Curvas y Superficies
|
|
|
- Carmen Venegas Villanueva
- hace 8 años
- Vistas:
Transcripción
1 Curvas y Superficies
2 Curvas y Superficies q Motivación q Representación de curvas y superficies q Curvas paramétricas cúbicas q Curvas de Hermite q Curvas de Bézier q B-splines q Superficies paramétricas cúbicas
3 Motivación q Hasta ahora hemos visto solo primitivas q Líneas, polígonos, objetos simples (esfera) q Cómo podemos modelar curvas o superficies de objetos reales? q Aun cuando las curvas y superficies son convertidas a curvas poligonales y mayas cuando son renderizadas, igual proveen una buena opción para el modelaje.
4 Motivación [Zorin 01]
5 Representación de curvas y superficies Cómo modelar y/o representar objetos reales? Problema: No hay un modelo matemático del objeto Solución: Realizar una aproximación por trozos de: Planos, esferas, otras formas simples de modelar. Se intenta que el modelo sea lo más cercano posible al objeto real.
6 Representación de curvas y superficies [Daniel Rypl:
7 Motivación q Permite el modelado de formas suaves q Caricaturas q Curvas que rigen el movimiento en animación
8 Motivación q Permite el modelado de formas suaves q Caricaturas q Curvas que rigen el movimiento en animación
9 Motivación q Permite el modelado de formas suaves q Caricaturas q Curvas que rigen el movimiento en animación q Usar arcos es uno de los doce principios de la animación q La suavidad puede ser garantizada analíticamente q Representación analítica q Teoría de suavidad de curvas y superficies es bien conocida (cálculo y geometría diferencial)
10 Curvas y Superficies q Motivación q Representación de curvas y superficies q Curvas paramétricas cúbicas q Curvas de Hermite q Curvas de Bézier q B-splines q Superficies paramétricas cúbicas
11 Curvas y superficies polinomiales q Se puede aproximar cualquier función continua tan precisamente como se quiera (Teorema de Weierstrass) q Ofrece control local en el diseño de figuras usando funciones definidas a trozos q Todas las derivadas e integrales son calculables q Representación compacta q Evaluación eficiente (regla de Horner)
12 Regla de Horner Sea un polinomio cúbico b(t) = at 3 bt Para evaluar b(t), cuántas operaciones de multiplicación y de suma son necesarias? 6 multiplicaciones y 3 sumas Regla de Horner: + Cuántas operaciones? 3 multiplicaciones y 3 sumas La evaluación de un polinomio de grado n toma n sumas y n multiplicaciones 2 + ct + b(t) = ((a * t + b)* t + c) * t + d d
13 Representación de Curvas y superficies Forma explícita: y = f(x), z = f(x, y) Forma implícita: f(x,y) = 0, f(x, y, z) = 0 Paramétrica: Segmento de curva 2D (x(t), y(t)), t [0,1] Segmento de curva 3D (x(t), y(t), z(t)), t [0,1] Superficie paramétrica (x(u, v), y(u,v), z(u,v)), u, v [0,1]
14 Representación de curvas Hay tres formas de representar los objetos: Explícitamente : y = f(x) Implícitamente: f(x, y, z) = 0 Paramétricamente: x = x(t) y = y(t) z = z(t)
15 Representación Implícita (Ejemplos) Representación Implícita En 2D, una curva será representada por f(x, y) = 0 # f es evaluada en el par (x, y) Ejemplo Una línea: ax + by + c = 0 Un círculo: x 2 + y 2 r 2 = 0 En 3D, una superficie se describe por f(x, y, z) = 0 Ejemplo Una esfera: x 2 + y 2 + z 2 r 2 = 0
16 Representación paramétrica (Ejemplos) Representación Paramétrica El valor de cada variable espacial se expresa en términos de una variable independiente (u), llamada parámetro. En dos dimensiones, una curva implícita es descrita como: p(u) = [ x(u) y(u) z(u) ] T, con u 1 <= u <= u 2 La derivada representa la tangente a la curva y es perpendicular a la normal del punto dp(u)/du = [ x(u) y(u) z(u) ] T Frecuentemente se normaliza de modo que: u 1 = 0 y u 2 = 1
17 Prepresentación paramétrica (Ejemplo)
18 Superficies Representación Paramétrica Una superficie paramétrica requiere dos parámetros: y = x(u,v) y = y(u,v) z = z(u,v) Donde la representación matricial es: p(u,v) = [ x(u,v), y(u,v), z(u,v)] T Observación: Los puntos de la superficie son generados por la variación de los parámetros u, v.
19 Ejemplo Ejemplo Determinar la representación de la curva f(θ) = sin(θ). Esta es una descripción paramétrica de la curva bidimensional con parámetro θ. Los valores de θ pueden ser de - a +. Limitando el dominio de la curva en (0...2π):
20 Representación de curvas Aproximando esta curva con puntos Poniendo puntos a intervalos regulares de θ (i.e. θ = 0, 1, 2...). Así encontramos los puntos que serán mostrados. Los puntos serán unidos a través de líneas.
21 Curvas y Superficies q Motivación q Representación de curvas y superficies q Curvas paramétricas cúbicas q Curvas de Hermite q Curvas de Bézier q B-splines q Superficies paramétricas cúbicas
22 Curvas cúbicas paramétricas La idea es emplear funciones que sean de un grado mayor que el de las funciones lineales. Ofrecen mayor facilidad de manipulación interactiva que las funciones lineales. Funciones explícitas Ecuaciones implícitas Representación paramétrica
23 Curvas cúbicas paramétricas q Enfoquémonos en las curvas paramétricas q Es fácil generalizar de curvas a superficies q Grado del polinomio a usar: q Grado 0 2 (constante, lineal o cuadrático) q Poca flexibilidad q De grado alto q Muy complejo y puede producir ondulaciones innecesarias q Cúbicos (grado 3) q Balance entre los anteriores, son los más usados en CG.
24 Ejemplo
25 Ejemplo
26 Curvas cúbicas paramétricas Cada segmento Q de la curva global está indicando por tres funciones x, y y z que son polinomios cúbicos en el parámetro t. Son los más utilizados ya que los polinomios de grado menor no ofrecen mucha flexibilidad para controlar la forma de la curva y los de mayor grado requieren más cálculos y pueden introducir ondulaciones indeseadas.
27 Curvas cúbicas paramétricas Características básicas Los polinomios cúbicos que definen un segmento de curva tienen la forma 0 1 t, ) ( ) ( ) ( z z z z y y y y x x x x d t c t b t a t z d t c t b t a t y d t c t b t a t x = = = = z z z y y y x x x c b a c b a c b a C [ ] T t t t T 2 3 = [ ] T t z t y t x Q t T = ) ( ) ( ) ( ) ( T C Q =
28 Continuidad y derivada (velocidad)
29 Continuidad (ejemplos)
30 Representación de curvas paramétricas Hermite Curvas de Bézier Q = CT B-splines
31 Curvas y Superficies q Motivación q Representación de curvas y superficies q Curvas paramétricas cúbicas q Curvas de Hermite q Curvas de Bézier q B-splines q Superficies paramétricas cúbicas
32 Curvas de Hermite (pr. er-mit ) Q = G H M H T Q = G H M H T G H = [ P1 T1 P2 T2]
33 Curvas de Hermite Q = G H M H T G =! P1 R1 P4 R4 H " # $
34 Curvas de Hermite M H
35 Matriz de Hermite
36 Ejemplos
37 Ejemplo Diferencia: longitud del vector tangente R 1. La dirección de los vectores tangentes son fijas.
38 Ejemplo
39 Curvas y Superficies q Motivación q Representación de curvas y superficies q Curvas paramétricas cúbicas q Curvas de Hermite q Curvas de Bézier q B-splines q Superficies paramétricas cúbicas
40 Curvas Bézier Diseñadas para facilitar el diseño industrial (automovilístico) Definición de dos puntos intermedios que no están en la curva. Los vectores tangentes inicial y final se determinan con los vectores P 1 P 2 y P 3 P 4.
41 Curvas Bézier La curva siempre queda dentro de la envoltura convexa de los puntos de control
42 Curvas Bézier La matriz de geometría de Bézier G B es : G B = [ P1 P2 P3 P4] Para encontrar la matriz base de Bézier M B, se sustituye G H = M HB. G B y se define M B = M H. M HB
43 Matriz de Bézier
44 Continuidad de curvas de Bézier q Cómo asegurar continuidad C1 o G1 sobre múltiples segmentos seguidos?
45 Continuidad de curvas de Bézier
46 Curvas y Superficies q Motivación q Representación de curvas y superficies q Curvas paramétricas cúbicas q Curvas de Hermite q Curvas de Bézier q B-splines q Superficies paramétricas cúbicas
47 Curvas B-spline q Objetivo: mayor continuidad entre segmentos q Reducen la longitud del segmento representado por 4 puntos de control q Dos segmentos consecutivos comparten 3 puntos de control
48 Curvas B-spline q Dos segmentos consecutivos comparten 3 puntos de control q m puntos de control -> m-3 segmentos q Cada segmento es parametrizado sobre [0, 1]
49 Matriz B-spline
50 Curvas B-Splines Consisten en segmentos de curva cuyos coeficientes polinomiales dependen de unos cuantos puntos de control. Este comportamiento se conoce como control local. El mover un punto afecta sólo una pequeña parte de la curva. Además se reduce considerablemente el tiempo que se requiere para calcular los coeficientes. Más populares en CG Tienen continuidad C2
51 Curvas B-spline
52 Aplicaciones
53 Aplicaciones
54 Aplicaciones
55 Aplicaciones
56 Aplicaciones
57 Aplicaciones
58 Aplicaciones
59 Aplicaciones
60 Superficies paramétricas q Uno de los objetivos más comunes que persigue la computación gráfica es lograr establecer una representación lo más exacta posible del mundo real. q En él, se pueden encontrar infinidad de objetos de las más diversas formas y colores, con características que son todo un reto tratar de modelar. q Parte de estas características tan particulares son las superficies curvas.
61 Superficies paramétricas q Existen tres representaciones muy comunes de superficies tridimensionales: q Superficies de malla poligonal q Superficies paramétricas q Superficies cuádricas
62 Curvas y Superficies q Motivación q Representación de curvas y superficies q Curvas paramétricas cúbicas q Curvas de Hermite q Curvas de Bézier q B-splines q Superficies paramétricas cúbicas
63 Superficies bicúbicas paramétricas q Malla poligonal es un conjunto de superficies planas limitadas por polígonos conectados entre sí. q Funciona bien cuando se pretende visualizar volúmenes acotados por intersecciones de planos, como son paredes, cajas, etc. q Las curvas polinomiales paramétricas especialmente cúbicas (polinomios de grado tres) son la opción por excelencia. q Las superficies basadas en curvas polinomiales paramétricas de grado tres, se denominan Superficies Bicúbicas Paramétricas.
64 Superficies bicúbicas paramétricas q Constituyen una generalización de la curvas cúbicas paramétricas. q Forma general de la curva cúbica paramétrica Q(t) = G. M. T q Donde G es la matriz de geometría
65 Superficies bicúbicas paramétricas q Por facilidad de notación se reemplaza t con s para obtener Q(s) = G. M. S q Se hace variar los puntos de G en tres dimensiones sobre una trayectoria parametrizada en t. q Se obtiene Q(s,t) = [G1(t) G2(t) G3(t) G4(t)].M.S
66 Superficies de Bézier La matriz de geometría de Bézier G consiste en 16 puntos de control como se ilustra en la figura
67 Superficies de Bézier Estas superficies son atractivas para el diseño interactivo por la misma razón que las curvas de Bézier.
68 Superficies de Bézier
69 Superficie B-spline
70 Aplicaciones q B-Spline 120,000 control points
71 Aplicaciones
72 Aplicaciones
Graficación. Representación Explicita. Representación Paramétrica. Representación Implícita. Representación de curvas
Graficación Como modelar y/o representar objetos reales? Problema: No hay un modelo matemático del objeto Solución: Realizar una aproximación por pedazos de: Planos, esferas, otras formas simples de modelar
Representación de curvas y superficies
Representación de curvas y superficies Basado en: Capítulo 9 Del Libro: Introducción a la Graficación por Computador Foley Van Dam Feiner Hughes - Phillips Resumen del capítulo Representación de curvas
Interpolación. Dan Casas
Interpolación Dan Casas 1 Motivación 2 Motivación 3 Motivación 4 Interpolación 1. Introducción La mayor parte de los procesos relacionados con la Animación se basan en la Interpolación. Qué necesitamos?
Modelado de Objetos 3D I
5 de abril de 2011 Representación de Supercies en 3D Representación Volumétrica Matriz Tridimensional de elementos espaciales Cada elemento de la discretización del espacio se conoce como Vóxel Válida
CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES
GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)
Planteamiento del problema
Planteamiento del problema La interpolación consiste en construir una función (o una curva) que pase por una serie de puntos prefijados. Interpolación polinomial: el conjunto de datos observados se interpola
Fundamentos de Visión por Computador
Fundamentos de Visión por Computador Sistemas Informáticos Avanzados Índice Definiciones Geometría de una curva Curvas digitales Representaciones de curvas Ajustes de curvas Medidas de error Ajuste poligonal
Superficies Parametrizadas y Áreas
Superficies Parametrizadas y Áreas 1 Superficies Parametrizadas y Áreas Hasta ahora hemos estudiado (tema de matemáticas 5) superficies definidas como gráficas de funciones de la forma z = f (x, y). El
Superficies paramétricas
SESIÓN 7 7.1 Introducción En este curso ya se han estudiando superficies S que corresponden a gráficos de funciones de dos variables con dos tipos de representaciones: Representación explícita de S, cuando
Interpolación seccional: SPLINES
Motivación: problemas en aproximación funcional. Interpolación polinómica oscilaciones para número elevado de datos Interpolación seccional: SPLINES.5 8 6 4 Laboratori de Càlcul Numèric (LaCàN) Departament
Cálculo en varias variables
Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad
Tema 6 Funciones reales de varias variables
Tema 6 Funciones reales de varias variables 6.1 Continuidad y límites 6.1.1 Introducción. Existen muchos procesos en la naturaleza que dependen de dos o más variables. Por ejemplo, el volumen de un sólido
x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.
FIUBA 07-05-11 Análisis Matemático II Parcial - Tema 1 1. Sea f(x, y) = { x y si x 3y si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.. Sea G(x, y) = (u(x, y),
CURVAS Y SUPERFICIES, S.L. Rueda CURVAS. 1.2 Longitud de una curva. Parámetro arco.
CURVAS. 1.2 Longitud de una curva. Parámetro arco. 1.1 Definición de curva parametrizada espacial. Representación implícita. 1.2 Longitud de una curva. Parámetro arco. 1.3 Curvatura y torsión. Triedro
CONTENIDO OBJETIVOS TEMÁTICOS HABILIDADES ESPECIFICAS
UNIDAD: REGIONAL CENTRO EJE BÁSICO, DIVISIÓN DE INGENIERÍA DEPARTAMENTO: MATEMATICAS ACADEMIA: (SERVICIO) HORAS DE CATEDRA CARACTER: OBLIGATORIA CREDITOS: 08 TEORICA:03 TALLER: 02 80 REQUISITO: Cálculo
Computación Gráfica. Curvas y Superficies Parte 1
Computación Gráfica Curvas y Superficies Parte 1 2010 Curvas Uso Curvas En Computación Gráfica Modelar objetos suaves u orgánicos Curvas y Superficies 2 Curvas Uso Curvas En Computación Gráfica Definir
Análisis II Análisis matemático II Matemática 3.
Análisis II Análisis matemático II Matemática 3. 2do. cuatrimestre de 2015 Práctica 2 - Integrales de superficie. Definición.1. Una superficie paramétrica (superficie a secas para nosotros) es un conjunto
MATERIA: MATEMÁTICAS II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a
INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites
INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.
Análisis II Análisis matemático II Matemática 3.
1 Análisis II Análisis matemático II Matemática 3. 1er. cuatrimestre de 2008 Práctica 1 - urvas, integral de longitud de arco e integrales curvilíneas. urvas Definición 1. Una curva R 3 es un conjunto
Análisis Numérico. Examénes Enero-2000
Análisis Numérico Examénes -7 Enero- Ejercicio : Se considera la función F(n) = + + +... + n, que toma sucesivamente los valores, 5, 4,, 55, 9,... a) Obtener el polinomio de er grado que la interpola en
CÁLCULO II Funciones de varias variables
CÁLCULO II Funciones de varias variables Facultad de Informática (UPM) Facultad de Informática (UPM) () CÁLCULO II Funciones de varias variables 1 / 36 Funciones de varias variables Función vectorial de
9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES
9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,
4.3 Aproximación por mínimos cuadrados.
4.3 Aproximación por mínimos cuadrados. Como ya hemos dicho anteriormente la búsqueda de un modelo matemático que represente lo mejor posible a unos datos experimentales puede abordarse, entre otras, de
Práctica 3: Diferenciación
Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) 1er. Cuatrimestre 2017 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable 1. Vericar que se
Curvas de Bézier. Leonardo Fernández Jambrina. Matemática Aplicada E.T.S.I. Navales Universidad Politécnica de Madrid
Curvas de Bézier Leonardo Fernández Jambrina Matemática Aplicada E.T.S.I. Navales Universidad Politécnica de Madrid L. Fernández (U.P.M.) Modelado geométrico: Curvas de Bézier 1 / 30 Plano de formas de
1. El sistema: F(x,y,z) = =
> 1. El sistema: F(x,y,z) = = Define implícitamente a la función (y, z) =f(x) en un entorno del punto x0=1. Encuentre la ecuación EXPLICITA de la recta tangente a la curva definida por f en el punto x0.
MATEMÁTICAS. Bachillerato: 1º H:
MATEMÁTICAS Bachillerato: 1º H: ÁLGEBRA: Operar con soltura expresiones con radicales y logaritmos. Conocer métodos de aproximación a números irracionales, y cuantificar el error que se puede cometer.
Capítulo 3. Funciones con valores vectoriales
Capítulo 3. Funciones con valores vectoriales 3.1. Curvas: recta tangente y longitud de arco 3.2. Superficies parametrizadas 3.3. Campos vectoriales, campos conservativos Capítulo 3. Funciones con valores
INSTRUCCIONES GENERALES Y VALORACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Examen-Modelo para el curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
Gráficos, Ejercicios de curvas
Gráficos, Ejercicios de curvas (PjPB, Escuela Politénica Superior, UAM). Encontrar, mediante el método de diferencias divididas de Newton, el polinomio que interpola los siguientes puntos: P 0 (, ), P
Tema 3: Cinemática del punto
Tema 3: Cinemática del punto FISICA I, 1º Grado en Ingeniería Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Introducción Ecuaciones de una curva Velocidad y aceleración Movimientos
Tema 4: Movimiento en 2D y 3D
Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Ingeniería Electrónica, Robótica y Mecatrónica Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice
DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA LA CONVOCATORIA DE SEPTIEMBRE º BACHILLERATO DE CIENCIA Y TECNOLOGÍA.
DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA LA CONVOCATORIA DE SEPTIEMBRE 2017 2º BACHILLERATO DE CIENCIA Y TECNOLOGÍA. UNIDAD 1. Matrices. Conceptos: Concepto de matriz. Igualdad de matrices. Tipos
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a
Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a
Aproximación funcional. Introducción
Aproximación funcional. Introducción Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Objetivos Entender
Matemáticas III. Geometría analítica
Matemáticas III. Geometría analítica Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
Interpolación. Esta función se denomina función interpolante. con. Dado un conjunto de datos. Queremos determinar una función.
Interpolación Dado un conjunto de datos con Queremos determinar una función tal que Esta función se denomina función interpolante Interpolación Usos de la Interpolación Graficar una curva suave a través
9. DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES.
9 DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARIABLES 91 Derivadas parciales y direccionales de un campo escalar La noción de derivada intenta describir cómo resulta afectada una función y = f(x) por un cambio
Interpolación seccional: SPLINES
Interpolación seccional: SPLINES Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain) http://www-lacan.upc.es Motivación: problemas en
UNIVERSIDAD DE SONORA
UNIVERSIDAD DE SONORA Unidad Regional Centro División de Ingeniería Departamento de Ingeniería Química y Metalurgia Asignatura: Cálculo Diferencial e Integral III Clave: 6889 Antecedente: Cálculo diferencial
CURVAS INTERESANTES EN MATEMÁTICAS: CURVAS BÉZIER
CURVAS INTERESANTES EN MATEMÁTICAS: CURVAS BÉZIER MARÍA JOSÉ MENDOZA INFANTE 1. Orígenes de las curvas de Bézier Surgen a raíz de la aparición de los polinomios de Bernstein. Se denominan curvas de Bézier
Práctica 3: Diferenciación
Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) Primer Cuatrimestre - 03 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable. Vericar que se
REPASO DE ALGEBRA VECTORIAL
REPASO DE ALGEBRA VECTORIAL Vectores en R 2 : Un vector v en el plano R 2 = XY es un par ordenado de números reales (a,b). Los números reales a y b se llaman componentes del vector v. El vector cero es
Tema 4: Movimiento en 2D y 3D
Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla Física I, GIC, Dpto. Física Aplicada III, ETSI, Universidad de Sevilla, 2017/18 1
Números naturales. Introducción Múltiplos Múltiplos comunes Múltiplos infinitos Divisores Divisores finitos Divisores comunes.
MATEMÁTICAS 12-16 años Números naturales Historia de los números Sistemas de numeración Base de un sistema de numeración Números indios y base 10 Los números naturales Operaciones básicas Suma Propiedad
Parametrización de curvas Integrales de linea. h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/
Parametrización de curvas Integrales de linea h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Curvas en el espacio En el espacio, una curva se define por el corte de dos superficies. La forma más general
Tema 6. Tema 6. Tema 6. Modelado 3D 6.1 Introducción 6.2 Modelado plano de superficies 6.3 modelado de sólidos. 6.1 Introducción
Tema 6 Tema 6 Tema 6. Modelado 3D 6.1 Introducción 6.3 modelado de sólidos Gràfics per Computador 2004/2005 Tema 6. Modelado 3D 1 6.1 Introducción Una escena puede contener distintos tipos de objetos (nubes,
Capítulo 5. Integrales sobre curvas y superficies
Capítulo 5. Integrales sobre curvas y superficies 5.1. Integrales de funciones escalares sobre curvas 5.2. Integrales de campos vectoriales sobre curvas 5.3. Teorema de Green 5.4. Integrales sobre superficies
Matemáticas III Tema 1 Funciones de varias variables. Diferenciabilidad
Matemáticas III Tema 1 Funciones de varias variables. Diferenciabilidad Rodríguez Sánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba, S. 2014. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative
Relación de ejercicios 6
Relación de ejercicios 6 Ecuaciones Diferenciales y Cálculo Numérico Grado en Ingeniería de Tecnologías de Telecomunicación Mayo de 2017 Ejercicio 6.1. 1. Construye, usando la base canónica del espacio
CUARTO DE ESO. MATEMÁTICAS A
CUARTO DE ESO. MATEMÁTICAS A UNIDAD 1 1.1. Realiza operaciones combinadas con números enteros. 1.2. Realiza operaciones con fracciones. 1.3. Realiza operaciones y simplificaciones con potencias de exponente
Unidad III. Si f es una funcion que asume valores tanto positivos como negativos sobre [a,b], entonces la integral definida :
Unidad III Aplicaciones de la integral. 3.1 Áreas. 3.1.1 Área bajo la gráfica de una función. Si f es una funcion que asume valores tanto positivos como negativos sobre [a,b], entonces la integral definida
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a
DERIVADAS PARCIALES Y APLICACIONES
CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras
Diferenciación SEGUNDA PARTE
ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 4 - Primer Cuatrimestre 009 Diferenciación SEGUNDA PARTE Regla de la Cadena 1 Sean f(u, v, w) = u + v 3 + wu y g(x, y) = x sen(y) Además, tenemos
Splines. Spline Cúbicos. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecánica Universidad Nacional de Ingenieria
Facultad de Ingeniería Mecánica Universidad Nacional de Ingenieria Métodos Numéricos Contenido 1 Splines Introducción Un spline es una función polinomial definida por casos donde cada caso es un polinomio
Nombre de la Asignatura Matemáticas III( ) INFORMACIÓN GENERAL Escuela. Departamento Unidad de Estudios Básicos
Código 008-2814 UNIVERSIDAD DE ORIENTE INFORMACIÓN GENERAL Escuela Departamento Unidad de Estudios Básicos Ciencias Horas Semanales 06 Horas Teóricas 03 Pre-requisitos 008-1824 Total Horas Semestre 96
TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 1. CÁLCULO DIFERENCIAL EN VARIAS VARIABLES
TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 1 CÁLCULO DIFERENCIAL EN VARIAS VARIABLES 11 CONCEPTOS BÁSICOS Definición La norma de un vector x =
INDICE 1. Introducción: Graficación por Computador 2. Programación en el Paquete SRGP 3. Algoritmos Básicos de Gráficos de Barrido para Dibujar
INDICE 1. Introducción: Graficación por Computador 1 1.1. Algunas aplicaciones de la graficación por computador 1 1.2. Breve historia de la graficación por computadora 7 1.2.1. Tecnología de salida 9 1.2.2.
Presentación preliminar del cálculo 2. Funcionesy modelos 10
Contenido Presentación preliminar del cálculo 2 Funcionesy modelos 10 ~ ~ İ\ a 11 Cuatro maneras de representar una función 11 12 Modelos matemáticos: un catálogo de funciones básicas 25 13 Funciones nuevas
Geometría de curvas y computación 4. Curvas de Hodógrafo Pitagórico
Geometría de curvas y computación 4. Curvas de Hodógrafo Pitagórico Fausto Ongay CIMAT, Gto., México Julio, 2012 Fausto Ongay (CIMAT) Julio, 2012 1 / 23 Curvas Paralelas ( Offset ) Fausto Ongay (CIMAT)
CÁLCULO DIFERENCIAL Muestras de examen
CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar
GRADO DE INGENIERÍA AEROESPACIAL. CURSO MATEMÁTICAS II. DPTO. DE MATEMÁTICA APLICADA II
GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Ejercicios Eámenes Anteriores. Ejercicio. Se dobla en dos una hoja de cartulina de 4 por 36 cm para formar un rectángulo de 4 por 8 cm, como se muestra en la figura
Análisis Matemático 2
Análisis Matemático 2 Una resolución de ejercicios con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad de Ingeniería
1 Curvas planas. Solución de los ejercicios propuestos.
1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)
CÁLCULO INTEGRAL TEMARIO
CÁLCULO INTEGRAL TEMARIO 1. LA INTEGRAL 1.1 La integral indefinida Antiderivadas o primitivas. Funciones con la misma derivada. Antiderivada general. Antiderivada particular. Integral indefinida. Elementos
Problemas resueltos del Boletín 1
Boletines de problemas de Matemáticas II Problemas resueltos del Boletín Problema. Dada la curva r (t) = t [0, π], parametrizarla naturalmente. ( (cos t + t sen t), (sen t t cos t), t ), con En primer
Métodos Numéricos Cap 5: Interpolación y Aproximación polinomial
1/12 Aproximación funcional e Interpolación Representación mediante funciones analíticas sencillas de: Información discreta. (Resultante de muestreos). Funciones complicadas. Siendo y k = f(x k ) una cierta
Splines (funciones polinomiales por trozos)
Splines (funciones polinomiales por trozos) Problemas para examen Interpolación lineal y cúbica 1. Fórmulas para la interpolación lineal. Dados t 1,..., t n, x 1,..., x n R tales que t 1
