Geometría Proyectiva. Héctor Navarro

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Geometría Proyectiva. Héctor Navarro"

Transcripción

1 Geometría Proyectiva Héctor Navarro

2 Geometría Proyectiva Es el estudio de propiedades geométricas que son invariantes bajo transformaciones proyectivas

3 Plano proyectivo Si consideramos en el modelo de proyección dos líneas paralelas, estas se encuentran en un punto

4 Plano proyectivo Si consideramos otra recta paralela a las anteriores, las tres rectas se encuentran en el mismo punto

5 Plano proyectivo Para cada familia de rectas paralelas en el plano, se añade un nuevo punto La relación de paralelismo entre rectas es una relación de equivalencia (reflexiva, simétrica y transitiva) Esta relación divide el conjunto de todas las rectas en el plano en clases de equivalencia mutuamente excluyentes

6 Espacio proyectivo La idea anterior puede extenderse a tres dimensiones Dos rectas paralelas tienen el mismo punto ideal asociado Dos planos paralelos comparten una misma línea ideal Si tomamos la línea ideal de cada clase de equivalencia y agrupamos todas estas líneas ideales, obtenemos un plano ideal asociado al espacio euclideano R 3

7 Proyección paralela (u ortográfica) En las proyecciones paralelas las líneas paralelas en el espacio siguen siendo paralelas en el plano de proyección Una proyección paralela corresponde a una proyección perspectiva en donde la cámara está situada a distancia infinita del plano de proyección Bajo proyecciones paralelas, dos objetos del mismo tamaño a distintas distancias tienen proyecciones del mismo tamaño

8 Proyección paralela

9 Transformaciones en espacio de mundo Antes de proyectar los objetos, bien sea en perspectiva o paralela, estos suelen transformarse así como se hacía con los objetos 2D. Para esto se aplican transformaciones de rotación, escalamiento y traslación, las cuáles se representan mediante matrices de 4x4 (usando coordenadas homogéneas)

10 El proceso de visualización 3D es inherentemente más difícil que el proceso de visualización 2D ya que implica mostrar objetos en 3D en un dispositivo 2D Para esto se utiliza la proyección del mundo 3D a visualizar sobre un plano 2D

11 Proyección del objeto sobre el plano Objeto 3D (coordenadas de mundo) Plano de Proyección Π

12 En este caso el ojo (cámara) puede estar en cualquier posición del mundo 3D, y puede estar viendo en cualquier dirección. El plano de proyección puede igualmente estar en cualquier posición del mundo 3D

13 Otra forma de ver el proceso de visualización 3D es el siguiente: y Pirámide de Visualización truncada (View Frustum) z x Ojo (0, 0, 0)

14 Plano lejano (far) y Plano cercano (near) Ojo (0, 0, 0) x z Dirección de visualización (0, 0, -1)

15 Los objetos fuera de la pirámide de visualización son descartados (no son dibujados) Plano lejano (far) y Plano cercano (near) Ojo (0, 0, 0) x z Dirección de visualización (0, 0, -1)

16 El plano cercano tiene los límites que se muestran: Plano lejano (far) t (top) l (left) r (right) y b (bottom) Ojo (0, 0, 0) x z Dirección de visualización (0, 0, -1)

17 El plano cercano tiene los límites que se muestran: Plano lejano (far) (l,t,-n) y (l,b,-n) (r,t,-n) (r,b,-n) Ojo (0, 0, 0) x z Dirección de visualización (0, 0, -1)

18 Veamos la pirámide de visualización desde arriba (plano XZ) p(x,y,z) Z X Cuáles serán las coordenadas del punto p proyectado sobre el plano near?

19 Veamos la pirámide de visualización desde arriba (plano XZ) (0,0,0) p (x, y, z ) p(x,y,z) Z X Cuáles serán las coordenadas del punto p proyectado sobre el plano near?

20 Como p está sobre el plano near, su coordenada z debe ser n (z =-n) Por triángulos semejantes podemos ver que: (0,0,0)

21 Como p está sobre el plano near, su coordenada z debe ser n (z =-n) Por triángulos semejantes podemos ver que: a b = c d a c b d

22 Es decir: z n = x x Luego: x = nx z De forma análoga puede verse que: z n = y y Luego: y = ny z

23 Llegamos entonces a: (x, y, z ) = (-n x/z, -n y/z, -n) Así como en 2D se usaban coordenadas homogéneas para representar las traslaciones como multiplicación de matrices, en 3D haremos lo mismo Así, a cada punto 3D que deseemos proyectar debemos agregarle una cuarta coordenada h=1 Quisiéramos entonces poder representar la proyección de un punto en coordenadas de mundo al plano de proyección como una matriz M 4x4

24 Esta matriz de proyección tiene la forma: m 11 m 12 m 13 m 14 m 21 m 22 m 23 m 24 m 31 m 32 m 33 m 34 m 41 m 42 m 43 m 44 Cada punto p (x,y,z,h) será proyectado multiplicando: x c y c z c h c = m 11 m 12 m 13 m 14 m 21 m 22 m 23 m 24 m 31 m 32 m 33 m 34 m 41 m 42 m 43 m 44 x y z h

25 En este punto repasaremos los tipos de coordenadas: Coordenadas de mundo (x,y,z,h) son las coordenadas de los objetos en el espacio 3D Coordenadas de proyección (x, y, z, h ) son las coordenadas proyectadas sobre el plano Near. También llamadas coordenadas de recorte (clip) (x c, y c, z c, h c ) Coordenadas normalizadas (x n, y n, z n ) ya no están en coordenadas homogéneas. Los valores de cada coordenada están entre -1 y 1 para puntos dentro de la pirámide de visualización

26 Quisiéramos además que los valores al ser proyectados estén entre -1 y 1 (si están dentro de la pirámide de visualización), es decir debemos mapear el rango (l, r) a (-1, 1) y (b, t) a (-1, 1) Los valores x n, y n, z n deben estar entonces en el rango (-1, 1) siempre que el punto original estaba dentro de la pirámide de visualización

27 Como dijimos anteriormente, deseamos mapear el rango (l, r) al rango (-1, 1). Gráficamente esto puede verse como la recta siguiente: x n (r, 1) x (l, -1)

28 La recta tiene ecuación y=mx+b, o en este caso: x n = (1-(-1))/(r-l)x + b x n = 2 r l x +b x n (r, 1) x (l, -1)

29 De aquí, podemos reemplazar (x, x n ) por (r, 1) para obtener el valor de b: 1= 2 r l r+b b=1 2 r l r b= r l r l 2r r l b= r l r l b= r+l r l

30 Luego, reemplazando b: x n = 2x r l r+l r l Análogamente para y: y n = 2y t b t+b t b

31 Recordemos que: x = nx z y y = ny z Visualización 3D Reemplazando esta ecuación de x en la ecuación anterior: x n = 2x r l r+l r l = 2 nx z r l r+l r l

32 Desarrollando esta ecuación:

33 Análogamente para y: Visualización 3D De aquí podemos obtener algunos valores de la matriz de proyección (visualización): 2n r l r+l 0 r l 0 2n t+b 0 t b t b 0 m 31 m 32 m 33 m Esto hará que h c =-z

34 Nos falta únicamente obtener los valores para m 31, m 32, m 33 y m 34 Recordemos que: x c y c z c h c = Luego, z n = (x m 31 + y m 32 + z m 33 + h m 34 )/-z No tiene sentido que el valor de z n dependa de x o y, por lo que m 31 = m 32 = 0, y obtenemos: z n = (z m 33 + h m 34 )/-z Además h = 1 en coordenadas de mundo z n = (z m 33 + m 34 )/-z m 11 m 12 m 13 m 14 m 21 m 22 m 23 m 24 m 31 m 32 m 33 m 34 m 41 m 42 m 43 m 44 Ahora bien, el valor de z n también debe estar normalizado entre -1 y 1 En particular, cuando z=-n, z n =-1 y cuando z=-f, z n =1 x y z h

35 De aquí: 1= nm 33+m 34 n 1= fm 33+m 34 f Luego: m 34 =nm 33 n m 34 =fm 33 +f Igualando: nm 33 n=fm 33 +f m 33 (f n)= (f+n) m 33 = f+n f n Calculamosahoram 34 : m 34 =nm 33 n= n f+n f n n= nf+n f n nf n f n = nf n2 nf+n 2 f n = 2nf f n

36 Luego, la matriz de proyección será: 2n r l 0 2n t b r+l 0 r l 0 t+b t b f+n f n 2nf f n Recordemos que a cada punto es necesario aplicarle esta matriz para obtener coordenadas de recorte. Estas coordenadas de recorte están en coordenadas homogéneas, y deben normalizarse dividiendo por la cuarta componente: x n y n z n = x c h c y c h c z c h c

37 Pero qué pasa si deseamos mover la cámara? Si deseamos mirar hacia arriba, o simplemente movernos hacia delante? Movernos una unidad hacia delante es equivalente a mover todo el mundo una unidad hacia atrás Mirar 15 grados hacia arriba es equivalente a rotar el mundo 15 grados hacia abajo

38

39

40

41

42

43 Una vez que tenemos las coordenadas normalizadas, estas deben mapearse a la ventana que tiene dimensiones w, h Recordemos que las coordenadas normalizadas están entre -1 y 1 Cómo debe hacerse esta transformación?

44 Matrices de modelado Antes de tener los objetos en coordenadas de mundo, a estos se les suelen aplicar operaciones de traslación, escalamiento y rotación para ubicarlos en su posición dentro del mundo Cuando se construyen los objetos estos suelen estar centrados alrededor del punto (0, 0, 0) y pueden tener distintas escalas. Por esto es necesario aplicar estas transformaciones

45 Matrices de modelado Las coordenadas en que se encuentran los objetos apenas son cargados de conocen como coordenadas de objeto, que luego son transformadas a coordenadas de mundo

46 Matrices de modelado De esta forma, si un objeto se repite varias veces, no es necesario tener varias copias del objeto, sino que se tiene una sola copia y se le aplica distintas transformaciones Por ejemplo, las ruedas de un carro, o sillas dentro de una sala Los personajes que se mueven dentro del mundo virtual no cambian su geometría, sino que cambian las transformaciones que se le aplican

47 Objeto 3D (coordenadas de objeto) Objeto 3D (coordenadas de mundo) Objeto 3D proyectado (coordenadas de recorte) Objeto 2D normalizado (coordenadas normalizadas) Objeto 2D en la ventana (coordenadas de dispositivo)

48 en OpenGL OpenGL maneja por separado la matriz de proyección y la matriz de modelado Provee funciones para cargar directamente una matriz de proyección o modelado Otras funciones de alto nivel permiten especificar el frustum glfrustum(l,r,b,t,n,f), la perspectiva gluperspective(fovy, aspect, n, f)

49 en OpenGL fovy es Field of View, es el ángulo entre los planos top y bottom Aspect es el radio aspecto del frustum, esto es, la relación entre el ancho y el alto top Z Y fov alto near far bottom ancho

50 en OpenGL OpenGL provee también otra función muy útil llamada glulookat para controlar la cámara: glulookat(x, y, z, cx, cy, cz, ux, uy, uz) x,y,z especifica la posición de la cámara cx, cy, cz especifica hacia donde está viendo la cámara ux, uy, uz es un vector que especifica hacia donde está el vector up (arriba) de la cámara

51 en OpenGL Otras funciones útiles de OpenGL para trabajar con la cámara son: glmatrixmode(t) glloadidentity() glrotatef(angle, x, y, z) gltranslatef(tx, ty, tz) glscalef(sx, sy, sz)

52 Resumen (o que hay que hacerle a cada vértice) Cada vértice v es extendido a coordenadas homogéneas añadiéndole una 4ta coordenada con valor h=1 Este punto v ahora es multiplicado por la matriz de modelado (coordenadas de mundo) El punto ahora es multiplicado por la matriz de proyección (coodenadas de recorte) El punto es normalizado dividiendo las tres primeras componentes entre la 4ta componente (división perspectiva) Se obtiene como resultado un punto (s x, s y, d z ) s x, s y son llevados a coordendas de dispositivo para poder dibujarse, y d z se utiliza como medida de la distancia del punto original al ojo

El pipeline de visualización es el conjunto de

El pipeline de visualización es el conjunto de Sistemas de Visualización Pipeline de visualización 3D Definición del modelo geométrico Transformaciones geométricas Transformaciones de visualización Volumen de visualización Proyecciones Pipeline de

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

Transformaciones en OpenGL

Transformaciones en OpenGL Transformaciones en OpenGL Aquí se explican las transformaciones en OpenGL. Se incluyen algunas nociones básicas con la única intención de entender la práctica y de qué estamos hablando. En otro documento

Más detalles

Lección 8 Vistas y Proyecciones

Lección 8 Vistas y Proyecciones Lección 8 Vistas y Proyecciones Trinità, Massacio. Contenidos Vistas y proyecciones Vistas 3D clásicas Especificación del marco de referencia y las vistas de la cámara Posición y apuntamiento de la cámara

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometría del espacio: problemas de ángulos y distancias; simetrías MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Ángulos

Más detalles

Transformaciones en OpenGL

Transformaciones en OpenGL Transformaciones en OpenGL 1 OpenGL y las bibliotecas asociadas componen por nosotros las transformaciones necesarias para posicionar los objetos, las luces y la cámara en la escena, para luego proyectarlos

Más detalles

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: -

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: - Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía : Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza traslaciones

Más detalles

GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS

GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Definición: Se llaman transformaciones

Más detalles

Programación Gráfica II. 7. Diseño de Cámaras.

Programación Gráfica II. 7. Diseño de Cámaras. Programación Gráfica II 7. Diseño de Cámaras. Objetivo Introducir al manejo de cámaras con DarkGDK. Creación de una cámara en tercera persona. Uso de coordenadas esféricas para manejar manualmente una

Más detalles

son dos elementos de Rⁿ, definimos su suma, denotada por

son dos elementos de Rⁿ, definimos su suma, denotada por 1.1 Definición de un vector en R², R³ y su Interpretación geométrica. 1.2 Introducción a los campos escalares y vectoriales. 1.3 La geometría de las operaciones vectoriales. 1.4 Operaciones con vectores

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Líneas y s en el Espacio Departamento de Matemáticas ITESM Líneas y s en el Espacio Álgebra Lineal - p. 1/34 Los conjuntos solución a un sistema de ecuaciones lineales cuando tienen

Más detalles

Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional

Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional página 1/11 Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional Índice de contenido Ecuación vectorial, paramétrica y continua de la recta...2 Ecuación general o implícita de la recta...5

Más detalles

3.- Vista Tridimensional.

3.- Vista Tridimensional. 3.- Vista Tridimensional. 3.1.- Proceso de vista 3D 3.2.- Comandos de transformaciones de propósito general 3.3.- Transformaciones de modelo y vista 3.4.- Transformaciones de proyección 3.5.- Transformaciones

Más detalles

3. La circunferencia.

3. La circunferencia. UNIDAD 8: RESOLVAMOS CON GEOMETRÍA ANALITICA. 3. La circunferencia. Objetivos conceptuales. Definir el concepto de circunferencia. Objetivos procedimentales. Calular el radio, el centro, algunos puntos

Más detalles

**********************************************************************

********************************************************************** 13.1.- Representar las leyes de variación del momento flector, el esfuerzo cortante y el esfuerzo normal en la viga de la figura, acotando los valores más característicos. Hallar además la epresión analítica

Más detalles

VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector.

VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector. VECTORES Según su naturaleza las cantidades físicas se clasifican en magnitudes escalares y magnitudes vectoriales Las magnitudes como el tiempo, la temperatura, la masa y otras, son magnitudes escalares

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA EJERCICIOS DE GEOMETRÍA 1. Se consideran las rectas r x 2 = 0 x 2z = 1, s y + 3 = 0 y + z = 3 a) Estudiar la posición relativa de r y s. b) Hallar la mínima distancia entre ambas. Se pide: Sol: Se cruzan

Más detalles

.En nuestro aprendizaje de aritmética tratamos con números reales, tales como 3, -5, 7

.En nuestro aprendizaje de aritmética tratamos con números reales, tales como 3, -5, 7 .En nuestro aprendizaje de aritmética tratamos con números reales, tales como 3, -5, 7 4,Π, etc., los cuales pueden usarse para medir distancias en una u otra dirección desde un punto fijo. Un número tal

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

Rotaciones en MatLab mediante Matrices de Rotación y Cuaterniones

Rotaciones en MatLab mediante Matrices de Rotación y Cuaterniones Rotaciones en MatLab mediante Matrices de Rotación y Cuaterniones Carlos Alberto Edo Solera ÍNDICE: 1.- Rotaciones mediante cuaterniones 2.- Álgebra de cuaterniones. 3.- Cuaterniones con MatLab. 1.- Rotaciones

Más detalles

unidad 11 Transformaciones geométricas

unidad 11 Transformaciones geométricas unidad 11 Transformaciones geométricas Cómo dibujar ángulos de 60 con regla y compás Página 1 La cuerda de un arco de 60 (apertura del compás) es igual al radio con que se ha trazado. Veamos el proceso:

Más detalles

Ejercicios resueltos de geometría analítica

Ejercicios resueltos de geometría analítica Ejercicios resueltos de geometría analítica 1) Calcula el volumen del prisma determinado por los vectores v (0,-2,3), w (1,3,-4) y z (-2,1,0). 2) Calcula a para que los vectores (1,a,-1), (-4,2,0) y (a,2,-1)

Más detalles

NORMALES. Computación Gráfica

NORMALES. Computación Gráfica NORMALES Computación Gráfica Normales Importantes en CG para determinar cómo debe colorearse un punto sobre una superficie. Nos importa saber cómo se transforman las normales cuando se transforman las

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Lección 11: Ecuaciones lineales con dos incógnitas

Lección 11: Ecuaciones lineales con dos incógnitas Lección : Ecuaciones lineales con dos incógnitas Ecuaciones con dos incógnitas Eisten muchos problemas que pueden plantearse a través de ecuaciones con más de una incógnita. Veamos el siguiente ejemplo:

Más detalles

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD SLUINES LS EJERIIS E L UNI Pág. 1 Página 207 PRTI 1 Reproduce sobre papel cuadriculado el paralelogramo (,,, ). a) Somételo a una traslación de vector t 1. b) Traslada la figura obtenida, ', mediante t

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 3, Opción B Junio, Ejercicio 4, Opción A Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

Visión artificial y Robótica Geometría. Depto. de Ciencia de la Computación e Inteligencia Artificial

Visión artificial y Robótica Geometría. Depto. de Ciencia de la Computación e Inteligencia Artificial Visión artificial y Robótica Geometría Depto. de Ciencia de la Computación e Inteligencia Artificial Contenidos Geometría 2D y 3D Transformación de coordenadas Calibración de la cámara Álgebra necesaria

Más detalles

Tema 4: Sistemas de ecuaciones e inecuaciones

Tema 4: Sistemas de ecuaciones e inecuaciones Tema 4: Sistemas de ecuaciones e inecuaciones Sistemas Lineales pueden ser de No lineales Gráficamente Ecuaciones se clasifican se resuelven Algebraicamente Compatible determinado Compatible indeterminado

Más detalles

La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente.

La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente. Formas de la ecuación de una recta. Hasta el momento, se han dado algunas características de la recta tales como la distancia entre dos puntos, su pendiente, su ángulo de inclinación, relación entre ellas,

Más detalles

Dibujo Técnico Curvas cónicas-parábola

Dibujo Técnico Curvas cónicas-parábola 22. CURVAS CÓNICAS-PARÁBOLAS 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar

Más detalles

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas Un sistema de dos ecuaciones lineales de primer grado con dos incógnitas tiene la siguiente forma Ax + By + C = 0 A x + B y + C (1) = 0 Ya sabemos que una ecuación lineal de primer grado con dos incógnitas

Más detalles

Ecuaciones de la recta en el espacio

Ecuaciones de la recta en el espacio Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu

Más detalles

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 42 Índice. 1. Superficies. 2. El espacio eucĺıdeo tridimensional. Coordenadas Cartesianas. 3. Distancia entre

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta

Más detalles

Soluciones oficiales Clasificación Olimpiada Nacional Nivel Mayor

Soluciones oficiales Clasificación Olimpiada Nacional Nivel Mayor Soluciones oficiales Clasificación Olimpiada Nacional 009 Comisión Académica Nivel Maor Problema 1. Calcule todas las soluciones m, n de números enteros que satisfacen la ecuación m n = 009 (n + 1) Solución.

Más detalles

C =[x 1,y 1,x 2,y 2,...,x n,y n ]

C =[x 1,y 1,x 2,y 2,...,x n,y n ] Práctica 1 Realizar un programa que presente una nube de puntos en 2D utilizando los comandos de OpenGL vistos en clase. Los puntos deben variar aleatoriamente al menos en posición y color. Realizar un

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

Introducción a los Cuaterniones

Introducción a los Cuaterniones Editorial de la Universidad Tecnológica Nacional Matemáticas Aplicadas a la Aeronáutica Introducción a los Cuaterniones Universidad Tecnológica Nacional Facultad Regional Haedo Argentina El presente tutorial

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

7. Cónicas. Propiedades métricas y ópticas

7. Cónicas. Propiedades métricas y ópticas Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 49 7. Cónicas. Propiedades métricas y ópticas Cónicas Círcunferencias, elipses, parábolas, e hipérbolas son llamadas secciones cónicas

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA IX: RECTAS Y ÁNGULOS Puntos, rectas, semirrectas y segmentos en el plano. Posiciones relativas de rectas en el plano. Mediatriz de un segmento. Ángulos. Elementos. Clasificación

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2012 2013) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

Resolución de ecuaciones lineales. En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos:

Resolución de ecuaciones lineales. En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos: Resolución de ecuaciones lineales En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos: 1º Quitar paréntesis. Si un paréntesis tiene el signo menos delante,

Más detalles

Nombre: Objetivo: Reforzar contenidos aprendidos durante el segundo semestre.

Nombre: Objetivo: Reforzar contenidos aprendidos durante el segundo semestre. ROYAL AMERICAN SCHOOL Asignatura de matemática Miss Pamela Pérez Aguayo Guía de refuerzo Matemática. 5º Básico. II Semestre. Formando personas responsables, respetuosas, honestas y leales Nombre: Objetivo:

Más detalles

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen

Más detalles

Problemas de exámenes de Geometría

Problemas de exámenes de Geometría 1 Problemas de exámenes de Geometría 1. Consideramos los planos π 1 : X = P+λ 1 u 1 +λ 2 u 2 y π 2 : X = Q+µ 1 v 1 +µ 2 v 2. Cuál de las siguientes afirmaciones es incorrecta? a) Si π 1 π 2 Ø, entonces

Más detalles

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i

Más detalles

1. Operaciones con vectores

1. Operaciones con vectores 1. OPERACIONES CON VECTORES Academia Nakis (Lugones)684-61-61-03. 1 Resumen Geometría en 3D 1. Operaciones con vectores Sean los vectores W 1 = (a 1, b 1, c 1 ),W 2 = (a 2, b 2, c 2 ),W 3 = (a 3, b 3,

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad:

3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad: III. UNIDAD: GEOMETRIA ANALITICA LANA. La Geometría Analítica permite usar los métodos algebraicos en la solución de problemas geométricos, recíprocamente, los métodos de la geometría analítica pueden

Más detalles

NOTACIÓN Y REPRESENTACIÓN

NOTACIÓN Y REPRESENTACIÓN TEORÍA NÚMEROS COMPLEJOS DEFINICIÓN: Los números complejos son el conjunto de todos los números reales e imaginarios. Surgen de la necesidad de expresar la raíz par de un número negativo. APLICACIÓN: Los

Más detalles

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué? Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a

Más detalles

CENTRO DE GRAVEDAD Y CENTROIDE. Considerando el sistema de n partículas fijo dentro de una región del espacio,

CENTRO DE GRAVEDAD Y CENTROIDE. Considerando el sistema de n partículas fijo dentro de una región del espacio, CENTRO DE GRAVEDAD Y CENTROIDE Centro de gravedad y centro de masa para un sistema de partículas Centro de gravedad Considerando el sistema de n partículas fijo dentro de una región del espacio, Los pesos

Más detalles

La Distancia de un Punto a una Recta y de un Punto a un Plano, y un Teorema de Pitágoras en Tres Dimensiones

La Distancia de un Punto a una Recta y de un Punto a un Plano, y un Teorema de Pitágoras en Tres Dimensiones 58 Sociedad de Matemática de Chile La Distancia de un Punto a una Recta y de un Punto a un Plano, y un Teorema de Pitágoras en Tres Dimensiones Miguel Bustamantes 1 - Alejandro Necochea 2 El propósito

Más detalles

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios

Más detalles

La recta en el plano.

La recta en el plano. 1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación

Más detalles

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios. Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones

Más detalles

TEMA 6. ECUACIONES DE LA RECTA

TEMA 6. ECUACIONES DE LA RECTA TEMA 6. ECUACIONES DE LA RECTA Dados un punto y un vector, vamos a hallar las ecuaciones de la recta r que pasa por el punto A y es paralela al vector. Sea consideramos los vectores un punto cualquiera

Más detalles

GEOMETRÍA DESCRIPTIVA: LOS SISTEMAS DE REPRESENTACIÓN.

GEOMETRÍA DESCRIPTIVA: LOS SISTEMAS DE REPRESENTACIÓN. 1 GEOMETRÍA DESCRIPTIVA: LOS SISTEMAS DE REPRESENTACIÓN. 2 GEOMETRÍA DESCRIPTIVA: SISTEMAS DE REPRESENTACIÓN. 1. INTRODUCCIÓN 2. GEOMETRÍA DESCRIPTIVA. 3. PROYECCIONES. 4. SISTEMAS DE REPRESENTACIÓN: 4.1.

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

Distancia entre un punto y una recta

Distancia entre un punto y una recta Distancia entre un punto una recta Frecuentemente en geometría nos encontramos con el problema de calcular la distancia desde un punto a una recta. Distancia de un punto a una recta La fórmula para calcular

Más detalles

Translaciones, giros, simetrías.

Translaciones, giros, simetrías. Translaciones, giros, simetrías. Transformaciones geométricas Transformación geométrica es una aplicación del plano en el plano tal que a cada punto de un plano le hace corresponder otro punto del mismo

Más detalles

La transformada de Laplace como aplicación en la resistencia de materiales

La transformada de Laplace como aplicación en la resistencia de materiales Docencia La transformada de Laplace como aplicación en la resistencia de materiales Agustín Pacheco Cárdenas y Javier Alejandro Gómez Sánchez Facultad de Ingeniería, UAQ; Depto. Ciencias Básicas, ITQ Facultad

Más detalles

Rectas y planos en el espacio

Rectas y planos en el espacio Rectas y planos en el espacio 1. 2. 3. Discute el siguiente sistema según el valor del parámetro a: ax 4y z 1 y az a x 14y 2az 8 Dada la recta x 4 y z 1, 5 2 averigua si el punto P(6, 2, 2) está contenido

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide

Más detalles

Centro de Masa Aplicaciones a la Geometría

Centro de Masa Aplicaciones a la Geometría Centro de Masa Aplicaciones a la Geometría Yoan Hernández Rodríguez Correo: Yoanh@uclv.edu.cu Facultad de Matemática, Física y Computación, UCLV. Cuba Resumen: La geometría como un marco de trabajo para

Más detalles

LA PARÁBOLA ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN ELEMENTOS DE LA PARÁBOLA. x 2px p y x 2px p. Geometría Analítica

LA PARÁBOLA ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN ELEMENTOS DE LA PARÁBOLA. x 2px p y x 2px p. Geometría Analítica ECUACIÓN CANÓNICA DE LA PARÁBOLA DEFINICIÓN LA PARÁBOLA Parábola es el lugar geométrico de todos los puntos P del plano que equidistan de una recta fija llamada directriz (L) y de un punto fijo exterior

Más detalles

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2 Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,

Más detalles

Unidad 5: Geometría Analítica

Unidad 5: Geometría Analítica Unidad 5 Geometría Analítica 5. Ecuaciones de una recta Los planos y las rectas son objetos geométricos que se pueden representar mediante ecuaciones. Encontraremos la ecuación vectorial de una recta r

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

5.5 Rotaciónes de Placas

5.5 Rotaciónes de Placas 172 Parte 5: Geodinámica 5.5 Rotaciónes de Placas La idea básica de tectónica de placas es simple: las capas de la superficie de la Tierra, que se llama la litósfera, se pueden considerar como placas rígidas

Más detalles

PAUTA AUXILIAR Nº4. 1. Sean los puntos,,. Pruebe que no son colineales y encuentre la ecuación

PAUTA AUXILIAR Nº4. 1. Sean los puntos,,. Pruebe que no son colineales y encuentre la ecuación PAUTA AUXILIAR Nº4 1. Sean los puntos,,. Pruebe que no son colineales y encuentre la ecuación vectorial del plano que definen. Encontramos 2 vectores directores: Para ver si son colineales o no, creamos

Más detalles

Polaridad. Tangentes. Estudio geométrico de cónicas y cuádricas

Polaridad. Tangentes. Estudio geométrico de cónicas y cuádricas Tema 6- Polaridad Tangentes Estudio geométrico de cónicas y cuádricas En este tema pretendemos estudiar propiedades de V(Q), especialmente en los casos real y complejo, con n =2,3 Para ello, necesitamos

Más detalles

6. Mosaicos y movimientos. en el plano

6. Mosaicos y movimientos. en el plano 6. Mosaicos y movimientos en el plano Ámbito científico 1. Mosaicos 2. Módulos planos 3. Diseña mosaicos 4. Ejemplos de mosaicos 5. Ejemplos de tramas 6. Mosaicos semiregulares I 7. Libro de espejos 8.

Más detalles

RECTAS EN EL ESPACIO. P y un vector v se llama recta al conjunto de. Q del espacio para los cuales se cumple que el vector PQ es paralelo

RECTAS EN EL ESPACIO. P y un vector v se llama recta al conjunto de. Q del espacio para los cuales se cumple que el vector PQ es paralelo Dado un punto en el espacio ( x, y, z) puntos ( x, y, z) RECTAS EN E ESPACIO P y un vector v se llama recta al conjunto de Q del espacio para los cuales se cumple que el vector PQ es paralelo al vector

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2013 2014) 1. En un espacio afín real de dimensión 3, se consideran dos sistemas de referencia R = O, ē 1, ē 2, ē 3 } y R = P, ū 1, ū 2, ū 3 },

Más detalles

Tema 4. Espacio Proyectivo.

Tema 4. Espacio Proyectivo. Tema 4. Espacio Proyectivo. Definición y modelos. *) El origen de la geometría proyectiva está relacionado con el estudio de la perspectiva, para conseguir cuadros o planos realistas del mundo 3-dimensional;

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones Eje temático: Álgebra y funciones Contenidos: Sistemas de ecuaciones Nivel: 2 Medio Sistemas de ecuaciones 1. Sistemas de ecuaciones lineales En distintos problemas de matemáticas nos vemos enfrentados

Más detalles

a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r.

a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r. PROBLEMAS DE SELECTIVIDAD. BLOQUE GEOMETRÍA 1. En el espacio se dan las rectas Obtener a) El valor de para el que las rectas r y s están contenidas en un plano. (4 puntos) b) La ecuación del plano que

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

Ecuación de la Recta en el Espacio

Ecuación de la Recta en el Espacio PreUnAB Clase # 21 Octubre 2014 Definición Un sistema de coordenadas rectangulares en el espacio está determinado por tres planos mutuamente perpendiculares, Los ejes generalmente son identificados por

Más detalles

TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO

TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO TEMA 7 Ejercicios / TEMA 7: PROBLEMAS MÉTRICOS EN EL ESPACIO. Calcula el ángulo que forman las rectas x y 4 z 5 y x y 4 z 5 Como los vectores directores u,4,5 y v,4,5 son perpendiculares, las rectas son

Más detalles

Vista tridimensional. Del Libro: Introducción a la Graficación por Computador. Foley Van Dam Feiner Hughes - Phillips

Vista tridimensional. Del Libro: Introducción a la Graficación por Computador. Foley Van Dam Feiner Hughes - Phillips Vista tridimensional Basado en: Capítulo 6 Del Libro: Introducción a la Graficación por Computador Foley Van Dam Feiner Hughes - Phillips Resumen del capítulo Proyecciones Proyección en perspectiva Proyección

Más detalles

Cámara. Práctica 5. 5.1. Introducción. 5.1.1. Proyección

Cámara. Práctica 5. 5.1. Introducción. 5.1.1. Proyección Práctica 5 Cámara 5.1. Introducción En esta práctica se aborda la creación de la cámara virtual, esto es, el medio o forma mediante el cual vamos a poder observar los elementos de la escena. De nuevo,

Más detalles

Líneas y Planos en el Espacio

Líneas y Planos en el Espacio Líneas y Planos en el Espacio Departamento de Matemáticas, CCIR/ITESM de enero de Índice..Introducción.................................................Ecuación paramétrica de la recta.....................................ecuación

Más detalles

ESTUDIO GRÁFICO DE LA ELIPSE.

ESTUDIO GRÁFICO DE LA ELIPSE. Curvas Cónicas para Dibujo y Matemáticas. Aplicación web Dibujo Técnico para ESO y Bachillerato Matemáticas para Bachillerato Educación Plástica y Visual Autor: José Antonio Cuadrado Vicente. ESTUDIO GRÁFICO

Más detalles

TRANSFORMACIONES EN EL PLANO

TRANSFORMACIONES EN EL PLANO ACADEMIA SABATINA TRANSFORMACIONES EN EL PLANO Llamaremos transformación geométrica a una operación que permite producir una nueva figura (imagen) de la dada originalmente. Las podemos clasificar en directas,

Más detalles

Sistemas de ecuaciones lineales dependientes de un parámetro

Sistemas de ecuaciones lineales dependientes de un parámetro Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean

Más detalles