un objeto se invierten la izquierda

Más detalles

Problemas de Óptica. PAU (PAEG)

Problemas de Óptica. PAU (PAEG) 1. (Junio 09 ) Observamos una pequeña piedra que esta incrustada bajo una plancha de hielo, razona si su profundidad aparente es mayor o menor que su profundidad real. Traza un diagrama de rayos para justificar

Más detalles

ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real Imagen virtual Imágenes en los espejos planos

ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real Imagen virtual Imágenes en los espejos planos ÓPTICA GEOMÉTRICA Tipos de imágenes Imagen real, es cuando está formada sobre los propios rayos. Estas imágenes se pueden recoger sobre una pantalla. Imagen virtual, es cuando está formada por la prolongación

Más detalles

ONDAS ELECTROMAGNÉTICAS Y ESPECTRO VISIBLE

ONDAS ELECTROMAGNÉTICAS Y ESPECTRO VISIBLE IV ONDAS ELECTROMAGNÉTICAS Y ESPECTRO VISIBLE En estas páginas ofrecemos, resueltas, una selección de las actividades más representativas de las unidades que componen este bloque. No debes consultar estas

Más detalles

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.

GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo. GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de

Más detalles

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio,

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio, PROBLEMAS ÓPTICA 1. Una de las frecuencias utilizadas en telefonía móvil (sistema GSM) es de 900 MHz. Cuántos fotones GSM necesitamos para obtener la misma energía que con un solo fotón de luz violeta,

Más detalles

Espejos CAPÍTULO 4. Editorial Contexto - - Canelones Espejos planos, imágenes

Espejos CAPÍTULO 4. Editorial Contexto -  - Canelones Espejos planos, imágenes APÍTULO 4 interacciones campos y ondas / física 1º b.d. ESPEJOS apítulo 4 43 Espejos Espejos planos, imágenes En la figura 1 representamos un fuente puntual de luz ubicada en A y un espejo plano. En ella

Más detalles

TEMA 6.- Óptica CUESTIONES

TEMA 6.- Óptica CUESTIONES TEMA 6.- Óptica CUESTIONES 51.- a) Si queremos ver una imagen ampliada de un objeto, qué tipo de espejo tenemos que utilizar? Explique, con ayuda de un esquema, las características de la imagen formada.

Más detalles

PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión

PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión Comprobación experimental de la Ley de la Reflexión de la luz en espejos planos y cilíndricos Objetivos Estudiar las leyes de la óptica

Más detalles

Lentes delgadas Clasificación de las lentes Según su forma Lentes convergentes Lentes divergentes Según su grosor

Lentes delgadas Clasificación de las lentes Según su forma Lentes convergentes Lentes divergentes Según su grosor Lentes delgadas Una lente delgada es un sistema óptico centrado formado por dos dioptrios, uno de los cuales, al menos, es esférico, y en el que los dos medios refringentes extremos poseen el mismo índice

Más detalles

Guía: Imágenes en espejos y lentes SGUICES034CB32-A17V1 SGUICES003CB32-A16V1

Guía: Imágenes en espejos y lentes SGUICES034CB32-A17V1 SGUICES003CB32-A16V1 Guía: Imágenes en espejos y lentes SGUICES034CB32-A17V1 SGUICES003CB32-A16V1 Solucionario guía Imágenes en espejos y lentes Ítem Alternativa Habilidad Dificultad estimada 1 C Reconocimiento Fácil 2 B Reconocimiento

Más detalles

Espejos. Fuente:webdelprofesor.ula.ve

Espejos. Fuente:webdelprofesor.ula.ve Óptica Espejos Los espejos son superficies pulidas que pueden reflejar en forma ordenada, hasta el 100 % de la luz que a ellos llega. Los rayos reflejados o sus prolongaciones se cruzan formando las imágenes.

Más detalles

LÁMINAS Y PRISMAS -LEY DE SNELL- Índice de refracción de un material (n) y la velocidad de la luz en el material (V ): n = C V

LÁMINAS Y PRISMAS -LEY DE SNELL- Índice de refracción de un material (n) y la velocidad de la luz en el material (V ): n = C V Física III ingeniería Oscilaciones Ondas Óptica Semestre 02 de 2008 Escuela de Física Sede Medellín LÁMINAS Y PRISMAS -LEY DE SNELL- 1 Objetivo general Estudiar las propiedades ópticas de la lámina de

Más detalles

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0 Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Geometría Analítica 1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a

Más detalles

Formación de imágenes

Formación de imágenes ormación de imágenes Espejos esféricos: Cóncavos Convexos Lentes Convergentes Divergentes Salir Espejos esféricos cóncavos ormación de imágenes en el espejo esférico. a mayor distancia que el centro de

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

G UIA DE APRENDIZ AJ E "Luz"

G UIA DE APRENDIZ AJ E Luz Saint John s School FISICA - Electivo II - Profesor: Iván Torres A. G UIA DE APRENDIZ AJ E "Luz" Ejercicios de Selección Múltiple 1. Juan consultando en un libro, leyó que el índice de refracción para

Más detalles

Lentes Clasificación Se clasifican en dos grupos convergentes (positivas) y divergentes (negativas), las cuales a su vez pueden adoptar formas

Lentes Clasificación Se clasifican en dos grupos convergentes (positivas) y divergentes (negativas), las cuales a su vez pueden adoptar formas Lentes Clasificación Se clasifican en dos grupos convergentes (positivas) y divergentes (negativas), las cuales a su vez pueden adoptar formas distintas. Estas geometrías de lentes tienen las siguientes

Más detalles

Guía: Lentes F2 ByG - Q 2º Cuat 2010

Guía: Lentes F2 ByG - Q 2º Cuat 2010 Guía: Lentes F2 ByG - Q 2º Cuat 2010 Objetivos: En la presente práctica se evaluarán las características de sistemas formadores de imágenes como es el caso de lentes delgadas convergentes. Se analizarán

Más detalles

4.60. Un espejo esférico cóncavo de 20 cm de radio se utiliza para proyectar una imagen de una bujía sobre un muro situado a 110 cm.

4.60. Un espejo esférico cóncavo de 20 cm de radio se utiliza para proyectar una imagen de una bujía sobre un muro situado a 110 cm. Problemas Óptica 4.60. Un espejo esférico cóncavo de 20 cm de radio se utiliza para proyectar una imagen de una bujía sobre un muro situado a 110 cm. Donde debe ser colocada la bujía y como se vera la

Más detalles

Seminario 3: Lentes, espejos y formación de imágenes

Seminario 3: Lentes, espejos y formación de imágenes Seminario 3: Lentes, espejos y ormación de imágenes Fabián Andrés Torres Ruiz Departamento de Física,, Chile 4 de Abril de 2007. Problemas. (Problema 8, capitulo 35,Física, Raymond A. Serway, las supericies

Más detalles

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS

EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS EJERCICIOS DE SELECTIVIDAD LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS 1. Un foco luminoso puntual está situado bajo la superficie de un estanque de agua. a) Un rayo de luz pasa del agua al aire con un ángulo

Más detalles

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2

R=mv/qBvmax=AAAωF=kxB=µoI/2πd; ;ertyuied3rgfghjklzxc;e=mc 2 E=hf;p=mv;F=dp/dt;I=Q/t;Ec=mv 2 /2; TEMA 6: ÓPTICA F=KQq/r 2 ;L=rxp;x=Asen(ωt+φo);v=λf c 2 =1/εoµo;A=πr 2 ;T 2 =4π 2 /GMr 3 ;F=ma; L=dM/dtiopasdfghjklzxcvbvv=dr/dt; M=rxF;sspmoqqqqqqqqqqqp=h/λ; Ejercicios

Más detalles

TAREA # 5B OPTICA OPTICA GEOMETRICA (ESPEJOS) Prof. Terenzio Soldovieri C.

TAREA # 5B OPTICA OPTICA GEOMETRICA (ESPEJOS) Prof. Terenzio Soldovieri C. cuerpo libre. La ausencia de éstos tendrá como consecuencia la anulación de la solución del problema correspondiente. Todos los sistemas de coordenadas a usar deben tener el eje +x apuntando hacia el Este

Más detalles

1. a) Explique los fenómenos de reflexión y refracción de la luz. siempre refracción?

1. a) Explique los fenómenos de reflexión y refracción de la luz. siempre refracción? ÓPTICA 2001 1. a) Indique qué se entiende por foco y por distancia focal de un espejo. Qué es una imagen virtual? b) Con ayuda de un diagrama de rayos, describa la imagen formada por un espejo convexo

Más detalles

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ

ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ 1 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ INTRODUCCIÓN TEÓRICA: La característica fundamental de una onda propagándose por un medio es su velocidad (v), y naturalmente, cuando la onda cambia

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

TEMA 4: OPTICA. s, y s, y Espejos y lentes FINALIDAD: dado un objeto imagen

TEMA 4: OPTICA. s, y s, y Espejos y lentes FINALIDAD: dado un objeto imagen 4.2.- Espejos y lentes FINALIDAD: dado un objeto imagen s, y s, y Objeto o imagen real: aquél para el cual los rayos de luz se cruzan de forma real. El punto de corte se puede recoger en una pantalla Figura

Más detalles

GUÍA Nº 4 IMAGENES DE REFLEXION FORMADAS POR ESPEJOS PLANOS Y CURVOS

GUÍA Nº 4 IMAGENES DE REFLEXION FORMADAS POR ESPEJOS PLANOS Y CURVOS GUÍA Nº 4 IMAGENES DE REFLEXION FORMADAS POR ESPEJOS PLANOS Y CURVOS 1.- Introducción Suponemos que el espejo tiene poca abertura y que el rayo OP va muy próximo al eje principal (rayo paraxial). La imagen

Más detalles

MADRID / JUNIO 04. LOGSE / FÍSICA / ÓPTICA / REPERTORIO B / PROBLEMA 2

MADRID / JUNIO 04. LOGSE / FÍSICA / ÓPTICA / REPERTORIO B / PROBLEMA 2 MADRID / JUNIO 04. LOGSE / FÍSICA / ÓPTICA / REPERTORIO B / PROBLEMA PROBLEMA. Un rayo de luz monocromática incide sobre una cara lateral de un prisma de vidrio, de índice de refracción n =. El ángulo

Más detalles

INSTITUCION EDUCATIVA COLEGIO INTEGRADO FE Y ALEGRIA ESPEJOS PLANOS. H i = H o. d i = d o CONCEPTOS BASICOS

INSTITUCION EDUCATIVA COLEGIO INTEGRADO FE Y ALEGRIA ESPEJOS PLANOS. H i = H o. d i = d o CONCEPTOS BASICOS INSTITUCION EDUCATIVA COLEGIO INTEGRADO E Y ALEGRIA MUNICIPIO LOS PATIOS GUIA DE TRABAJO No. 7 Nombre: Código: Grado: Sin embargo, no fue sino hasta 1857 cuando se lograron las imágenes brillantes que

Más detalles

superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48.

superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ. El índice de refracción del aceite de linaza es 1,48. EJERCICIOS OPTICA GEOMÉTRICA. 2.- El rayo de luz que se muestra en la Figura 2, forma un ángulo de 20 0 con la normal NN a la superficie de una lámina de aceite de linaza. Determine los ángulos θ y θ.

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD

PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD 1.- Un objeto luminoso de 2mm de altura está situado a 4m de distancia de una pantalla. Entre el objeto y la pantalla se coloca una lente esférica delgada L, de distancia

Más detalles

Lentes y formación de imágenes

Lentes y formación de imágenes Lentes y formación de imágenes Principio de Huygens y por qué necesitamos instrumentos de formación de imágenes. Un instrumento sencillo de formación de imágenes: la cámara estenopeica. Principio de formación

Más detalles

Cónicas. Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá. November 27,

Cónicas. Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá. November 27, Cónicas Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá November 27, 2013 marcos.marva@uah.es Cómo definir una cónica Como intersección de un plano y un cono recto de doble hoja

Más detalles

SGUICTC034TC32-A17V1. Guía: Imágenes en espejos y lentes

SGUICTC034TC32-A17V1. Guía: Imágenes en espejos y lentes SGUIT034T32-A17V1 Guía: Imágenes en espejos y lentes Solucionario guía Imágenes en espejos y lentes Ítem Alternativa Habilidad ificultad estimada 1 A Reconocimiento Fácil 2 Reconocimiento Fácil 3 E Reconocimiento

Más detalles

GUIA DE REFUERZO PAES 2016 CCNN. Óptica geométrica

GUIA DE REFUERZO PAES 2016 CCNN. Óptica geométrica GUIA DE REFUERZO PAES 2016 CCNN Óptica geométrica Sabes qué es la luz? Qué recuerdas del espectro electromagnético? Sabes cuál fue el aporte de Isaac Newton a la parte de la física que estudia la luz?

Más detalles

Problemas de Óptica II. Óptica geométrica 2º de bachillerato. Física

Problemas de Óptica II. Óptica geométrica 2º de bachillerato. Física 1 Problemas de Óptica II. Óptica geométrica 2º de bachillerato. Física 1. Los índices de refracción de un dioptrio esférico cóncavo, de 20,0 cm de radio, son 1,33 y 1,54 para el primero y el segundo medios.

Más detalles

I.E.S. El Clot Dto. Física y Química Curso

I.E.S. El Clot Dto. Física y Química Curso I.E.S. El Clot Dto. Física y Química Curso 2014-15 PROBLEMAS Y CUESTIONES SELECTIVO. ÓPTICA. 60º 1cm 1) (P Jun94) Determinad el desplazamiento paralelo de un rayo de luz al atravesar una lámina plana de

Más detalles

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS 3B SCIENTIFIC PHYSICS Juego de demostración de óptica de laser U17300 y juego complementario Instrucciones de servicio 1/05 ALF Índice Página Exp. Nr. Experimento Equipo 1 Introducción 2 Volumen de suministro

Más detalles

Bloque 2. Geometría. 4. Iniciación a las Cónicas

Bloque 2. Geometría. 4. Iniciación a las Cónicas Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado

Más detalles

CURSO 2006/2007 TEMA 1:

CURSO 2006/2007 TEMA 1: HOJA DE PROBLEMAS ÓPTICA I CURSO 2006/2007 TEMA 1: 1.1.- La anchura de banda del espectro de emisión de una fuente láser es: ν = 30 MHz. Cuál es la duración del pulso luminoso emitido por la fuente? Cuál

Más detalles

Reflexión de la luz MATERIALES MONTAJE

Reflexión de la luz MATERIALES MONTAJE Reflexión de la luz Espejos planos Estamos acostumbrados a usar los espejos sin plantearnos que ocurre con los rayos de luz que inciden sobre ellos. Vamos a estudiar el comportamiento de la luz primero

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3 b) y 16 x Lugares geométricos y cónicas

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3 b) y 16 x Lugares geométricos y cónicas Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN 4 La ecuación del lugar geométrico de los puntos del plano que equidistan de la recta x y 4, y del punto P (, ) es: a) x y x y 68 0 b) 4x 9y

Más detalles

1 LA LUZ. 2 La velocidad de la luz

1 LA LUZ. 2 La velocidad de la luz 1 LA LUZ -Newton: La luz está formada por corpúsculos -Hyugens: La luz es una onda -Interferencia -Las ecuaciones de Maxwell -El éter. -Einstein y la teorí a de los fotones. E=hν La luz posee una naturalez

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles