Como encontrar el centro de un edificio construido?

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Como encontrar el centro de un edificio construido?"

Transcripción

1 1 - Classical Chinese Feng Shui - Como encontrar el centro de un edificio construido? Explorations with Heluo Exploraciones con Heluo pertenece a una serie de Artículos de Heluo acerca del Tiempo, Espacio y Destino Este articulo es un capitulo derivado de las Clases Maestras de Xuan Kong Feng Shui de 4 días de Heluo y puede ser compartido libremente. Traducción al español: Leah Zeinsteger Centro Geométrico La técnica para establecer el centro de un habitat, es llamada Lì Jí -??. Antes de poder posicionar correctamente la carta de Estrellas Volantes sobre nuestro plano, necesitamos saber donde se encuentra el punto central que coincida con la estructura del centro geométrico. Para ello necesitamos primero establecer el centro físico de nuestro edificio. Aquí tenemos una corta descripción que puede guiarlo: Para determinar el centro de un octágono, un cuadrado, un rectángulo, simplemente se unen los extremos de dichas estructuras por líneas auxiliares, en tanto y en cuanto estas líneas sean interiores al edificio. El centro será aquel donde las líneas se crucen. En un triangulo obtendremos seis sectores. En círculo y estructuras ovoides podemos extender las líneas auxiliares hasta el borde exterior de la figura hasta llegar a obtener un cuadrado o rectángulo imaginario. De nuevo, donde las líneas se cruzan podremos hallar el centro de nuestro objeto. Es distinto cuando necesitamos hallar el centro de una figura irregular o asimétrica, donde no podemos solo extender las líneas exteriores de la estructura, sino que también tenemos que realizar compensaciones.

2 2 Para una forma en L, primero dividimos la estructura en dos sectores, luego determinamos el centro de cada uno de los rectángulos o cuadrados (ver el método anterior). Después conectamos los centros de ambos sub-sectores y hallaremos el centro de la estructura total, en algún sitio a lo largo de la línea obtenida, proporcionalmente a la estructura en cuestión, y más cercano al más grande de ambos sectores (De Leah: se puede aplicar una simple ecuación para este efecto relacionando las superficies con las distancias, al solo efecto de una mayor rigurosidad) Algo más sofisticado seria dibujar los dos sectores por separado en el plano del edificio (I y II) y manejarlos como espacios separados (De Leah: a mi criterio, esto requiere de un asesoramiento más específico) Obtenemos un centro para I, en algún lugar de la línea A-B. Así llegamos al centro para II en la línea C-D. Entonces, unimos ambas líneas (A-B y C-D) en III y encontramos el centro cruzando ambas líneas (IV). I II A C B D Primero dividimos el espacio en 2 rectángulos. Llamamos A y B a los puntos medios. El centro físico estará dentro de la línea de conexión. III Podemos dividir el mismo espacio pero en 2 rectá ngulos como se muestra. Llamamos a los medios puntos como C y D. El centro físico se encontrara dentro de la línea de conexión. IV A C B Unir las líneas A-B y marcar con una cruz punteada estas líneas. D Ahora hemos establecido el punto central en la cruz formada por las líneas A -B y C-D

3 3 Proyectando la carta de Estrellas Volantes Una vez encontrado el centro de la estructura, determine las direcciones exactas marcando el eje Norte-Sur. Use las direcciones del Norte Magnético, establecido siempre con la lectura de la brujula tomada en el exterior. Coloque la carta de Estrellas Volantes sobre el plano del edificio o de su casa de acuerdo a sus direcciones actuales. Del mismo modo, usted puede determinar el centro para cada piso y cada habitación individualmente en su caja. La misma carta de Estrellas Volantes que fue usada para su casa, será bajo condiciones normales- aplicada para todos los pisos y todas las habitaciones individualmente. N Facing side - No consideramos la unidad de un vecindario como perteneciente a nuestra carta de Estrellas Volantes - Para la proporción de nuestra casa si es de forma rectangular o irregular, ciertas direcciones pueden ser dominantes. Por ejemplo, in este ejemplo los Trigramas para las direcciones Este y Oeste serán dominantes. S E O N Casa Vicuña Edificios apareados (Unidos o colindantes) Incluiremos un garage en nuestra evaluación de Lì Jí? Si no hay una puerta que vincule la casa con el garage, no consideramos el garage.

4 4 Incluiremos un balcón en nuestra evaluación de Lì Jí? No incluimos tampoco un balcón en la evaluación del centro del edificio si el mismo esta techado. Solo cuando el balcón esta completamente cerrado en el frente (partición exterior), podemos considerar incluirlo en nuestro dimensionado. Nota importante sobre este tema Debemos distinguir entre el centro físico y el centro del Qi (centro energético). El centro geométrico de su casa puede que no sea el centro energético en el interior. Todo debe ser considerado como el centro del Qi, en tanto elegimos a este como nuestro punto de referencia. Ademas, las Estrellas (energias) no se comportan rigidamente en su interaccion que es sugerida por las lineas de demarcacion en el Luo Pan. Asi, en cuanto usted determine el centro, trate de hacerlo lo mas ajustadamente posible en grados y minutos, pero una vez que el centro es hallado, y haciendo la consulta de Feng Shui de la casa, no se vuelva loco acerca de sus aplicaciones, porque su consulta no es dependiente de los metros o centimetros. Somos todos Consultores de la Escuela de Distribución del Qi. Esto significa que solo nos interesa la obtención del centro de una estructura basados en razones geométricas. Donde nosotros establezcamos el centro de nuestra estructura física, puede no ser del todo donde podremos hallar la acumulación del Qi. El Qi será dirigido hacia un punto referencial y seguirá el camino de la menor resistencia. Cómo y dónde el Qi se junta? Será necesario evaluarlo observando el camino interior del Qi. El Qi viaja desde el fondo (atrás) de las direcciones. Sea donde sea que usted se encuentre, usted será el punto central de referencia. Este artículo, escrito por Heluo, puede ser encontrado en su versión en inglés en / [email protected] Y puede ser utilizado libremente entre su comunidad, sin alterar su contenido si se lo traduce. Esta traducción libre ha sido realizada por Leah Zeinsteger y cualquier error u omisión debe ser considerado involuntario a los efectos de la traducción. Para cualquier comentario, dirigirse a la lista de Malu Grajales o a Leah en [email protected]

5 5

RESOLUCIÓN DEL PRACTIQUEMOS DE LA FICHA N 8 COMPETENCIA CAPACIDAD INDICADORES

RESOLUCIÓN DEL PRACTIQUEMOS DE LA FICHA N 8 COMPETENCIA CAPACIDAD INDICADORES RESOLUCIÓN DEL PRACTIQUEMOS DE LA FICHA N 8 1. Calcula el área de la zona coloreada, si se sabe que ABCD, DEFG y GHIJ son cuadrados. SOLUCIÓN: Una de la forma de resolverlo es completando el rectángulo

Más detalles

4. UNIDAD DIDÁCTICA 4: FORMAS GEOMÉTRICAS II

4. UNIDAD DIDÁCTICA 4: FORMAS GEOMÉTRICAS II 4. UNIDAD DIDÁCTICA 4: FORMAS GEOMÉTRICAS II En el tema anterior empezamos a conocer lo más básico de las formas geométricas. En este tema vamos a aprender a trazar otras formas un poco más complejas,

Más detalles

TEMA 5: LA CARRERA DE ORIENTACIÓN

TEMA 5: LA CARRERA DE ORIENTACIÓN TEMA 5: LA CARRERA DE ORIENTACIÓN 1.- CONCEPTOS. ORIENTARSE: según el diccionario, orientarse es reconocer la situación del Norte, y por consiguiente, la de los demás puntos cardinales. Podemos decir que

Más detalles

CERÁMICA, PIEDRA PIZARRA Y BALDOSAS

CERÁMICA, PIEDRA PIZARRA Y BALDOSAS 1 nivel dificultad CALCULAR PS-CA02 CÓMO CALCULAR? CERÁMICA, PIEDRA PIZARRA Y BALDOSAS Para revestir los pisos o paredes de la casa, se pueden usar palmetas de diversos materiales y estilos como: cerámica,

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Los segmentos se determinan por su longitud. Supongamos que tenemos dos

Más detalles

XUAN KONG BLANCO PÚRPURA

XUAN KONG BLANCO PÚRPURA XUAN KONG BLANCO PÚRPURA Copyright 2017 Leyda Ramírez Todos los derechos de propiedad intelectual contenidos o relacionados con esta publicación pertenecen a Leyda Ramírez Ninguna parte de este libro puede

Más detalles

Círculo Definición: Un círculo es el conjunto de todos los puntos de un plano que se encuentran comprendidos en una circunferencia. Usualmente, el cír

Círculo Definición: Un círculo es el conjunto de todos los puntos de un plano que se encuentran comprendidos en una circunferencia. Usualmente, el cír Círculos y elipses Círculo Definición: Un círculo es el conjunto de todos los puntos de un plano que se encuentran comprendidos en una circunferencia. Usualmente, el círculo es el área, mientras que la

Más detalles

polígono 3 Triángulo 4 Cuadrilátero 5 Pentágono 6 Hexágono 7 Heptágono 8 Octógono 9 Eneágono 10 Decágono 11 Undecágono 12 Dodecágono 20 Icoságono

polígono 3 Triángulo 4 Cuadrilátero 5 Pentágono 6 Hexágono 7 Heptágono 8 Octógono 9 Eneágono 10 Decágono 11 Undecágono 12 Dodecágono 20 Icoságono TEMA: POLÍGONOS Y ÁNGULOS. POLÍGONOS REGULARES. POLÍGONOS Un polígono es una figura cerrada cuyos lados son segmentos. La palabra polígonos se puede interpretar como: figura de muchos ángulos. Los triángulos,

Más detalles

TEMA 2 GEOMETRIA BASICA APLICADA

TEMA 2 GEOMETRIA BASICA APLICADA TEM GEOMETRI SIC PLICD OPERCIONES CON SEGMENTOS.... MEDITRIZ DE UN SEGMENTO.... DIVISION DE UN SEGMENTO EN PRTES IGULES....3 PERPENDICULR UN RECT... 3.4 DIVISION DE UN RCO DE CIRCUNFERENCI EN DOS PRTES

Más detalles

Repaso de Geometría. Ahora formulamos el teorema:

Repaso de Geometría. Ahora formulamos el teorema: Repaso de Geometría Preliminares: En esta sección trabajaremos con los siguientes temas: I. El Teorema de Pitágoras. II. Fórmulas básicas de geometría: perímetro, área y volumen. I. El Teorema de Pitágoras.

Más detalles

La forma de representación gráfica de una circunferencia, según su ecuación canónica, es:

La forma de representación gráfica de una circunferencia, según su ecuación canónica, es: Estudio de la Circunferencia Marco Teórico La circunferencia es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. La distancia constante de un punto cualquiera

Más detalles

Teoría Tema 7 Elipse

Teoría Tema 7 Elipse página 1/13 Teoría Tema 7 Elipse Índice de contenido La elipse como superficie cónica...2 La elipse como lugar geométrico...3 Ecuación de la elipse con centro el origen de coordenadas, ejes sobre los cartesianos

Más detalles

El teorema de Pitágoras

El teorema de Pitágoras El teorema de Pitágoras Son muchas las situaciones de la vida real en las que nos encontramos ante figuras geométricas. Saber identificarlas, nombrarlas y realizar cálculos con sus componentes son objetivos

Más detalles

Manual de Padres. Matemáticas de 6th Grado. Prueba de Referencia 3

Manual de Padres. Matemáticas de 6th Grado. Prueba de Referencia 3 Matemáticas de 6th Grado Prueba de Referencia 3 Manual de Padres Este manual le ayudará a su hijo a revisar el material aprendido en este trimestre, y le ayudará a prepararse para su primera prueba de

Más detalles

EL VOLUMEN DE LOS CUERPOS GEOMÉTRICOS

EL VOLUMEN DE LOS CUERPOS GEOMÉTRICOS EL VOLUMEN DE LOS CUERPOS GEOMÉTRICOS Los cuerpos geométricos tridimensionales ocupan siempre un espacio. La medida de ese espacio recibe el nombre de volumen. Asimismo, los cuerpos que están huecos pueden

Más detalles

TEORÍA TEMA 10 MOMENTO DE INERCIA

TEORÍA TEMA 10 MOMENTO DE INERCIA TEORÍA TEMA 10 MOMENTO DE INERCIA 1. CONCEPTO DE MOMENTO DE INERCIA AXIALES O AXILES Y POLAR UNIDADES: Por que es > que cero Como se puede determinar Ip (directa e indirecta) Por que se llama momento de

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

Introducción Fundamentos Trinidad Cósmica Fases del Qi El Yin y el Yang. Las Fuerzas Complementarias...

Introducción Fundamentos Trinidad Cósmica Fases del Qi El Yin y el Yang. Las Fuerzas Complementarias... Fundamentos del Feng Shui Clásico Página 2 de 86 CONTENIDO Introducción... 4 Fundamentos... 6 El 氣 QI o Energía... 6 Trinidad Cósmica... 7 Fases del Qi... 11 Analizando el Qi 氣... 13 El Yin y el Yang.

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA Geometría analítica 1.- Ecuación de la recta 2.- Cónicas 3.-Ecuación de la parábola UNIDAD II: CONICAS (CIRCUNFERENCIA Y PARABOLAS) Una superficie cónica de revolución está engendrada por la rotación de

Más detalles

La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente.

La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente. Formas de la ecuación de una recta. Hasta el momento, se han dado algunas características de la recta tales como la distancia entre dos puntos, su pendiente, su ángulo de inclinación, relación entre ellas,

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tema 11: Integral definida. Aplicaciones al cálculo de áreas 1. Introducción Las integrales nos van a permitir calcular áreas de figuras no geométricas. En nuestro caso, nos limitaremos a calcular el área

Más detalles

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS:

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: Un polígono es un figura cerrada formada por segmentos de recta que no se

Más detalles

Orientación con brújula

Orientación con brújula Orientación con brújula Introducción Las referencias naturales o artificiales visibles, no siempre son accesibles (sol, estrellas) Así fue hasta que se descubrió una referencia portátil, que no era afectada

Más detalles

Módulo diseñado por: Docente María Cristina Marín Valdés

Módulo diseñado por: Docente María Cristina Marín Valdés Módulo diseñado por: Docente María Cristina Marín Valdés I.E. Eduardo Fernández Botero Amalfi (Ant) 2018 CONTENIDOS CONTENIDO PÁGINA Concepto de poliedros. 3 Clases de poliedros 3 Teorema de Euler. 4 Áreas

Más detalles

PROBLEMAS RESUELTOS DE LA ECUACIÓN DE LA RECTA

PROBLEMAS RESUELTOS DE LA ECUACIÓN DE LA RECTA PROLEMS RESUELTOS DE L ECUCIÓN DE L RECT 1) Hallar la pendiente el ángulo de inclinación de la recta que pasa por los puntos (-, ) (7, -) 1 m 1 m 7 1 comom tan entonces 1 1 tan 1,4 ) Los segmentos que

Más detalles

ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS

ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: Curso: TEMA 1: TRAZADOS BÁSICOS 1. LA ESCUADRA Y EL CARTABÓN. Observando tu escuadra y tu cartabón describe su forma y sus ángulos.

Más detalles

2.1. ARTIFICIALES: Inventados y fabricados por el ser humano.

2.1. ARTIFICIALES: Inventados y fabricados por el ser humano. 1. LA ORIENTACIÓN. La orientación es una práctica habitual de cualquier ser vivo. Todos los seres se orientan de una u otra forma para conseguir lo necesario para su subsistencia. Orientarse tiene distintos

Más detalles

ELEMENTOS DE GEOMETRÍA

ELEMENTOS DE GEOMETRÍA LONGITUDES Y ÁREAS. 1. Perímetro y área. 1.1. Medidas del rectángulo. 1.2. Medidas del cuadrado. 1.3. Medidas del rombo. 1.4. Medidas del romboide. 1.5. Medidas de un paralelogramo cualquiera. 1.6. Medidas

Más detalles

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO.

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. FACULTAD DE MATEMATICAS UNIVERSIDAD VERACRUZANA 2010 Xalapa, Ver. México 1 1. La distancia entre dos puntos en la recta real es 5. Si uno de los puntos

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante?

Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante? Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante? Cuántas veces nos hemos parado a pensar, esas dos personas mira que se parecen, casi son igualitas! De igual manera, cuando

Más detalles

TEMA 3. LUGARES GEOMÉTRICOS

TEMA 3. LUGARES GEOMÉTRICOS TEMA 3. LUGARES GEOMÉTRICOS LA HERRAMIENTA LUGAR GEOMÉTRICO Para construir un lugar geométrico necesitaremos dos objetos: un punto que será el que describirá el lugar geométrico, y otro que será el punto

Más detalles

C O M U N I C A C I O N / TV3

C O M U N I C A C I O N / TV3 U N I V E R S I D A D N A C I O N A L D E L A P L A T A / FACULTAD DE ARQUITECTURA Y URBANISMO C O M U N I C A C I O N / TV3 - TURNO NOCHE - NIVEL 1 CICLO LECTIVO 2013 FIG.N 1 ELEMENTOS PRIMARIOS DE PERSPECTIVA

Más detalles

MATHEMATICA. Geometría - Recta. Ricardo Villafaña Figueroa. Material realizado con Mathematica. Ricardo Villafaña Figueroa

MATHEMATICA. Geometría - Recta. Ricardo Villafaña Figueroa. Material realizado con Mathematica. Ricardo Villafaña Figueroa MATHEMATICA Geometría - Recta Material realizado con Mathematica 2 Contenido Sistema de Coordenadas... 3 Distancia entre dos puntos... 3 Punto Medio... 5 La Recta... 8 Definición de recta... 8 Pendiente

Más detalles

Tema 6 Tangencias, Enlaces y Polaridad

Tema 6 Tangencias, Enlaces y Polaridad Tema 6 Tangencias, Enlaces y Polaridad En este tema revisaremos la unión de curvas y líneas mediante tangencias, además de introducir el concepto de polaridad. Las tangencias es un campo extensísimo, del

Más detalles

Mira bien las figuras

Mira bien las figuras Página 13 Pág. 1 43 Calcula el área de un cuadrado cuya diagonal coincide con el lado de otro cuadrado de 10 m 2 de superficie. 10 m 2 Un dibujo hace ver que el resultado es 5 m 2. La mitad de la superficie

Más detalles

Campo eléctrico y superficies equipotenciales La trazadora analógica

Campo eléctrico y superficies equipotenciales La trazadora analógica Campo eléctrico y superficies equipotenciales La trazadora analógica 2 de abril de 2008 1. Objetivos Determinar el campo de potencial electrostático entre dos electrodos metálicos. 2. Material Figura 1:

Más detalles

ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos:

ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos: ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos: Curso: TEMA 1: TRAZADOS BÁSICOS. 1. RECTAS PARALELAS Las rectas paralelas son aquellas que por mucho que las prolongues nunca se van a cortar.

Más detalles

ACTIVIDADES FINALES TEMA 8

ACTIVIDADES FINALES TEMA 8 60. Calcula el área de un prisma de 6 cm de altura si la base es un triángulo rectángulo cuyos catetos miden 3 y 4 cm. Cómo se halla el área de un prisma? Si desarrollamos el cuerpo geométrico como se

Más detalles

ángulo agudo ángulo agudo triángulo acutángulo triángulo acutángulo ángulo ángulo Nombre Ángulo que es menor que un ángulo recto

ángulo agudo ángulo agudo triángulo acutángulo triángulo acutángulo ángulo ángulo Nombre Ángulo que es menor que un ángulo recto Tarjetas de vocabulario ángulo agudo ángulo agudo Ángulo que es menor que un ángulo recto acutángulo acutángulo Un con tres ángulos agudos ángulo ángulo Una figura formada por dos semirrectas que tienen

Más detalles

TIPOS DE LÍNEAS Las rectas no tienen principio ni fin. La recta es una línea formada por una serie de puntos en una misma dirección...

TIPOS DE LÍNEAS Las rectas no tienen principio ni fin. La recta es una línea formada por una serie de puntos en una misma dirección... TEMA 8 RECTAS Y ÁNGULOS TIPOS DE LÍNEAS Las rectas no tienen principio ni fin. La recta es una línea formada por una serie de puntos en una misma dirección....... Línea recta Cada una de las partes en

Más detalles

New Jersey Center for Teaching and Learning. Iniciativa de Matemática Progresiva

New Jersey Center for Teaching and Learning. Iniciativa de Matemática Progresiva Slide 1 / 232 New Jersey Center for Teaching and Learning Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de estudiantes

Más detalles

Guía Nº 1 - Revisión

Guía Nº 1 - Revisión A. Completar con V o F según sea verdadero o falso. 1) Dos ángulos opuestos por el vértice siempre son iguales. 2) Dos ángulos opuestos por el vértice son suplementarios. 3) Dos ángulos opuestos por el

Más detalles

Teoría Tema 7 Circunferencia

Teoría Tema 7 Circunferencia página 1/9 Teoría Tema 7 Circunferencia Índice de contenido La circunferencia como superficie cónica...2 La circunferencia como lugar geométrico...3 Potencia de un punto respecto de una circunferencia...4

Más detalles

1 Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo:

1 Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo: Indica cuáles de las siguientes parábolas están abiertas hacia arriba y cuáles hacia abajo: 3 + x y = 3 x x + x 3 + x y = 3 x x + x Abierta hacia arriba Abierta hacia abajo Abierta hacia abajo Calcula

Más detalles

La regla de Cramer. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2... a n1 x 1 + a n2 x

La regla de Cramer. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2... a n1 x 1 + a n2 x Consideremos un sistema de n ecuaciones lineales con n incógnitas como el siguiente: a 11 x 1 + a 1 x +. + a 1n x n b 1 a 1 x 1 + a x +. + a n x n b... a n1 x 1 + a n x +. + a nn x n b n La matriz de los

Más detalles

Halla los siguientes perímetros y áreas:

Halla los siguientes perímetros y áreas: 73 CAPÍTULO 9: LONGITUDES Y ÁREAS.. Matemáticas 1º y º de ESO 1. TEOREMA DE PITÁGORAS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes

Más detalles

Dado el lado a, construcción de polígonos regulares:

Dado el lado a, construcción de polígonos regulares: Dado el lado a, construcción de polígonos regulares: Triángulo equilátero º Desde un extremo del lado dado trazar un arco de igual radio al lado º Desde el otro extremo repetir la operación º El punto

Más detalles

Gráfica de la función f de X en Y El conjunto X se llama dominio de la función f.

Gráfica de la función f de X en Y El conjunto X se llama dominio de la función f. FUNCIONES Y SUS GRÁFICAS Funciones y notación de funciones Una relación entre dos conjuntos X e Y es un conjunto de pares ordenados, cada uno de la forma (, y) donde es un elemento del conjunto X e y,

Más detalles

Primer grado. Slide 2 / 232. Slide 1 / 232. Slide 3 / 232. Slide 4 / 232. Slide 6 / 232. Slide 5 / 232. Geometría. Formas 2-D

Primer grado. Slide 2 / 232. Slide 1 / 232. Slide 3 / 232. Slide 4 / 232. Slide 6 / 232. Slide 5 / 232. Geometría. Formas 2-D Slide 1 / 232 Slide 2 / 232 New Jersey Center for Teaching and Learning Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial

Más detalles

Slide 2 / 232 Primer grado

Slide 2 / 232 Primer grado New Jersey Center for Teaching and Learning Slide 1 / 232 Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de estudiantes

Más detalles

GP Trazar la mediatriz del segmento Trazar la perpendicular que pasa por el punto.

GP Trazar la mediatriz del segmento Trazar la perpendicular que pasa por el punto. 1.1. Trazar la mediatriz del segmento. 1.2. Trazar la perpendicular que pasa por el punto. A B P 1.3. Trazar la perpendicular que pasa por C. 1.4. Trazar la perpendicular que pasa por el extremo de la

Más detalles

TEORÍA TEMA 6 CENTRO DE FUERZAS PARALELAS. A- Centro de fuerzas paralelas caso dos fuerzas- caso n fuerzas. Definición centro de fuerzas paralelas.

TEORÍA TEMA 6 CENTRO DE FUERZAS PARALELAS. A- Centro de fuerzas paralelas caso dos fuerzas- caso n fuerzas. Definición centro de fuerzas paralelas. TEORÍA TEMA 6 CENTRO DE FUERZAS PARALELAS A- Centro de fuerzas paralelas caso dos fuerzas- caso n fuerzas. Definición centro de fuerzas paralelas. B- Caso de fuerzas paralelas de igual sentido (gráfico)

Más detalles

INSTRUCCIONES. Toma en cuenta lo siguiente:

INSTRUCCIONES. Toma en cuenta lo siguiente: INSTRUCCIONES Lee con atención cada pregunta. Las preguntas presentan cuatro opciones de respuesta: A, B, C y D. Solo una de las opciones es la correcta. Resuelve el ejercicio en el espacio en blanco de

Más detalles

Diplomado Mathematiké

Diplomado Mathematiké Diplomado Mathematiké Certificación de Profesores de Matemáticas 2017-2018 Módulo IX Volumen de Figuras Sólidas Material de Trabajo Mathematiké Una Forma Integral, Inteligente y Creativa de Aprender Matemáticas

Más detalles

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 42 Índice. 1. Superficies. 2. El espacio eucĺıdeo tridimensional. Coordenadas Cartesianas. 3. Distancia entre

Más detalles

TEMA 9 SUPERFICIES Y VOLÚMENES

TEMA 9 SUPERFICIES Y VOLÚMENES TEMA 9 NOMBRE Y APELLIDOS... FECHA... Vamos a empezar a aprender fórmulas de superficies y volúmenes de figuras geométricas sencillas. SUPERFICIES: lado CUADRADO lado x lado lado RECTÁNGULO Base x altura

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

OLIMPÍADA NACIONAL RONDA FINAL. 1er. NIVEL

OLIMPÍADA NACIONAL RONDA FINAL. 1er. NIVEL OLIMPÍADA NACIONAL 001 - RONDA FINAL 1er. NIVEL Problema 1 Laura tenía un jardín rectangular de 8m de ancho y 10m de largo. Si aumentó metros el ancho de su jardín y m el largo, en cuánto aumentó la superficie

Más detalles

Dibujo Técnico Sistema diédrico.- Cambios de plano, giros y ángulos. ÁNGULOS.

Dibujo Técnico Sistema diédrico.- Cambios de plano, giros y ángulos. ÁNGULOS. 30. SISTEMA DIÉDRICO.- CAMBIOS DE PLANO, GIROS Y ÁNGULOS. 30.1. Cambios de plano. Los cambios de planos de proyección consisten en tomar o elegir otros planos de proyección de forma que los elementos que

Más detalles

TEMA 5. CURVAS CÓNICAS.

TEMA 5. CURVAS CÓNICAS. 5.1. GENERALIDADES. TEMA 5. CURVAS CÓNICAS. Se denominan secciones cónicas a aquellas superficies que son producidas por la intersección de un plano con una superficie cónica de revolución (una superficie

Más detalles

MATEMÁTICAS BÁSICAS. Universidad Nacional de Colombia Sede Bogotá. 24 de julio de Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Universidad Nacional de Colombia Sede Bogotá. 24 de julio de Departamento de Matemáticas MATEMÁTICAS BÁSICAS Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 24 de julio de 2012 Parte I Ecuaciones lineales ECUACIONES Una ecuación es una igualdad entre dos expresiones

Más detalles

Plan de Animación para la enseñanza de las Matemáticas

Plan de Animación para la enseñanza de las Matemáticas FUNCIONES MATEMÁTICAS I: CONCEPTOS BÁSICOS Una función, en matemáticas, es el término usado para indicar la relación o correspondencia entre dos o más cantidades. El término función fue usado por primera

Más detalles

New Jersey Centro para Enseñanza y Aprendizaje. Inciativa de Matemática Progresiva

New Jersey Centro para Enseñanza y Aprendizaje. Inciativa de Matemática Progresiva Slide 1 / 126 New Jersey Centro para Enseñanza y Aprendizaje Inciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de estudiantes

Más detalles

1. Efectúa las siguientes operaciones, simplificando el resultado lo máximo posible:

1. Efectúa las siguientes operaciones, simplificando el resultado lo máximo posible: 4ºESO 1. Efectúa las siguientes operaciones, simplificando el resultado lo máimo posible: a. 18 50 8 b. 7 3 180 c. 4 3 64 d. e. 3 3 3 5 88 : 1 3 4 7 5. Racionaliza las siguientes epresiones, simplificando

Más detalles

Como interpretar los patrones de molderia para realizarlos en tamaño real?

Como interpretar los patrones de molderia para realizarlos en tamaño real? Como interpretar los patrones de molderia para realizarlos en tamaño real? Le llamamos Patrones a la imágenes que presentan la molderia en tamaño escala. Para interpretar los patrones de molderia debemos

Más detalles

4) Dada la ecuación x + 4xy + 4y x + 6 y = 0, identifica el lugar geométrico que representa e indica sus elementos característicos (en el sistema original). Realiza un esbozo de su gráfica. La ecuación

Más detalles

open green road Guía Matemática INECUACIONES profesor: Nicolás Melgarejo .cl

open green road Guía Matemática INECUACIONES profesor: Nicolás Melgarejo .cl Guía Matemática INECUACIONES profesor: Nicolás Melgarejo.cl 1. Orden en R Consideremos un conjunto compuesto por símbolos no numéricos como el siguiente: A = {Œ, Ø,!, #, Æ, ø} No es posible ordenar el

Más detalles

Tema 3. Semejanzas y escalas

Tema 3. Semejanzas y escalas Tema 3. Semejanzas y escalas Tengo dos hijas, María y Ana. A una le gusta dibujar y a otra no. Pero cuando fuimos a ver París, y en concreto la Torre Eiffel, las dos querían hacer un dibujo de la famosa

Más detalles

Cuadratura. Cuadratura del Rectángulo

Cuadratura. Cuadratura del Rectángulo Denición 1. : en Geometría, determinación de un cuadrado equivalente en supercie a una gura geométrica dada. del Rectángulo Lema 1. el segmento CD de la gura es la media geométrica de AC y CB, es decir

Más detalles

Distancia entre un punto y una recta

Distancia entre un punto y una recta Distancia entre un punto una recta Frecuentemente en geometría nos encontramos con el problema de calcular la distancia desde un punto a una recta. Distancia de un punto a una recta La fórmula para calcular

Más detalles

Cuál es el área de los siguientes rectángulos en pulgadas? 1) 8 por 6 = 4) 5 por 3 = 2) 9 por 9 = 5) 7 por 3 = 3) 2 por 8 = 6) 6 por 6 =

Cuál es el área de los siguientes rectángulos en pulgadas? 1) 8 por 6 = 4) 5 por 3 = 2) 9 por 9 = 5) 7 por 3 = 3) 2 por 8 = 6) 6 por 6 = Nombre Fecha Área de Rectángulos Trabajo en Clase Cuál es el área de los siguientes rectángulos en pulgadas? 1) 8 por 6 = 4) 5 por 3 = 2) 9 por 9 = 5) 7 por 3 = 3) 2 por 8 = 6) 6 por 6 = 7) Sobre la grilla

Más detalles

RAZONAMIENTO GEOMÉTRICO

RAZONAMIENTO GEOMÉTRICO RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros

Más detalles

INSTITUCIÓN EDUCATIVA TÉCNICA SAGRADO CORAZÓN Aprobada según Resolución No NIT DANE SOLEDAD ATLÁNTICO.

INSTITUCIÓN EDUCATIVA TÉCNICA SAGRADO CORAZÓN Aprobada según Resolución No NIT DANE SOLEDAD ATLÁNTICO. Página 1 de 12 GUIA N 2 ÁREA: GEOMETRIA GRADO: 2 DOCENTES: CARMEN MENDOZA-FAISY RODRIGUEZ-IVONNE PRENNET-DILIA BELTRAN PERIODO: 1 IH (en horas): EJE TEMÁTICO LONGITUDES DESEMPEÑO Reconoce el centímetro,

Más detalles

LA BRUJULA CONSTA DE DOS PARTES FUNDAMENTALES: LA BASE Y EL LIMBO.

LA BRUJULA CONSTA DE DOS PARTES FUNDAMENTALES: LA BASE Y EL LIMBO. LA BRUJULA CONSTA DE DOS PARTES FUNDAMENTALES: LA BASE Y EL LIMBO. LA BASE Es generalmente rectangular, en un canto aparece una regla. En ella podemos ver una flecha larga, llamada FLECHA DE DIRECCIÓN

Más detalles

TEMA 6: GEOMETRÍA PLANA

TEMA 6: GEOMETRÍA PLANA TEMA 6: GEOMETRÍA PLANA 1. INTRODUCCIÓN A LA GEOMETRÍA En nuestro entorno podemos visualizar objetos que se relacionan con elementos geométricos: por ejemplo la ventana de nuestra casa tiene forma rectangular.

Más detalles

Feng Shui Tradicional México PROGRAMA INTENSIVO DE CAPACITACIÓN PROFESIONAL EN METAFÍSICA CHINA

Feng Shui Tradicional México PROGRAMA INTENSIVO DE CAPACITACIÓN PROFESIONAL EN METAFÍSICA CHINA Feng Shui Tradicional México PROGRAMA INTENSIVO DE CAPACITACIÓN PROFESIONAL EN METAFÍSICA CHINA CALENDARIO 2010 T radicionalmente, el conocimiento de la Metafísica China ha sido transmitido de maestro

Más detalles

Estudio de teselaciones semirregulares y

Estudio de teselaciones semirregulares y Estudio de teselaciones semirregulares 8-8-4 y 1-1-3 Julia Rodríguez Montalvo Damian Stodulski Iván Gutiérrez Giraldo 1ºD BI Índice: 1. Introducción.... Fundamento teórico 3. Procesamiento matemático.6

Más detalles

Cálculo Diferencial Enero 2015

Cálculo Diferencial Enero 2015 Laboratorio # 1 Desigualdades I.- Determinar los valores de que satisfacen simultáneamente las dos ecuaciones dadas. y y y y II. - Determina los valores de que satisfagan al menos una de las condiciones.

Más detalles

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1

Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1 TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los

Más detalles

Los triángulos y su clasificación

Los triángulos y su clasificación Unidad 5 Tema 12 Los triángulos y su clasificación 1. Clasifico los triángulos según la medida de sus lados y de sus ángulos. a. Según sus lados: Según sus ángulos: 15 m 15 m b. Según sus lados: Según

Más detalles

Quién lo descubre? Vamos a explorar, reconocer, construir y usar características de figuras y cuerpos geométricos.

Quién lo descubre? Vamos a explorar, reconocer, construir y usar características de figuras y cuerpos geométricos. Vamos a explorar, reconocer, construir y usar características de figuras y cuerpos geométricos. Quién lo descubre? Qué figuras geométricas mira el nene en la compu? Vamos a explorar, reconocer, construir

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

LECTURA E INTERPRETACIÓN DE MAPAS

LECTURA E INTERPRETACIÓN DE MAPAS Técnicas Scout LECTURA E INTERPRETACIÓN DE MAPAS SCOUTS SAN ANTONIO ÁVILA QUÉ ES UN MAPA? Un mapa es una representación plana y a escala reducida de una zona de terreno. TIPOS DE MAPAS: Mapas topográficos:

Más detalles

Cuadratura. Cuadratura del Rectángulo

Cuadratura. Cuadratura del Rectángulo Introducción 1 Cuadratura Denición 1. Cuadratura: en Geometría, determinación de un cuadrado equivalente en supercie a una gura geométrica dada. Cuadratura del Rectángulo Lema 1. el segmento CD de la gura

Más detalles

A. Simetría axial. l, entonces, M es el punto medio de PP y, P sobre el eje de simetría l es el punto P tal que l

A. Simetría axial. l, entonces, M es el punto medio de PP y, P sobre el eje de simetría l es el punto P tal que l Un eje de simetría es una recta que divide a una figura en dos partes donde cada punto de una parte es la reflexión sobre la recta de un punto en la otra parte de la figura. A. Simetría axial En el ejercicio

Más detalles

CONJUNTOS. IDEA DE CONJUNTO Amigo, tú conoces estas cosas, lo utilizamos todos los días para trabajar en el colegio.

CONJUNTOS. IDEA DE CONJUNTO Amigo, tú conoces estas cosas, lo utilizamos todos los días para trabajar en el colegio. TEMA 6 CONJUNTOS LOGICO MATEMATICO IDEA DE CONJUNTO Amigo, tú conoces estas cosas, lo utilizamos todos los días para trabajar en el colegio. Lo llamamos ÚTILES ESCOLARES y forman un conjunto. Entonces

Más detalles

Bloque 2. Geometría. 4. Iniciación a las Cónicas

Bloque 2. Geometría. 4. Iniciación a las Cónicas Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado

Más detalles

MC Beatriz Gpe. Zaragoza Palacios Departamento de Matemáticas Universidad de Sonora

MC Beatriz Gpe. Zaragoza Palacios Departamento de Matemáticas Universidad de Sonora MC Beatriz Gpe. Zaragoza Palacios Departamento de Matemáticas Universidad de Sonora Un punto indica posición. No tiene largo ni ancho pues debe ser pequeño. Cuando un punto se mueve, su recorrido se transforma

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles