Postulados de Cauchy
|
|
|
- Victoria Lucero Gil
- hace 9 años
- Vistas:
Transcripción
1 1.4. Tracción Postulados de Cauchy Consideremos un medio continuo sobre el que actúan las correspondientes fuerzas de cuerpo ysuperficiales (ver Fig. 1.14). Consideremos también una partícula P del interior del medio continuo y una superficie arbitraria, que pasa por el punto P y de normal unitaria n en dicho punto, que divide al medio continuo en dos partes (volúmenes materiales). En la superficie de corte, considerada ahora como parte del contorno de cada uno de estos volúmenes materiales, actuarán las fuerzas superficiales debidas al contacto entre ambos. Sea t el vector de tracción que actúa en el punto P considerado como parte del contorno del primero de estos volúmenes materiales. En principio este vector de tracción (definido ahora en un punto material del interior del medio continuo original) dependerá: 1) De cuál sea la partícula considerada, 2) de la orientación de la superficie (definida a través de la normal n) y )decuálsealapropiasuperficie de corte. Figura 1.14: Postulado de Cauchy. 1er Postulado de Cauchy: El vector de tracción t que actúa en un punto material P de un medio continuo según un plano de normal unitaria n, depende únicamente del punto P y de la normal n. t = t( n) 2 Postulado de Cauchy - Principio de acción y reacción: El vector de tracciones en un punto P de un medio continuo, según un plano de normal unitaria n, es igual y de sentido contrario al vector de tracciones en el mismo punto P según un plano de normal unitaria n en el mismo punto (Fig, 1.14): c Gelacio Juárez, UAM 21
2 Figura 1.15: t( n) = ( n) El vector de tracciones actúa sobre un área infinitesimal en un plano inclinado cortado, que se caracteriza por un vector normal unitario n definido como, Fig. 1.16: y el vector de tracciones t como: n = t = Figura 1.16: Vector de tracciones en un tetraedro. Las superficies resultantes del tetraedro proyectadas de puedes escribirse: 1 = cos = 1 2 = cos = 2 = cos = c Gelacio Juárez, UAM 22
3 Por lo que las componentes del vector de tracciones, dependientes del estado de esfuerzos se calcula como: t = σ n (1.9) 1 = = = Ejemplo El tensor de esfuerzos en un punto de un sólido es: σ = (1.10) Determinar el vector de tracciones t, esfuerzonormalσ, y esfuerzo cortante τ asociado a la normal,fig.(1.17): 1 n = 1 1 Figura 1.17: a) Esfuerzo notación científica, b) esfuerzo notación ingenieril y c) plano asociado a la normal n. El vector te tensión asociado es (Fig. 1.18a): c Gelacio Juárez, UAM 2
4 t= σ n t = = La magnitud del vector de tracción se calcula como: t = t t = = La magnitud del esfuerzo normal al plano es: σ = t n = 2600 = El vector de esfuerzo normal al plano (Fig. 1.18b) se determina con el vector unitario n: El vector de esfuerzo cortante (Fig. 1.18b) es: σ = 2600 n 2600 σ 9 = con magnitud τ = t σ 1900 τ 9 = = τ = τ τ = = Todos estos vectores de esfuerzo, asociados al plano n, se representan en la Fig. 1.18c Tarea Determine del estado de esfuerzos definido en la ec. (1.10): el vector de tracciones t, esfuerzo normal σ, y esfuerzo cortante τ asociado a la normal al plano Fig. (1.19). c Gelacio Juárez, UAM 24
5 1.5 Equilibrio Figura 1.18: Vectores de: a) tracción t, b)normalσ ycortanteτ,c)t, σ,yτ Equilibrio Figura 1.19: a) Estado de esfuerzos y b) plano asociado a la normal n. Considere un elemento diferencial de masa en un sólido. Por Newton se requiere que: f = ü (1.11) donde f es la suma de las fuerzas superficiales f y de las fuerzas de cuerpo f. Sustituyendo las ec. (1.5) y (1.6) en la ec. (1.11) e integrando sobre el dominio ysuperficie Γ se tiene: t(x) Γ + b(x) = ü(x) (1.12) Γ siendo =. Sustituyendo las tracciones t(x) por σ(x) n en la ec. (1.12)se tiene: σ n Γ + Γ sustituyendo la ec. (1.) en la ec (1.1) b = ü (1.1) c Gelacio Juárez, UAM 25
6 1.5 Equilibrio rescribiendo la ec. (1.14) se tiene: σ + b = ü (1.14) [ σ + b ü ] =0 (1.15) Puesto que el dominio es arbitrario se tiene la siguiente ecuación de equilibrio dinámico: σ + b ü =0 (1.16) Para el caso cuasiestático, ignorando los efectos inerciales, se tiene la siguiente ecuación de equilibrio: La cual en un sistema de coordenadas cartesianas se escribe: σ + b =0 (1.17) = = 0 (1.18) = 0 La ecuación de equilibrio dada en la ec. (1.17) se escribe en coordenadas cilíndricas: y en coordenadas esféricas: ( )+ = = 0 (1.19) = sin + 1 (2 + cot )+ = sin + 1 [( ) cot + ]+ = 0 (1.20) sin + 1 (2 cot + )+ = 0 c Gelacio Juárez, UAM 26
El Tensor de los Esfuerzos y los esfuerzos principales
El Tensor de los Esfuerzos y los esfuerzos principales Existen dos +pos principales de fuerzas en un con4nuo: 1. Fuerzas de cuerpo. Actúan en cualquier parte del cuerpo y son proporcionales al volúmen
Planteamiento del problema elástico lineal
Capítulo 3 Planteamiento del problema elástico lineal Para la simulación o representación de un proceso o un fenómeno físico, una de las partes fundamentales es su planteamiento matemático, que en su forma
1.1 Introducción Las ecuaciones diferenciales como modelos matemáticos
1.1.. Las ecuaciones diferenciales como modelos matemáticos Los modelos matemáticos surgen en todos los campos de la ciencia. Aunque la relación entre modelos y fenómenos físicos en otras ciencias no es
Algebra vectorial y matricial
Capítulo Algebra vectorial y matricial.. Espacio vectorial Los conjuntos de vectores en el plano R yenelespacior cuentan con muchas propiedades interesantes. Es posible sumar un vector en R y obtener un
Un escalar, caracterizado por un componente como la temperatura, el área, etc., se le denomina tensor de orden cero.
Capítulo 1 Introducción 1.1. Algebra tensorial y análisis 1.1.1. Definiciones y terminología El uso de notación indicial es ventajosa porque generalmente hace posible escribir en forma compacta formulas
Momento angular de una partícula. Momento angular de un sólido rígido
Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular
1.7.1. Estado de esfuerzo nulo
1.7 Tipos de estado de esfuerzos 1.7. Tipos de estado de esfuerzos 1.7.1. Estado de esfuerzo nulo Este estado de esfuerzo corresponde a un punto en un sólido en el que no existe acción de cargas, por lo
Figura 1.30: Tipos del trazo del círculo de Mohr.
1.9 Círculo de Mohr para esfuerzos en D 1.9. Círculo de Mohr para esfuerzos en D Las dos formas del círculo de Mohr se muestran en la Fig. 1.30, la diferencia son el eje de las ordenadas y su correspondiente
FEM para Mecánica 3D. Miguel Ángel Otaduy. Animación Avanzada 7 de Marzo de 2014
FEM para Mecánica 3D Miguel Ángel Otaduy Animación Avanzada 7 de Marzo de 2014 Índice Repaso Hoy Funciones de forma Formulación fuerte formulación débil Matriz de rigidez Ec. de elasticidad en 3D Deformación
DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 2
1. Tema: Determinación de la posición de las galgas extensiométricas en una barra de torsión. 2. Objetivos: a. Simular el comportamiento estático de una barra de torsión, mediante el uso de un paquete
TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL
Capítulo 4 TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL 4.1 Introducción En el tema anterior hemos estudiado los principios fundamentales de la dinámica. La segunda ley de Newton, que relaciona
Elementos Uniaxiales Sometidos a Carga Axial Pura
Elementos Uniaiales Sometidos a Carga ial ura Definición: La Tensión representa la intensidad de las fuerzas internas por unidad de área en diferentes puntos de una sección del sólido aislada (Fig. 1a).
Las leyes de Newton. Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física
Las leyes de Newton Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física Diagrama de cuerpo libre (DCL) Esquema que sirve para representar y visualizar las fuerzas que actúan en un cuerpo.
PRINCIPIOS DE LA DINÁMICA
Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento
Javier Junquera. Movimiento de rotación
Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.
TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS
TEMA 0. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. Trabajo mecánico. 2. Teorema de la energía cinética. 3. Fuerzas conservativas y energía potencial. 4. Conservación de la energía mecánica. 5. Consejos
IX. Análisis dinámico de fuerzas
Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.
6 DINAMICA DEL CUERPO RIGIDO
6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños
Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.
1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo
Ecuaciones diferenciales de Equilibrio
Ecuaciones diferenciales de Equilibrio 28 de marzo de 2006 1. Elasticidad en una dimensión 1.1. Esfuerzo σ y carga lineal b(x) Para examinar un cuerpo desde el contínuo, que es la primera hipótesis (a),
ESTADO DE ESFUERZO. EL TENSOR DE ESFUERZO Y EL ELIPSOIDE DE ESFUERZO.
ESTADO DE ESFUERZO. EL TENSOR DE ESFUERZO Y EL ELIPSOIDE DE ESFUERZO. Cualquier punto del interior de la Tierra está sometido a un complejo sistema de esfuerzos. Esto es debido a que sobre él actúa el
Momento angular o cinético
Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x
CONSIDERACIONES GENERALES SOBRE ESTÁTICA
CONSIDERACIONES GENERALES SOBRE ESTÁTICA Índice 1. CONCEPTOS ÚTILES 2 1.1. Configuración geométrica de un sistema....................... 2 1.2. Ligaduras....................................... 2 1.3. Coordenadas
2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6
2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Soluciones del boletín de problemas 6 Problema 1. Varilla deslizándose por una pared. Dado que los extremos de la varilla están forzados a permanecer
Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR
Física General 1 Proecto PMME - Curso 007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DEL CARRETEL AUTORES Santiago Duarte, Nicolás Puppo Juan Manuel Del Barrio INTRODUCCIÓN En este
Una Ecuación Escalar de Movimiento
Una Ecuación Escalar de Movimiento Antonio A. Blatter Licencia Creative Commons Atribución 3.0 (2015) Buenos Aires Argentina Este trabajo presenta una ecuación escalar de movimiento que es invariante bajo
Vibración y Dinámica Estructural
Capítulo 4 Vibración y Dinámica Estructural 4.. Ecuaciones Básicas Considere de medio continuo se tiene un cuerpo tridimensional, cuyo comportamiento del material es elástico lineal con deformaciones pequeñas,
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
2.6.1. Ensayo a tensión de un material
.6 Criterios de falla.6. Criterios de falla.6.1. Ensayo a tensión de un material En una prueba a tensión de un material dúctil realizado en laboratorio, Fig..3, existen seis magnitudes que, cuando inicia
ESCALARES Y VECTORES
ESCALARES Y VECTORES MAGNITUD ESCALAR Un escalar es un tipo de magnitud física que se expresa por un solo número y tiene el mismo valor para todos los observadores. Se dice también que es aquella que solo
CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA
CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA Con el propósito de seleccionar los materiales y establecer las dimensiones de los elementos que forman una estructura
Péndulo de torsión y momentos de inercia
Prácticas de Física Péndulo de torsión y momentos de inercia 1 Objetivos Curso 2009/10 Determinar la constante de un muelle espiral Determinar el momento de inercia de varios sólidos rígidos Comprobar
Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton.
1. Introducción. 2. Leyes de Newton: 2.1 Primera Ley de Newton o Ley de Inercia. 2.2 Segunda Ley de Newton o Principio Fundamental de la Dinámica. 2.3 Tercera Ley de Newton o Principio de Acción o Reacción.
convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección
convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)
Colegio Internacional Torrequebrada. Departamento de Matemáticas
Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene
Introducción. Flujo Eléctrico.
Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una
FACULTAD DE INGENIERIA. ESTABILIDAD I A Sistemas de fuerzas concentradas. Principios de la estática
FACULTAD DE INGENIERIA ESTABILIDAD I A Sistemas de fuerzas concentradas. Principios de la estática 1 Mecánica: Rama de la física que se ocupa del estado de reposo o movimiento de cuerpos sometidos a la
Instituto de Física Universidad de Guanajuato Agosto 2007
Instituto de Física Universidad de Guanajuato Agosto 2007 Física III Capítulo I José Luis Lucio Martínez El material que se presenta en estas notas se encuentra, en su mayor parte, en las referencias que
Tema 5: Dinámica del punto II
Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico
Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular.
Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. 3.1. Introducción El Método de los Elementos de Contorno (MEC) se ha implantado firmemente en numerosos campos de la ingeniería
Los pesos de las partículas pueden reemplazarse por una única (equivalente) resultante con un punto de aplicación G bien definido.
UNIDAD 2 EQUILIBRIO DE CUERPOS RÍGIDOS. CENTROS DE GRAVEDAD GENERALIDADES.- El centro de gravedad es aquel que localiza el peso resultante de un sistema de partículas y el centro de masas de un sistema
AUXILIAR 1 PROBLEMA 1
AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener
Materiales Compuestos
3 Materiales Compuestos 3.1 Introducción. Este capítulo tiene como objetivo mostrar los conceptos básicos y la terminología utilizada en el estudio de materiales compuestos. La palabra compuesto (del latín
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial
Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una
DINÁMICA DE FLUIDOS 1. Propiedades de los Fluidos. 2. Cinemática de fluidos.
DINÁMICA DE FLUIDOS 1. Propiedades de los Fluidos. Concepto de fluido. Fluido ideal. Fluidos reales. Viscosidad Tensión superficial. Capilaridad Estática. Presión en un punto. Ecuación general de la estática.
Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99)
Capítulo 1 Vectores 26 Problemas de selección - página 13 (soluciones en la página 99) 21 Problemas de desarrollo - página 22 (soluciones en la página 100) 11 1.A PROBLEMAS DE SELECCIÓN Sección 1.A Problemas
Javier Junquera. Equilibrio estático
Javier Junquera Equilibrio estático Bibliografía Física, Volumen 1, 6 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 12 Definición de equilibrio El término equilibrio
Mecánica de Fluidos. Análisis Diferencial
Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de
Estática. Equilibrio de un cuerpo rígido
Estática 5 Equilibrio de un cuerpo rígido Objectivos Escribir las ecuaciones de equilibrio de un cuerpo rígido. Concepto de diagrama de cuerpo libre para un cuerpo rígido. Resolver problemas de equilibrio
CAPÍTULO III Electrostática
CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector
MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006
Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un
Espacios vectoriales. Vectores del espacio.
Espacios vectoriales. Vectores del espacio. Consideremos un paralelepípedo de bases ABCD y EFGH, siendo A(1,1,1), B(2,1,1), C(2,4,1) y E(1,2,7). Halla: a) el área de una de las bases; b) el volumen del
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ESTÁTICA
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I ESTÁTICA NIVEL : LICENCIATURA CRÉDITOS : 8 CLAVE : ICAC23002815 HORAS TEORÍA : 3 SEMESTRE : TERCERO HORAS PRÁCTICA : 2 REQUISITOS : GEOMETRÍA
UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA
UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran
Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior
Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites
INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.
Capítulo 3. Conceptos fundamentales para el análisis del flujo de fluidos
Capítulo 3 Conceptos fundamentales para el análisis del flujo de fluidos 3.1 El campo de velocidades La propiedad más importante de un flujo es el campo de velocidad V(x, y, z, t). De hecho, determinar
PROGRAMA DE CURSO DE INGRESO - ASIGNATURA FISICA
PROGRAMA DE CURSO DE INGRESO - ASIGNATURA FISICA Unidades Programáticas 1. Magnitudes Físicas 2. Vectores 3. Cinemática Escalar 4. Dinámica 5. Mecánica de Fluidos 6. Termometría y Calorimetría. Desarrollo
TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO
Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes
Desarrollo multipolar del potencial.
c Rafael R. Boix y Francisco Medina Desarrollo multipolar del potencial. Consideremos un cuerpo cargado que ocupa una región volumétrica. Sea ρ(r ) la densidad volumétrica de carga del cuerpo cargado.
Física: Dinámica Conceptos básicos y Problemas
Física: Dinámica Conceptos básicos y Problemas Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Mecánica Cinemática Descripción del movimiento. Cómo se mueve? Dinámica Causas del movimiento. Por
Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas
Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas Problema 1 Dos imanes permanentes iguales A y B, cuyo momento magnético es P m están situados como indica la figura. La distancia
Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011
Clase 13 Potencial Eléctrico Cálculo del potencial eléctrico Ejemplo 35: Efecto punta En un conductor el campo eléctrico es mas intenso cerca de las puntas y protuberancias pues el exceso de carga tiende
SíLABO ZF00 DE FISICA GENERAL
SíLABO ZF00 DE FISICA GENERAL 06-. DATOS GENERALES Facultad: Área de Ciencias Carrera: Todas las carreras de ingenierías Coordinador: Elías Catalán Sánchez Requisitos: Matemáticas básica (ZM0) Competencias:
Ejercicios Resueltos de Cálculo III.
Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como
Práctico 2: Mecánica lagrangeana
Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las
Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago
Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo
Resolución de problemas aplicando leyes de Newton y consideraciones energéticas
UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos
Teorema de la Mínima Energía Potencial Total
ESTABIIDAD III acultad de Ingeniería Introducción: Teorema de la ínima Energía Potencial Total El teorema de la mínima energía potencial total es otra poderosa herramienta que permite resolver una serie
01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =
01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga
TEMARIO DEL EXAMEN DE EVALUACIÓN INTEGRAL PARA EL PROCESO DE ADMISIÓN Para facultades de Ingeniería y Arquitectura
TEMARIO DEL EXAMEN DE EVALUACIÓN INTEGRAL PARA EL PROCESO DE ADMISIÓN 2017-01 Para facultades de Ingeniería y Arquitectura MATEMÁTICA Aptitudes Número y operaciones Conversión de unidades, razones y proporciones,
Dpto. Física y Mecánica. Operadores diferenciales
Dpto. Física y Mecánica Operadores diferenciales Se denominan líneas coordenadas de un espacio euclídeo tridimensional a aquellas que se obtienen partiendo un punto dado P de coordenadas (q 1, q 2, q 3
Tema 9: Introducción a la Dinámica
Tema 9: Introducción a la Dinámica 1º Ingenieros Aeronáuticos Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Situación en la asignatura Primer Parcial Introducción Mecánica Cinemática
Capitulo Vectores. Matías Enrique Puello Chamorro. 13 de julio de 2014
Capitulo Vectores Matías Enrique Puello Chamorro [email protected] www.matiaspuello.wordpress.com 13 de julio de 2014 Índice 1. Introducción 3 2. Marcos de referencia 4 3. Definición de VECTOR
Superficies paramétricas
SESIÓN 7 7.1 Introducción En este curso ya se han estudiando superficies S que corresponden a gráficos de funciones de dos variables con dos tipos de representaciones: Representación explícita de S, cuando
f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3
Relación de problemas: Elasticidad lineal 1. Una barra de sección rectangular con anchura 100 mm, fondo 50 mm y longitud 2 m se somete a una tracción de 50 Tm; la barra sufre un alargamiento de 1 mm y
2DA PRÁCTICA CALIFICADA
2DA PRÁCTICA CALIFICADA DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE : Ing. CASTRO PÉREZ, Cristian CINÉTICA DE UNA
ANEXO C: ALGORITMOS DE INTERSECCIÓN
ANEXO C: ALGORITMOS DE INTERSECCIÓN El corazón de cualquier modelo de trazado de rayos es el de los algoritmos de la intersección entre los rayos y los objetos del ambiente. En un proceso general de trazado
VI. Sistemas de dos grados de libertad
Objetivos: 1. Describir que es un sistema de dos grados de.. Deducir las ecuaciones diferenciales de movimiento para un sistema de dos grados de masa-resorte-amortiguador, con amortiguamiento viscoso y
RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS. Ing. MSc. Luz Marina Torrado Gómez Ing. MSc. José Alberto Rondón
RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS Ing. MSc. Luz Marina Torrado Gómez RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS SOLICITACIONES INTERNAS QUE SE GENERAN EN UN SUELO Tensiones normales, : Pueden
Dinámica de los sistemas de partículas
Dinámica de los sistemas de partículas Definiciones básicas Supongamos un sistema compuesto por partículas. Para cada una de ellas podemos definir Masa Posición Velocidad Aceleración Fuerza externa Fuerza
SERIE # 4 CÁLCULO VECTORIAL
SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el
Sistemas de Coordenadas
C.U. UAEM Valle de Teotihuacán Licenciatura en Ingeniería en Computación Sistemas de Coordenadas Unidad de Aprendizaje: Fundamentos de Robótica Unidad de competencia V Elaborado por: M. en I. José Francisco
INSTRUCCIONES GENERALES Y VALORACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Examen-Modelo para el curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
4.1 Introducción Relación entre sistema y volumen de control Ecuación de continuidad...74
Ecuaciones básicas en forma integral para un volumen de control Contenido 4.1 Introducción...73 4.2 Relación entre sistema y volumen de control...73 4.3 Ecuación de continuidad...74 4.4 Ecuación de cantidad
ANALISIS VECTORIAL. Vectores concurrentes: cuando se interceptan en un mismo punto.
ANALISIS VECTORIAL Vector: Es un operador matemático que sirve para representar a las magnitudes vectoriales. Vectores concurrentes: cuando se interceptan en un mismo punto. Vectores iguales: cuando tienen
TEORÍA DE HILOS FLEXIBLES: CATENARIAS
TEORÍA DE HILOS FLEXIBLES. APLICACIÓN A LAS CATENARIAS 1. INTRODUCCION La flexibilidad de los hilos hace que su estudio difiera en cierto modo de los sistemas discretos considerados hasta ahora en el curso
TEMA 1 Técnicas básicas del análisis de los flujos
TEMA 1 Técnicas básicas del análisis de los flujos 1.1. Introducción: definición y magnitudes características FLUIDO: - no tienen forma definida - líquidos (volumen fijo) - gases (sin volumen definido,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
Academia Militar de la Armada Bolivariana Proceso de Admisión MATEMÁTICA (20 Preguntas) 1) Halle el valor de la siguiente expresión:
MATEMÁTICA (20 Preguntas) 1) Halle el valor de la siguiente expresión: 1 1 2 1 1 3 4 2 3 4 2 a) 1/ 3 b) 0 c) 1 d) 1/ 2 4) Halle los valores de x, en caso de que existan, que satisfacen la siguiente ecuación:
Álgebra Lineal III: Planos y Líneas. Problemas Resueltos.
Álgebra Lineal III: Planos y Líneas. Problemas Resueltos. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato
Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así:
Chapter 1 Fuerzas En Estática es muy usual tener un cuerpo u objeto que tiene varias fuerzas aplicadas. Es por esto que solucionar un problema de estática en pocas palabras quiere decir calcular cuánto
ESTATICA DE LAS PARTICULAS ESTATICA. Jorge Enrique Meneses Flórez
2. DE LAS PARTICULAS 2. DE LAS PARTICULAS 2.1 Introducción Estudiar el efecto de las fuerzas sobre las partículas Sustituir dos o mas fuerzas por una RESULTANTE Relaciones necesarias para EQUILIBRIO de
F= 2 N. La punta de la flecha define el sentido.
DIÁMICA rof. Laura Tabeira La Dinámica es una parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento de los mismos.
Interp r o p la l c a ió i n seccio i nal a l (S ( pl p i l n i e) Val a o l re r s pr p e r scri r t i os N (x)
Introducción al método de los elementos finitos Métodos Numéricos 2 Laboratori de Càlcul Numèric (LaCàN) Dep. de Matemàtica Aplicada III Universitat Politècnica de Catalunya www-lacan.upc.es Ventajas del
INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión
INDICE Capitulo 1. Introducción: La Física y la Medición 1 1.1. Estándares de longitud, masa tiempo 2 1.2. Densidad y masa atómica 5 1.3. Análisis dimensional 6 1.4. Conversión de unidades 8 1.5. Cálculos
UNIDAD II Ecuaciones diferenciales con variables separables
UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial
