Construcción de números complejos
|
|
|
- Sergio Bernardo Palma Cruz
- hace 9 años
- Vistas:
Transcripción
1 Construcción de números complejos (ejercicios) Objetivos. Definir números complejos como pares ordenados de números reales, definir las operaciones de adición y multiplicación de números complejos y demostrar sus propiedades principales. Requisitos. Propiedades de la adición y multiplicación de números reales. El conjunto de números complejos 1. C : R 2. Denotemos por C al conjunto R 2 de todos los pares ordenados de números reales. Por ejemplo, algunos elementos de C son p7, 1{2q, p 3, πq, p0, 4.7q. Las palabras pares ordenados significan que pa, bq, en general, no es lo mismo que pb, aq. Por ejemplo, p7, 5q y p 5, 7q son dos elementos diferentes de C: p7, 5q p 5, 7q. 2. Igualdad de números complejos. Dos pares ordenados pa, bq y pu, vq se llaman iguales si a u y b v. En este caso se escribe pa, bq pu, vq. 3. Ejemplos. Determine si los siguientes pares ordenados de números reales son iguales entre si o no: p6, 4q lomon p 4, 6q, p2 3, 9{2q lomon p 12, 4.5q, p3 2, 81q lomon p9, 9q, p0, 2q lomon p4, 5q. 4. Ejercicio. Cuándo pa, bq pb, aq 5. Ejercicio. Encuentre x, y P R tales que p2x, 7q p4, y ` 2q. Solución. Por la definición, la igualdad de pares ordenados p2x, 7q p4, y ` 2q es equivalente al siguiente sistema de dos igualdades de números reales: 2x lomon, 7 loomoon. Resolviendo estas ecuaciones encontramos x lomon, y lomon. Construcción de números complejos, ejercicios, página 1 de 6
2 Suma y producto de números complejos (definición) 6. Definición. Sean c y z dos números complejos: c pa, bq P C, z px, yq P C. Definimos su suma c ` z y su producto cz de la siguiente manera: c ` z : pa ` x, b ` yq, cz : pax by, ay ` bxq. 7. Ejemplo. Sean c p5, 7q, z p3, 2q. Entonces c ` z p5 ` 3, 7 ` 2q p lomon, lomon q, cz p5 3 p 7q 2, 5 2 ` p 7q 3q p15 ` lomon, 10 lomon q p lomon, lomon q. 8. Ejemplo. Calculamos la suma y el producto de los números complejos p3, 6q, p 4, 1q. p3, 6q ` p 4, 1q p3 4, 6 ` 1q p, q, p3, 6qp 4, 1q p 18, 21q. 9. Palabras suma y adición, producto y multiplicación. Conocimientos y destrezas son resultados de estudio y entrenamiento. La suma y el producto de dos números complejos son resultados de las operaciones adición y multiplicación. La suma de dos números complejos es un número complejo. La adición de números complejos es un operación binaria que a cada par de números complejos les asocia su suma. Propiedades de la adición de números complejos 10. Propiedad conmutativa de la adición en C. Para cualesquier c, z P C, c`z z`c. Demostración. Sean c pa, bq, z px, yq, donde a, b, x, y P R. Entonces c ` z p1q ùùù pa ` x, b ` yq p2q ùùù px ` a, y ` bq p3q ùùù z ` c. (1) Definición de la suma de números complejos. (2) Propiedad looooooooooooooooomooooooooooooooooon de la adición de números reales. (3) loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon Construcción de números complejos, ejercicios, página 2 de 6
3 11. Propiedad asociativa de la adición en C. Para cualesquier c, w, z P C, pc`wq`z c ` pw ` zq. Demostración. Sean c pa, bq, w pu, vq, z px, yq, donde a, b, u, v, x, y P R. Entonces pc ` wq ` z p1q ùùù pa ` u, b ` vq ` z p2q ùùù ppa ` uq ` x, pb ` vq ` yq p3q ùùù `a p4q ` p loomoon q, b ` p loomoon q ùùù c ` ` loomoon p5q ùùù c ` pw ` lomon q. (1), (2) Definición de la suma de números complejos. (3) (4), (5) 12. Notación 0 C. Denotamos por 0 C al par ordenado p0, 0q. loomoon 13. El neutro aditivo en C. El par ordenado 0 C es un neutro aditivo en C: Demostración. Sea z px, yq P C. P C z ` 0 C z. p1q z ` 0 C ùùù px, yq ` p0, 0q ùùù p2q px ` 0, y ` 0q ùùù p3q loomoon. (1) Definición de 0 C y la notación para los componentes de z. (2) (3) El número 0 es un neutro aditivo en R. 14. Notación z en C. Para cualquier z px, yq P C, denotemos por z al par p x, yq. 15. Ejemplos. p7, 4q p 7, 4q, p 5, 1q loooomoooon. 16. Un ejemplo más. Si z p 2, 1.5q, entonces z looooooomooooooon. Construcción de números complejos, ejercicios, página 3 de 6
4 17. Inversos aditivos en C. Para cualquier z P C, Demostración. Sea z px, yq. Entonces z ` p zq 0 C. z ` p zq ùùù p1q px, yq ` p x, yq ùùù p2q `x ` p xq, looooomooooon p3q ùùù p lomon, 0q ùùù p4q 0 C. (1) Notación z, notación para las componentes de z. (2) Definición de la operación ` en C. (3) Propiedad principal de inversos aditivos en R. (4) Notación lomon. Definición del producto de dos números complejos (repaso) 18. Definición de la multiplicación en C (repaso). Sean w p, q, z p, q. Entonces wz p, ` q. 19. Definición de la multiplicación en C (repaso). Sean w pu, vq, z px, yq. Entonces el producto de los pares ordenados w y z se define como el par ordenado ` looooomooooon looooomooooon. 20. Ejemplo. p7, 5qp2, 6q p looooooomooooooon, looooooomooooooon q p14 ` lomon, looooomooooon q p44, 32q. Construcción de números complejos, ejercicios, página 4 de 6
5 Algunas propiedades de la multiplicación de números complejos 21. Propiedad conmutativa de la multiplicación en C. Para cualesquier w, z P C, wz zw. Demostración. Sean w pu, vq, z px, yq, donde u, v, x, y P lomon. Entonces wz p1q ùùù p looooomooooon, looooomooooon q ùùù p2q pxu yv, yu ` xvq ùùù p3q zw. (1) Definición looooooooooooomooooooooooooon de números complejos. (2) Propiedad looooooooooooooooomooooooooooooooooon de la multiplicación de números reales. (3) 22. Propiedad asociativa de la multiplicación en C. Para cualesquier c, w, z P C, cpwzq pcwqz. Demostración. Sean c pa, bq, w pu, vq, z px, yq. Entonces cpwzq Justificación: pcwqz. Construcción de números complejos, ejercicios, página 5 de 6
6 23. Propiedad neutra multiplicativa del par ordenado p1, 0q. Para cualquier z px, yq P C, px, yqp1, 0q loomoon. Demostración. px, yqp1, 0q p1q ùùù `x 1 lomon, lomon lomon p2q ùùù p, q. Justificación: (1) Definición (2) Propiedades de los números reales 0 y lomon. 24. Propiedad distributiva de la multiplicación de números complejos respecto a la adición de números complejos. Sean c, w, z P C. Entonces pc ` wqz cz ` wz. Demostración. Denotemos las componentes de c, w, z de la siguiente manera: Entonces c pa, bq, w pu, vq, z px, yq. pc ` wqz ùùù p1q pa ` u, b ` vq px, yq ùùù p2q `pa ` uqx loooomoooon, loooomoooon loooomoooon p3q ùùù `ax ` ux p looooomooooon q, p4q ùùù `pax byq ` p q, p q ` p q p5q ùùù ` (1), (5) (2), (6) (3) Propiedad distributiva en R. (4) Propiedades de la adición en R., ` `, p6q ùùù cz ` wz. Construcción de números complejos, ejercicios, página 6 de 6
Demostraciones con números primos (ejercicios)
Demostraciones con números primos (ejercicios) Objetivos. Acostumbrarse a la definición de número primo, aprender a usarla en demostraciones simples. Requisitos. Propiedades de divisibilidad, máximo común
Números complejos (lista de problemas para examen)
Números complejos (lista de problemas para examen) En esta lista de problemas trabajamos con la construcción de números complejos (como pares ordenados de los reales) y con su representación en la forma
Conjunto R 3 y operaciones lineales en R 3
Conjunto R 3 y operaciones lineales en R 3 Objetivos. Definir el conjunto R 3 y operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las operaciones aritméticas en
Propiedades del valor absoluto de números enteros (ejercicios)
Propiedades del valor absoluto de números enteros (ejercicios) 1. Ejemplos. Rellene los espacios: 6 6, 8 8, 23 23, 0 0, 5 5. 4 lomon, 15 loomoon, 120 loooomoooon, 0 lomon. 2. Definición formal. El valor
Forma binomial de números complejos (ejercicios)
Forma binomial de números complejos (ejercicios) Objetivos. Mostrar que los números reales x se pueden identificar con números complejos de la forma (x, 0), y cada número complejo (x, y) se puede escribir
Números complejos (lista de problemas para examen)
Números complejos (lista de problemas para examen) En esta lista de problemas trabajamos con la construcción de números complejos (como pares ordenados de los reales) y con su representación en la forma
Polinomios (lista de problemas para examen)
Polinomios (lista de problemas para examen) En esta lista de problemas el conjunto de los polinomios de una variable con coeficientes complejos se denota por P(C). También se usa la notación C[x], si la
Números Reales. Hermes Pantoja Carhuavilca. Matematica I. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos
Introducción Intervalos Valor Absoluto Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Introducción Intervalos Valor Absoluto Contenido 1 Introducción 2 3 Intervalos
Conjuntos y Conjuntos Numéricos
Conjuntos y Conjuntos Numéricos Alguna Nociones Básica Sobre Conjuntos Definición: Un conjunto es una colección de objetos o cosas, llamados los elementos o miembros del conjunto. Formas de expresar un
Dado un conjunto A, llamamos operación binaria interna o ley de composición interna a cualquier función de A A en A. [1] [1] [0]
Contents 2 Operaciones y estructuras algebraicas. 2 2.1 Propiedades...................................................... 4 2.2 Elementos Particulares.............................................. 7 2.3
520142: ALGEBRA y ALGEBRA LINEAL
520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición
Una matriz es un arreglo rectangular de elementos. Por ejemplo:
1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con
VECTORES : Las Cantidades Vectoriales cantidades escalares
VECTORES En física hay dos tipos de cantidades: Las Cantidades Vectoriales son aquellas que tiene tanto magnitud como dirección y sentido sobre la dirección), mientras que las cantidades escalares son
Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...
ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas
NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4
NÚMEROS COMPLEJOS (C) DEFINICIÓN DE LA UNIDAD IMAGINARIA El cuadrado de un número real siempre es no negativo. Por ejemplo, no existe ningún número real x para el cual x 2 = -1. Para remediar esta situación,
1. Números reales. Análisis de Variable Real
1. Números reales Análisis de Variable Real 2014 2015 Índice 1. Sistemas numéricos 2 1.1. Números naturales. Principio de Inducción... 2 1.2. Números enteros... 4 1.3. Números racionales... 6 2. Los números
Expresiones algebraicas. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1
Expresiones algebraicas Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 Variables Álgebra utiliza letras como x & y para representar números. Si una letra se utiliza para representar varios números,
Estructuras algebraicas
Semana 11[1/22] 4 de mayo de 2007 Anillos y cuerpos Semana 11[2/22] Anillos Comenzamos ahora el estudio de estructuras algebraicas que tengan definidas dos operaciones, y las clasificaremos en anillos
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios Sea (A, +,.) un anillo conmutativo. Indicamos con A[x] al conjunto de polinomios en una indeterminada x con coeficientes en
Definición de la matriz inversa
Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real
Subespacios de espacios vectoriales
Subespacios de espacios vectoriales Objetivos. Estudiar la definición, el criterio y algunos ejemplos de subespacios vectoriales. Muchos espacios vectoriales importantes (por ejemplo, espacio de soluciones
1 LAS PROPIEDADES DE LOS NÚMEROS REALES SOBRE OPERACIONES BÁSICAS
LAS PROPIEDADES DE LOS NÚMEROS REALES SOBRE OPERACIONES BÁSICAS Afectan directamente a los procesos de simplificación de operaciones con números, con expresiones algebraicas y a los procesos de solución
Álgebra. Cynthia P.Guerrero Saucedo
Álgebra Cynthia P.Guerrero Saucedo 21 de agosto de 2016 Índice general 1. Lenguaje algebraico 3 1.1. Álgebra..................................... 3 1.2. Expresión algebraica..............................
Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones
UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)
1. Algunas deniciones y resultados del álgebra lineal
. Algunas deniciones y resultados del álgebra lineal Denición. (Espacio vectorial o espacio lineal sobre R) Un espacio vectorial o espacio lineal sobre el campo de los números reales, R, es un conjunto
NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS
NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN La ecuación x + 1 0 no tiene solución en el cuerpo de los números reales R ya que no existe un número real x tal que x 1. Necesitamos un conjunto que contenga a R, que
Estructuras Algebraicas
Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos
LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS
LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS Sea una estructura formada por un conjunto A, sobre cuyos elementos se ha definido una operación o ley interna, comúnmente denotada por " * ", que
14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo
TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo Así como al estudiar conjuntos hablamos de la existencia de términos primitivos (que no se definen), para definir algunos conjuntos,
De la definición se desprende la regla de los signos para determinar el signo del producto de dos números enteros :
MULTIPLICACIÓN EN Z Enrique compra un refrigerador. Cuando lo conectamos está a temperatura ambiente, es decir a 25 C. Si cada hora baja la temperatura 5 C, a qué temperatura estará el refrigerador transcurridas
ÁLGEBRA I. 15 de febrero de 2017
ÁLGEBRA I 15 de febrero de 2017 1 Índice 1. LÓGICA Y CONJUNTOS 5 1.1. Proposiciones........................................ 5 1.2. Conectivos lógicos...................................... 6 1.2.1. Negación.......................................
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS ESTRUCTURAS ALGEBRAICAS B.1 Operaciones (leyes de composición interna).
Álgebra y Trigonometría
Álgebra y Trigonometría Conceptos fundamentales del Álgebra Universidad de Antioquia Departamento de Matemáticas 1. Números Reales El conjunto de los números reales está constituido por diferentes clases
Conjunto R n y operaciones lineales en R n
Conjunto R n y operaciones lineales en R n Objetivos. Definir el conjunto R n y operaciones lineales en R n, estudiar propiedades de las últimas. Requisitos. Conjunto de los números reales R, propiedades
Álgebra Lineal V: Subespacios Vectoriales.
Álgebra Lineal V: Subespacios Vectoriales. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: [email protected]
Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).
ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas
GEOMETRÍA EN EL ESPACIO.
GEOMETRÍA EN EL ESPACIO.. ESPACIOS VECTORIALES VECTOR FIJO Segmento orientado. Queda determinado por Origen A(a, a, a ); extremo B(b, b, b ) Módulo: Longitud del AB ( b a) ( b a) ( b a) segmento AB Características:
MA1001: Introducción al Cálculo
Semestre otoño 2008 Que estudia el cálculo? Estudia funciones reales de variable real. Que estudia el cálculo? Estudia funciones reales de variable real. Que estudia el cálculo? Estudia funciones reales
Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón.
Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. 0.1. Definiciones básicas: subconjunto, conjunto vacío, complemento, conjunto de partes A lo largo de esta sección consideraremos
Números reales Conceptos básicos Algunas propiedades
Números reales Conceptos básicos Algunas propiedades En álgebra es esencial manejar símbolos con objeto de transformar o reducir expresiones algebraicas y resolver ecuaciones algebraicas. Debido a que
Matemáticas 3. ax + by + c = 0
Matemáticas 3 Ecuaciones Lineales Una ecuación lineal es una ecuación de primer grado con 2 incógnitas cuya forma general es: ax + by + c = 0 a, b, c son constantes reales, X, Y" son variables. Toda ecuación
SUCESIONES DE CAUCHY DE NÚMEROS RACIONALES.
SUCESIONES DE CAUCHY DE NÚMEROS RACIONALES La construcción más habitual, es la que se utiliza los límites las sucesiones de Cauchy del cuerpo Donde Una sucesión, se dice que es de CAUCHY si satisface:
El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales.
EL SISTEMA DE LOS NÚMEROS REALES Introducción El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. Números tales como:,3, 3 5, e, π
EXPECTATIVAS A EVALUARSE EN LAS PPAA (2010) BOSQUEJO DE CONTENIDO DEL CURSO: MATEMÁTICA 8
EXPECTATIVAS A EVALUARSE EN LAS PPAA (2010) BOSQUEJO DE CONTENIDO DEL CURSO: MATEMÁTICA 8 Unidad I: Sistema de los Números Reales A. Conjunto de los Números Reales a. Desarrollo de los Números Reales i.
Números complejos. por. Ramón Espinosa Armenta
Números complejos por Ramón Espinosa Armenta En el siglo XVI, el matemático italiano Gerolamo Cardano se preguntó si tenía sentido considerar raíces cuadradas de números negativos. Tal raíz cuadrada debería
TEORÍA DE GRUPOS (Parte 1)
TEORÍA DE GRUPOS (Parte 1 OPERACIONES BINARIAS Sea A un conjunto. Una relación de A A en A es una operación inaria (o ley de composición interna si es una función. La imagen del elemento (a, A A mediante
Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad
Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad 1.1 Grupos Al haber alterado el orden de los temas, este apartado ya se ha visto en el tema 9 1.2 Anillos y cuerpos Definición 1.2.1.
El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales.
EL SISTEMA DE LOS NÚMEROS REALES Introducción El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. Números tales como:1,3, 3 5, e,
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes
Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
Números reales. por. Ramón Espinosa
Números reales por Ramón Espinosa Existe un conjunto R, cuyos elementos son llamados números reales. Los números reales satisfacen ciertas propiedades algebraicas y de orden que describimos a continuación.
PROPIEDADES DE LOS NUMEROS REALES
PROPIEDADES DE LOS NUMEROS REALES Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Prof. Yuitza T. Humarán Martínez Adaptado por Prof. Caroline Rodriguez Naturales N={1, 2, 3, 4, } {0}
AMPLIACIÓN DE MATEMÁTICAS. a = qm + r
AMPLIACIÓN DE MATEMÁTICAS CONGRUENCIAS DE ENTEROS. Dado un número natural m N\{0} sabemos (por el Teorema del Resto) que para cualquier entero a Z existe un único resto r de modo que con a = qm + r r {0,
OPERACIONES CON NÚMEROS ENTEROS.
OPERACIONES CON NÚMEROS ENTEROS. SUMA DE NÚMEROS ENTEROS. 1) Si tengo en mi bolsillo $50 y en la cartera tengo $350 en total tengo la cantidad de $400 Esto es: $50 + $350 = $400 2) Si debo a un amigo $80
Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales.
Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales. Ejercicios 1.- Determinar el rango de la siguiente matriz: 0 1 3 4 1 3 5. Solución. 0 1 3 4 1 3 5 AT 1( 1) AT 1 ( 1)T 14 ( 1 )
FISICA I Repaso. Si el alumno no supera al maestro, ni es bueno el alumno; ni es bueno el maestro (Proverbio Chino)
Si el alumno no supera al maestro, ni es bueno el alumno; ni es bueno el maestro (Proverbio Chino) Profesor: Cazzaniga, Alejandro J. Física I E.T.N : 28 - República Francesa Pág. 1 de 9 Conjuntos numéricos
Límite superior y límite inferior de una sucesión
Límite superior y límite inferior de una sucesión Objetivos. Definir las nociones de los límites superior e inferior de una sucesión y estudiar sus propiedades básicas. Requisitos. Supremo e ínfimo de
Anillo de Polinomios.
Capítulo 6 Anillo de Polinomios. Una forma de definir los polinomios en forma intuitiva es la siguiente: Sea (K,+, ) un cuerpo, entonces un polinomio con coeficiente en K es de la siguiente forma p(x)
Deducción de las fórmulas del método del gradiente conjugado
Deducción de las fórmulas del método del gradiente conjugado Objetivos. Demostrar el teorema sobre los subespacios de Krylov en el método del gradiente conjugado. Requisitos. Subespacios generados por
Geometría Analítica Espacios Vectoriales VECTORES EN EL PLANO
VECTORES EN EL PLANO 1 ESPACIO VECTORIAL Un vector fijo es una pareja ordenada de puntos en el plano (origen y extremo) Si A y B son dichos puntos, representaremos el vector por AB Gráficamente, lo representamos
MA1001: Introducción al Cálculo
Semestre otoño 2008 Que estudia el cálculo? Estudia funcionesfunciones realesreales de variable real.variable real. Debemos comenzar por estudiar la base de todo, es decir los números reales Que son los
Módulo 10 Postulados de campo
Módulo 10 Postulados de campo OBJETIVO: Conocerá los postulados de campo y su aplicación; utilizara postulados de campo en proposiciones de números reales Ahora, estamos interesados en ver el comportamiento
Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma
Polinomios Definición 1.1. Un conjunto K junto con dos operaciones definidas en él que denotaremos por + : K K K : K K K para las cuales se cumplen las siguientes propiedades: Asociatividad Conmutatividad
Ejemplo 8 Los niños nacidos en un país del continente americano.
UNIDAD 1: CONJUNTOS La teoría de conjuntos juega un papel muy importante en campos de la matemática como el cálculo, el análisis, el álgebra y la probabilidad. Gracias a los conjuntos se pueden construir
Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )
MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una
UNIVERSIDAD POLITÉCNICA DE PUERTO RICO Departamento de Ciencias y Matemáticas REPASO EXAMEN #1. Números Enteros, Números Racionales
UNIVERSIDAD POLITÉCNICA DE PUERTO RICO Departamento de Ciencias y Matemáticas REPASO EXAMEN # Números Enteros, Números Racionales y Orden de Operación Prof. Manuel Capella-Casellas, M.A.Ed. Agosto 006
UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS
UNIVERSIDAD DON BOSCO - DEPARTAMENTO DE CIENCIAS BÁSICAS UNIDAD 5 : ESTRUCTURAS ALGEBRAICAS ÁLGEBRA LINEAL - GUIÓN DE CLASE - SEMANA 10 - CICLO 01-2015 Estudiante: Grupo: 1. Aplicaciones 1.1. Aplicaciones.
Análisis Matemático I: Numeros Reales y Complejos
Contents : Numeros Reales y Complejos Universidad de Murcia Curso 2008-2009 Contents 1 Definición axiomática de R Objetivos Definición axiomática de R Objetivos 1 Definir (y entender) R introducido axiomáticamente.
Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría
ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teoría Tema 1: Grupos y subgrupos. 1.1. Introducción Definición 1.1. Un grupo es un par (G, ), donde G es un conjunto no vacío,
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,
TEMA 5: NÚMEROS RACIONALES ÍNDICE:
TEMA 5: NÚMEROS RACIONALES ÍNDICE: 1 INTRODUCCIÓN 2 EL CONJUNTO DE LOS NÚMEROS RACIONALES 3 REPRESENTACIÓN GEOMÉTRICA DE LOS NÚMEROS RACIONALES 4 SUMA DE NÚMEROS RACIONALES 5 MULTIPLICACIÓN DE NÚMEROS
Espacios vectoriales
Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación
Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017
Tema 1: Conjuntos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Septiembre de 2017 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2017 1
Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016
Tema 1: Conjuntos Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Septiembre de 2016 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2016 1
ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2
ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 Abstract Estas notas conciernen al álgebra de matrices y serán actualizadas conforme el material se cubre Las notas no son substituto de la clase pues solo contienen
Lógica y Conjunto Introducción
Capítulo 1 Lógica y Conjunto 1.1. Introducción La lógica aparece como una necesidad de poder comunicarnos sin las ambigüedades cotidianas de la sociedad, ejemplo de ello lo encontramos en frases como por
Introducción a los espacios vectoriales
1 / 64 Introducción a los espacios vectoriales Pablo Olaso Redondo Informática Universidad Francisco de Vitoria November 19, 2015 2 / 64 Espacios vectoriales 1 Las 10 propiedades de un espacio vectorial
Aritmética modular. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética modular 1 / 16
Aritmética modular AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética modular 1 / 16 Objetivos Al finalizar este tema tendréis que: Saber qué es Z n. Saber operar en
Álgebra Booleana circuitos lógicos
Álgebra Booleana y circuitos lógicos OBJETIVO GENERAL Teniendo en cuenta que los circuitos digitales o lógicos operan de forma binaria, emplear el álgebra booleana como fundamento teórico para el análisis,
Métodos directos para resolver sistemas de ecuaciones lineales
Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el
3.1. Operaciones con matrices. (Suma, resta, producto y traspuesta)
Operaciones con matrices Suma, resta, producto y traspuesta Suma, resta y multiplicación por escalares Las matrices de un tamaño fijo m n se pueden sumar entre sí y esta operación de sumar se puede definir
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales
Conjuntos, Aplicaciones y Relaciones
Conjuntos, Aplicaciones y Relaciones Curso 2017-2018 1. Conjuntos Un conjunto será una colección de objetos; a cada uno de estos objetos lo llamaremos elemento del conjunto. Si x es un elemento del conjunto
Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023
Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #8: jueves, 9 de junio de 2016. 8 Factorización Conceptos básicos Hasta
Cambio de base. Objetivos. Estudiar la relación entre las coordenadas de un vector en dos bases.
Cambio de base Objetivos Estudiar la relación entre las coordenadas de un vector en dos bases Requisitos Definición de una base, multiplicación de una matriz por un vector, delta de Kronecker Definición
MATRICES Y DETERMINANTES DEFINICIÓN DE MATRIZ. TIPOS
Índice Presentación... 3 Matrices... 4 Tipos de matrices I... 5 Tipos de matrices II... 6 Suma de matrices... 7 Multiplicación por un escalar... 8 Producto de matrices... 9 Trasposición de matrices...
Matemática I C.F.E. I.N.E.T. Profesorado de Informática Conjuntos
Conjuntos Conceptos primitivos: CONJUNTO, ELEMENTO, PERTENECE. Pertenecer- Elemento Sea el conjunto de los ríos del Uruguay. El Río Negro es un río del Uruguay. Entonces, este río es un elemento del conjunto
MATEMÁTICA NB2 4º EGB
MATEMÁTICA NB2 4º EGB UNIDAD Nº 01 : Números Números Naturales, específicamente para este nivel: Lectura y escritura de los números hasta el 999.999 Descomposición de los números del 0 al 999.999 en centenas
Propiedades de imágenes y preimágenes
Propiedades de imágenes y preimágenes Objetivos. Demostrar las propiedades principales de las imágenes y preimágenes, por ejemplo que f[a B] = f[a] f[b]. Requisitos. Definición y ejemplos de imágenes y
VECTORES 1.2 CONCEPTOS Y DEFINICIONES FUNDAMENTALES. En este capítulo estudiaremos los vectores y su álgebra.
CAPITULO I CALCULO II VECTORES 1.1 INTRODUCCIÓN Los vectores son un auxiliar utilísimo para la geometría del espacio. En esta unidad partiendo de lo que ya se sabe de vectores en el plano, se contemplan
MATE IV Serie Álgebra 2015/01/26 NOMENCLATURA ALGEBRAICA
NOMENCLATURA ALGEBRAICA Definición (Término). Es una expresión algebraica que consta de un solo símbolo o de varios símbolos no separados entre sí por el signo + o -. Por ejemplo a, 3b, xy, son términos.
