TRANSFORMACIONES EN EL PLANO
|
|
|
- Julián Rivas Torres
- hace 9 años
- Vistas:
Transcripción
1 ACADEMIA SABATINA TRANSFORMACIONES EN EL PLANO Llamaremos transformación geométrica a una operación que permite producir una nueva figura (imagen) de la dada originalmente. Las podemos clasificar en directas, cuando las figuras conservan el sentido en el plano orientado, e inversa, cuando los sentidos de las dos figuras son contrarios. También se pueden clasificar según el aspecto de la imagen respecto a la original: Isométricas, cuando conservan las dimensiones y ángulos. Se denominan también movimientos. Veremos las simetrías axial y central, la traslación y la rotación. Isomórficas, cuando conservan la forma de la figura original (los ángulos), pero existe una proporcionalidad entre las dimensiones de las dos figuras, por ejemplo, la homotecia. Anamórficas, cuando cambia la forma de la figura original, por ejemplo, la homología. Las transformaciones isométricas son transformaciones de figuras en el plano que se realizan sin variar las dimensiones ni el área de las mismas. La palabra isometría tiene su origen en el griego iso (igual o mismo) y metria (medir), igual medida. La figura inicial y la imagen son semejantes y geométricamente congruentes. Existen tres tipos: traslación, simetría y rotación. Traslación: es una isometría que mueve cada punto de la figura a una distancia dada, en una dirección específica, a lo largo de un vector v = (a, b). La coordenada a del vector indica el movimiento horizontal, si es positivo mueve a la derecha y si es negativo a la izquierda. La coordenada b del vector indica el movimiento vertical, si es positivo mueve hacia arriba y si es negativo hacia abajo. Formalmente, una traslación dada por el vector v = (a, b) es una función del plano al plano, tal que, a todo punto (x, y) le corresponde el punto (x + a, y + b). Ejm 1: Traslación del punto A, según el vector u Angy C. Coronel Suárez Febrero
2 Ejm 2: Traslación del triángulo ABC, según el vector u Ejm 3: Traslación del segmento FG, según el vector c, usando regla y compás 1. Trazamos rectas paralelas al vector c por los puntos F y G. 2. Tomamos con el compás la magnitud del vector y trazamos arcos con centro en F y G con esta magnitud. 3. Unimos los puntos de intersección de las rectas con los arcos para obtener la imagen. Angy C. Coronel Suárez Febrero
3 Rotación: es un movimiento de cambio de orientación de un cuerpo, de forma que, dado un punto cualquiera del mismo, éste permanece a una distancia constante del centro. Es una transformación del plano determinada por mantener un punto fijo, llamado centro, y rotar el plano alrededor de este punto una cierta cantidad en una dirección específica. Esta cantidad se denomina ángulo de rotación y se toma su medida en grados. Si el ángulo es positivo, se rota en sentido contrario a las manecillas del reloj; si es negativo, se rota en el sentido de las manecillas del reloj. Ejm 4: Rotación del punto A, alrededor del punto O, un ángulo de 60 Ejm 5: Rotación del segmento BC, alrededor del punto D, un ángulo de 120 Angy C. Coronel Suárez Febrero
4 Ejm 6: Rotación del triángulo EFG, alrededor del punto H, un ángulo de 90 Cuando el ángulo de rotación es múltiplo de 90, podemos realizar la rotación usando papel cuadriculado, formando los ángulos rectos entre los puntos y el centro de rotación. 1. Asumimos que el punto de rotación es (0,0). 2. Buscamos las coordenadas de cada punto de la figura con relación al punto de rotación. 3. Intercambiamos las coordenadas de dichos puntos. Los signos de las coordenadas dependerán del cuadrante en el que se ubique cada punto y donde se ubicará su imagen. Simetría: es la correspondencia exacta en la disposición regular de los puntos de una figura con relación a un punto (centro de simetría), una recta (eje de simetría) o un plano. Se denominan: central, axial y especular o bilateral. Simetría central: es una transformación en la que a cada punto se le asocia otro punto, que debe cumplir las siguientes condiciones: a. El punto y su imagen están a igual distancia del centro de simetría. b. El punto, su imagen y el centro de simetría pertenecen a una misma recta. Según esto, una simetría central es igual que una rotación de 180º. Angy C. Coronel Suárez Febrero
5 Ejm 7: Simetría central del punto A, respecto a O Ejm 8: Simetría central del triángulo BCD, respecto a E Ejm 9: Simetría central del segmento FG, respecto a H, usando regla y compás. 1. Trazamos rayos desde los puntos F y G hacia el centro de simetría. 2. Trazamos dos arcos con centro en H y radio F y G hasta que intersequen los rayos. 3. Unimos los puntos de intersección entre los arcos y los rayos para obtener la imagen. Angy C. Coronel Suárez Febrero
6 Simetría axial: es una transformación respecto de un eje de simetría, en la cual, a cada punto de una figura se asocia a otro punto, que cumple con las siguientes condiciones: a. La distancia de un punto y su imagen al eje de simetría es la misma. b. El segmento que une un punto con su imagen es perpendicular al eje de simetría. Esta simetría es conocida mayormente con el nombre de reflexión. En la simetría axial se conservan las distancias pero no el sentido de los ángulos. El eje de simetría es la mediatriz del segmento AA. Ejm 10: Reflexión del punto A, respecto a la recta L Ejm 11: Reflexión del triángulo DEF, respecto a la recta L Angy C. Coronel Suárez Febrero
7 Ejm 12: Reflexión del segmento GH, respecto a la recta L, usando regla y compás. 1. Trazamos rayos perpendiculares a la recta L desde los puntos G y H. 2. Trazamos dos arcos con radio G y H y centro los puntos de intersección de los rayos con la recta L (I y J). 3. Unimos los puntos de intersección entre los arcos y los rayos para obtener la imagen. Composición de simetrías: Ejm 13: Si aplicamos dos simetrías respecto de ejes paralelos, obtenemos una traslación cuyo desplazamiento es el doble de la distancia entre dichos ejes. Angy C. Coronel Suárez Febrero
8 Ejm 14: Si aplicamos dos simetrías respecto de ejes que se cortan en D, obtenemos una rotación con centro en D, cuyo ángulo es el doble del que forman dichos ejes. Ejm 15: Si aplicamos la misma simetría dos veces, obtenemos la transformación identidad. Líneas de simetría: una figura geométrica tiene líneas de simetría, si la imagen de la reflexión respecto a esta línea coincide con la misma figura. Angy C. Coronel Suárez Febrero
9 Simetría rotacional: una figura geométrica tiene simetría rotacional cuando al rotar la figura, alrededor de algún punto, un ángulo menor de 360, la imagen coinciden con la figura original. Actividades 1. Cuáles son las coordenadas del punto A al reflejar el cuadrilátero ABCD con respecto al eje x? A. (5,5) B. (5, 5) C. ( 5, 5) D. ( 5,5) 2. El triángulo con vértices en los puntos P = (1,2), Q = (5,6), R = (4,3) es reflejado respecto al origen. Cuáles son las coordenadas de los vértices del triángulo resultante? A. P = (2,1), Q = (6,5), R = (3,4) B. P = ( 1, 2), Q = ( 5, 6), R = ( 4, 3) C. P = ( 1,2), Q = ( 5,6), R = ( 4,3) D. P = (1, 2), Q = (5, 6), R = (4, 3) Angy C. Coronel Suárez Febrero
10 3. Cuáles de las siguientes transformaciones del plano no preserva la semejanza de figuras? A. Rotación B. Traslación C. Reflexión D. Homología 4. Cuál de las siguientes figuras muestra una rotación? A. B. C. D. 5. Ana hizo el siguiente diseño usando un hexágono regular y un rectángulo. Cuántos ejes de simetría tiene el diseño de Ana? A. 1 B. 2 C. 4 D Cuál de las siguientes figuras tiene simetría rotacional? A. B. C. D. Angy C. Coronel Suárez Febrero
11 El diagrama muestra los muebles de la habitación de Manuel. Use la cuadrícula para dibujar la nueva distribución de la habitación con las nuevas coordenadas: Cama: (1, 1); (1, 6); ( 3, 6); ( 3, 1) Armario: (2,4); (2,6); ( 3,6); ( 3,4) Silla: (4, 2); (6, 4); (4, 6); (2, 4) Escritorio: ( 5,2); ( 5,5); ( 6,5); ( 6,2) 7. El mueble que rotó 90 alrededor de una de sus esquinas iniciales es: A. Cama B. Armario C. Silla D. Escritorio 8. El movimiento que realizó al armario fue: A. Trasladarlo 4 unidades hacia abajo B. Rotarlo alrededor de uno de sus lados C. Reflejarlo respecto al eje vertical D. Trasladarlo 4 unidades a la izquierda 9. El mueble que reflejó respecto al origen es: A. Cama B. Armario C. Silla D. Escritorio Angy C. Coronel Suárez Febrero
12 10. Cuál de las siguientes sería una imagen de la figura original bajo rotación? A. B. C. D. Dibuje el paralelogramo A = (1,5); B = ( 1,2); C = (2,3); D = (4,6) en un plano cartesiano. Realice las siguientes transformaciones y de las nuevas coordenadas del paralelogramo. 11. Traslación según el vector v = (0,4). 12. Traslación de la imagen resultante del paso anterior según el vector u = (6,0). 13. Cuál vector transforma el cuadrilátero inicial en la imagen del ejercicio b? Los puntos A = ( 10,7); B = ( 3,8); C = (2,3); D = ( 5,2) son los vértices de un rombo en el plano cartesiano. Escriba las coordenadas del rombo transformado mediante: 14. Simetría respecto al eje x. 15. Simetría respecto al eje y. 16. Simetría respecto a la recta que pasa por los puntos M = (0, 3), N = (3,6). 17. Rotación de 90 alrededor del punto A. Angy C. Coronel Suárez Febrero
13 18. Complete las figuras según las líneas de simetría mostradas. Encuentre otras líneas de simetría, si las hay. Cree una nueva figura y rete a un compañero a descubrirla. 19. Determine cuántas líneas de simetría tiene la figura y si tiene simetría rotacional. Angy C. Coronel Suárez Febrero
14 20. La imagen de la palabra NOON después de rotarla 180 es NOON. Qué otras palabras tienen esta propiedad? 21. La imagen de la palabra TOT al reflejarla respecto a la línea vertical a través de la O es TOT. Qué otras palabras tienen esta propiedad? 22. La imagen de la palabra BOOK al reflejarla respecto a la línea horizontal es BOOK. Qué otras palabras tienen esta propiedad? 23. La imagen del número 1881 al reflejarlo respecto a la línea horizontal y luego vertical es Qué otros números menores que 2000 tienen esta propiedad? 24. Si la moneda superior se rota alrededor de la moneda inferior hasta que esté al lado, en qué posición queda la cara de la moneda superior? Angy C. Coronel Suárez Febrero
15 25. Busque el punto en que la bola blanca debe golpear la banda inferior para chocar después con la bola negra. Dónde debe golpear si el juego es a dos bandas? 26. Escriba las transformaciones para llegar de una figura a la otra en el orden mostrado. 27. Use el compás para dibujar un círculo de 4 pulg. de diámetro sobre un papel y córtelo. Doble por las líneas punteadas que muestran las figuras y finalmente haga los cortes indicados. Angy C. Coronel Suárez Febrero
16 28. Doble una hoja de papel por la mitad y luego nuevamente por la mitad en el otro sentido. Realice el dibujo aquí mostrado, sobre la esquina doblada. Corte por la línea y desdoble. 29. Polihueso: a partir de un cuadrado construir los huesos para teselar el plano, siguiendo las indicaciones. 30. Palomita: a partir de un triángulo equilátero construir las palomitas para teselar el plano, siguiendo las instrucciones. Angy C. Coronel Suárez Febrero
INSTITUCION EDUCATIVA LA PRESENTACION
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: GEOMETRIA DOCENTE: HUGO BEDOYA TIPO DE GUIA: CONCEPTUAL Y EJERCITACION PERIODO GRADO No. FECHA DURACION 3 7 2 FEBRERO
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
SLUINES LS EJERIIS E L UNI Pág. 1 Página 207 PRTI 1 Reproduce sobre papel cuadriculado el paralelogramo (,,, ). a) Somételo a una traslación de vector t 1. b) Traslada la figura obtenida, ', mediante t
Translaciones, giros, simetrías.
Translaciones, giros, simetrías. Transformaciones geométricas Transformación geométrica es una aplicación del plano en el plano tal que a cada punto de un plano le hace corresponder otro punto del mismo
AMCT Alianza de Matemáticas y Ciencias del Turabo Universidad del Turabo
AMCT Alianza de Matemáticas y Ciencias del Turabo Universidad del Turabo Cuaderno de trabajo #1 Transformaciones en el plano AMCT Alianza de Matemáticas y Ciencias del Turabo Universidad del Turabo Angy
UNIDAD IV DISTANCIA ENTRE DOS PUNTOS
UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante
POLÍGONOS POLÍGONOS. APM Página 1
POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.
Título de la lámina 1-
pellido pellido, Nombre 1- Empleando la escuadra y el cartabón rellena los tres espacios a continuación con paralelas a las direcciones dadas. Procura que la distancia entre las paralelas sea la misma
Mosaicos y frisos. Adela Salvador
Mosaicos y frisos Adela Salvador Isometrías en el plano Traslación Giro Simetría Simetría con deslizamiento Traslaciones La traslación queda definida al conocer el vector de traslación Busca dos vectores
DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez
DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado
ACTIVIDADES. b. Completa la actividad haciendo lo mismo para los vértices restantes. Qué observas?
ACADEMIA SABATINA RECTAS Y PUNTOS DEL TRIÁNGULO ACTIVIDADES 1. Materiales: triángulos de papel, regla y compás. a. Toma un triángulo cualquiera, escoge uno de sus vértices y haz un doblez de tal modo que
C onstrucción de triángulos
C onstrucción de triángulos Figuras básicas y ángulos Nombre Escuela Edad Fecha Propósito: Distinguir triángulos con características diferentes. Escribe lo que entiendas por triángulo isósceles. Dibuja
AYUDAS SOBRE LA LINEA RECTA
AYUDAS SOBRE LA LINEA RECTA AYUDA : Grafiquemos la función Solución: Se debe escoger algunos números que representan a la variable x, para obtener el valor de la variable y respectivamente así: El proceso:
Geometría Analítica Agosto 2016
Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman
PROF: Jesús Macho Martínez
DIBUJO TÉCNICO ELEMENTAL PROF: Jesús Macho Martínez 1º.- Trazar la perpendicular a r por el punto P. 2º.- Trazar la bisectriz del ángulo que forman r y s. P * r r s 3º.- Trazar las tangentes interiores
Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se
open green road Guía Matemática TRANSFORMACIONES ISOMÉTRICAS tutora: Jacky Moreno .cl
Guía Matemática TRANSFORMACIONES ISOMÉTRICAS tutora: Jacky Moreno.cl 1. Transformaciones isométricas Las transformaciones geométricas están presentes en diversos campos de la actividad humana así como
Unidad 1. Trazados fundamentales en el plano.
MATERIA: CURSO: DIBUJO TÉCNICO 2º BACHILLERATO CONTENIDOS MÍNIMOS Unidad 1. Trazados fundamentales en el plano. Suma de segmentos. Diferencia de segmentos. Trazado de la mediatriz de un segmento. Trazado
Cuadriláteros y circunferencia
CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C
LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90
LA GEOMETRÍA PLANA La geometría plana trata de aquellos elementos que solo tienen dos dimensiones y, que por lo tanto, se encuentran y operan en un plano. Los elementos básicos con los que se suele trabajar
Polígonos regulares, el triángulo de Sierpinski y teselados
Sesión 3 Polígonos regulares, el triángulo de Sierpinski y teselados PROPÓSITOS Plantear y resolver problemas que involucren el análisis de características y propiedades de diversas figuras planas. MATERIALES
Click para ir al sitio web:
New Jersey Center for Teaching and Learning Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de estudiantes y profesores.
Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Matemáticas. Guía de Trabajo Geometría I
Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Matemáticas Guía de Trabajo Geometría I Presentación: Esta guía de trabajo pretende desarrollar el concepto de homotecia
ACTIVIDADES PROPUESTAS
GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el
Precálculo 1 - Ejercicios de Práctica. 1. La pendiente de la línea (o recta) que pasa por los puntos P(2, -1) y Q(0, 3) es:
Precálculo 1 - Ejercicios de Práctica 1. La pendiente de la línea (o recta) que pasa por los puntos P(2, -1) y Q(0, 3) es: a. 2 b. 1 c. 0 d. 1 2. La ecuación de la línea (recta) con pendiente 2/5 e intercepto
Introducción a la geometría
Introducción a la geometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan de estudios (217 temas)
Tema 5 Proporcionalidad y escalas
Tema 5 Proporcionalidad y escalas Tema 5 Proporcionalidad y escalas...1 Proporcionalidad... 2 Razón...2 Proporción...2 Proporcionalidad directa...2 Proporcionalidad inversa...3 Construcción de la media
TEMA 9 CUERPOS GEOMÉTRICOS
Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas
LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.
LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de
Dibujo Técnico Curvas técnicas
22 CURVAS TÉCNICAS En la actualidad, una parte importante de los objetos que se fabrican están realizados bajo algún tipo de forma curva geométrica. Si prestamos atención a nuestro entorno, nos damos cuenta
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo
NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA
UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS
La carrera geométrica
La carrera geométrica Materiales: el tablero 1, un personaje por cada jugador y un dado. 1. Cada jugador ubica su ficha en la salida. 2. Por turno, cada jugador tira el dado y mueve su ficha tantos casilleros
Manejo de las herramientas de Dibujo
Manejo de las herramientas de Dibujo Una vez aprendidos los instrumentos de dibujo más básicos, en la siguiente ficha, vas a descubrir para que sirven en la práctica, y vas a poder adquirir soltura en
UNIDAD 2: ELEMENTOS GEOMÉTRICOS
UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este
DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA
De la gráfica a la expresión algebraica DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA Rectas, Parábolas, Hipérbolas, Exponenciales Logarítmicas LA RECTA Comencemos localizando el punto donde la recta corta al
Movimientos en el plano
7 Movimientos en el plano Objetivos En esta quincena aprenderás a: Manejar el concepto de vector como elemento direccional del plano. Reconocer los movimientos principales en el plano: traslaciones, giros
Dibujar un rombo de diagonal BD y lado AB dados. Se dibuja la diagonal DB y se trazan arcos con centro en sus extremos y radio AB, para hallar A y C.
Algunos problemas de cuadriláteros Propiedades Para la resolución de problemas de cuadriláteros es necesario conocer algunas de sus propiedades : - Las diagonales de un paralelogramo se cortan en sus respectivos
Transformaciones Geométricas en el plano HOMOTECIA
Transformaciones Geométricas en el plano Llamamos transformaciones geométricas en el plano a una operación u operaciones geométricas que permiten generar una nueva figura de la primitiva dada. El transformado
Construcciones. Proporciones. Áreas
Construcciones Proporciones Áreas Rectángulo y Cometa Dibuja una cometa inscrita en un rectángulo Qué relación hay entre sus áreas respectivas? Cómo cambiará el perímetro de la cometa a medida que E y
MYP (MIDDLE YEARS PROGRAMME)
MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa
ángulo agudo ángulo agudo triángulo acutángulo triángulo acutángulo ángulo ángulo Nombre Ángulo que es menor que un ángulo recto
Tarjetas de vocabulario ángulo agudo ángulo agudo Ángulo que es menor que un ángulo recto acutángulo acutángulo Un con tres ángulos agudos ángulo ángulo Una figura formada por dos semirrectas que tienen
INECUACIONES Y VALOR ABSOLUTO
INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.
CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean
*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.
*DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) 2 b + ya yb d= ( ) ( ) 2 x a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular bajada del vértice al
Problema a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente.
Problema 717.- a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente. Hallar el lugar geométrico de los puntos comunes a
Tema 7: Geometría Analítica. Rectas.
Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos
MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas
MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas
PÁGINA 217 PARA EMPEZAR. Vamos a mover un mosaico de la Alhambra
11 Soluciones a las actividades de cada epígrafe PÁGIN 217 PR EMPEZR Vamos a mover un mosaico de la lhambra Imagina que pones encima un papel transparente y lo calcas (si en vez de imaginarlo, lo haces,
Construcciones con regla y compás
Universidad de Buenos Aires - CONICET Semana de la Matemática - 2009 Algunos ejemplos Vamos a hacer algunos dibujos usando un papel, un lápiz, un compás y una regla sin medidas marcadas. Algunos ejemplos
TRANSFORMACIONES DEL PLANO
PROBLEMAS DE GEOMETRÍA. TRANSFORMACIONES DEL PLANO 1. Un producto de dos simetrías axiales de ejes perpendiculares A qué transformación corresponde? En qué se transforma un segmento vertical? ( ) 2. Cuál
VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector
VECTORES Un vector (Vector posición) en el plano es un par ordenado de números reales A(a, b). Se representa geométricamente por un segmento de recta dirigido, cuyo punto inicial es el origen del sistema
TEMA 6. ECUACIONES DE LA RECTA
TEMA 6. ECUACIONES DE LA RECTA Dados un punto y un vector, vamos a hallar las ecuaciones de la recta r que pasa por el punto A y es paralela al vector. Sea consideramos los vectores un punto cualquiera
y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).
UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios
ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos:
CTIVIDDES DE GEMETRÍ PR 4º ES DE EPV Nombre y apellidos: Curso: TEM 1: TRZDS BÁSICS. 1. RECTS PRLELS Las rectas paralelas son aquellas que por mucho que las prolongues nunca se van a cortar. 1.1. Trazado
COLEGIO TIRSO DE MOLINA DEPARTAMENTO DE DIBUJO TÉCNICO CURSO 2010-11 DIBUJO TÉCNICO II
DIBUJO TÉCNICO II TEMA 2: PROPORCIONALIDAD Y SEMEJANZA Media proporcional Teoremas del Cateto y la Altura Figuras equivalentes Figuras semejantes y sus diferencias con las homotéticas Razón de semejanza
1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)
1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta
1 SITÚA LOS PUNTOS. Mide las coordenadas de cada punto desde O. X positivo del punto 3. Z positivo del punto 3. Y positivo del punto 3
SOLUCIÓN 1. Sitúa los puntos Mide la primera coordenada (X) en la dirección de la Línea de Tierra, empezando desde la izquierda La segunda coordenada (Y) en perpendicular a la LT, con las positivas hacia
PMI 5º Grado Geometría Trabajo en Clase-Trabajo en Casa Polígonos Trabajo en Casa 1. Establece si las siguientes figuras son polígonos o no. a.
PMI 5º Grado Geometría Trabajo en Clase-Trabajo en Casa Polígonos Trabajo en Casa 1. Establece si las siguientes figuras son polígonos o no. a. b. c. 2. Qué características hacen a un polígono? 3. Cuáles
Dibujo Técnico Curvas cónicas-parábola
22. CURVAS CÓNICAS-PARÁBOLAS 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar
TRANSFORMACIONES ISOMÉTRICAS
TRANSFORMACIONES ISOMÉTRICAS En una transformación isométrica: 1) No se altera la forma ni el tamaño de la figura. 2) Sólo cambia la posición (orientación o sentido de ésta). TRANSFORMACIONES ISOMÉTRICAS
Unidad 11. Figuras planas
Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y CALIFICACIÓN Después
Guía para el estudiante
Guía realizada por Bella Peralta C. Magister en Educación Matemática [email protected] [email protected] Nombre: Fecha: Curso: Con el desarrollo de esta guía aprenderás a identificar
TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:
TEMA 7: CÓNICAS CIRCUNFERENCIA Se define la circunferencia como el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. A dicha distancia se le llama radio de la circunferencia.
La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación.
La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. Los contenidos mínimos de la materia son los que aparecen con un * UNIDAD 1: LOS NÚMEROS NATURALES
UNIDAD 13. POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES
UNIDAD 13. POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES 13 POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD Nombre y apellidos:...
Transformaciones Isométricas
Introducción Transformaciones Isométricas Actividad: En los siguientes pares de transformaciones, reconoce aquellas en las que se mantiene la forma y el tamaño. Una transformación de una figura geométrica
4. PROPORCIONALIDAD IGUALDAD Y SEMEJANZA.
4. PROPORCIONALIDAD IGUALDAD Y SEMEJANZA. 4.1. Características generales Consideramos que una variable x puede adquirir los valores a,b,c,d, y otra variable los valores a, b, c, d, x e y son directamente
MÓDULO 8: VECTORES. Física
MÓDULO 8: VECTORES Física Magnitud vectorial. Elementos. Producto de un vector por un escalar. Operaciones vectoriales. Vector unitario. Suma de vectores por el método de componentes rectangulares. UTN
donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.
Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices
EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1
EDUCACIÓN PLÁSTICA Y VISUAL Trabajo de Recuperación de Pendientes Para 3º ESO Geometría IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 TEOREMA DE THALES El Teorema de Thales sirve para dividir un segmento
EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA
1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.
FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.
1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:
Tema 2: Figuras geométricas
Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. 1 2 La circunferencia (p. 31) El cerebro humano es muy
13. PROBLEMAS DE CUADRILÁTEROS
13. PROBLEMAS DE CUADRILÁTEROS 13.1. Propiedades. Para la resolución de problemas de cuadriláteros es necesario conocer algunas de sus propiedades: - Las diagonales de un paralelogramo se cortan en sus
REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA
MAT B Repartido Nº I REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA Conceptos primitivos Partiremos de un conjunto que llamaremos espacio, E, a cuyos elementos llamamos puntos, (a los cuales escribiremos
Hoja de problemas nº 7. Introducción a la Geometría
Hoja de problemas nº 7 Introducción a la Geometría 1. Un rectángulo tiene de área 135 u 2 a. Si sus lados miden números enteros, averigua cuáles pueden ser sus dimensiones. b. Cortamos los vértices como
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.
Movimientos en el plano
Movimientos en el plano TEORIA Vectores Concepto de vector. Coordenadas Un vector AB está determinado por dos puntos del plano, A(x1, y1) que es su origen y B(x 2,y 2 ) que es su extremo. Las coordenadas
CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS
OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.
6. VECTORES Y COORDENADAS
6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES
Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta
Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias
Seminario de problemas-eso. Curso Hoja 10
Seminario de problemas-eso. Curso 011-1. Hoja 10 5. Dado un triángulo cualquiera, demuestra que es posible recubrir el plano con infinitos triángulos iguales al dado, de forma que estos triángulos no se
En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253
Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían
ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: TEMA 1: TRAZADOS BÁSICOS
ACTIVIDADES DE 2ºESO DE EPV DEL PRIMER TRIMESTRE Nombre y apellidos: Curso: TEMA 1: TRAZADOS BÁSICOS 1. LA ESCUADRA Y EL CARTABÓN. Observando tu escuadra y tu cartabón describe su forma y sus ángulos.
Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia
Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia 1. Cuáles son algunas de las relaciones especiales entre los ángulos? 2. Explique qué es un polígono y cómo determinar
MATEMÁTICA 5 BÁSICO MATERIAL DE APOYO PARA EL DOCENTE LOCALIZACIONES, CARACTERIZACIONES Y TRANSFORMACIONES GEOMÉTRICAS
MATEMÁTICA 5 BÁSICO LOCALIZACIONES, CARACTERIZACIONES Y TRANSFORMACIONES GEOMÉTRICAS Material elaborado por: Héctor Muñoz Adaptación: Equipo de Matemática Programa Mejor Escuela 1. DESCRIPCIÓN GENERAL
Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes. Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA
Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA 1. 2. 3. 4. 5. 6. Educación Plástica y Visual de 1º de ESO Página 48 Ejercicio 5.1 Los polígonos
NOCIÓN DE PUNTO, RECTA Y PLANO
NOCIÓN DE PUNTO, RECT Y PLNO Si les das una imagen de una figura o un objeto, como un mapa con las ciudades y los caminos marcados en él, Cómo podrías explicar la imagen geométricamente? Después de completar
Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares
Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea
001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ).
1.6 Criterios específicos de evaluación. 001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 002. Calcula el total de elementos que se puedan codificar con una determinada clave. 003.
III: Geometría para maestros. Capitulo 1: Figuras geométricas
III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo
MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano
MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia
Unidad 12. Transformaciones geométricas
Unidad 12. Transformaciones geométricas Página 231 Resuelve 1. En el triángulo de la figura, qué ángulo gira cada una de las piezas recortadas para dar lugar a la pieza con forma de pajarita? Cada una
Seminario de problemas-bachillerato. Curso Hoja 8
Seminario de problemas-bachillerato. Curso 202-. Hoja 8 40. Se puede dibujar un triángulo equilátero que tenga los tres vértices sobre puntos de una malla cuadrada? Qué polígonos regulares se pueden dibujar
congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida
COLEGIO COLMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS GEOMETRÍA NOVENO GRADO PROFESORES: RAÚL MARTÍNEZ, JAVIER MURILLO Y JESÚS VARGAS CONGRUENCIA Y SEMEJANZA Cuando tenemos dos segmentos escribimos AB CD
ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de Circunferencia.
ÁLGEBRA VECTORIAL Y MATRICES. Ciclo 02 de 2012. Circunferencia. Elementos de la circunferencia. El segmento de recta es una cuerda. El segmento de recta es una cuerda que pasa por el centro, por lo tanto
Matemáticas 2 Agosto 2015
Laboratorio # 1 Línea recta I.-Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por y Pendiente
LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3
Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los
5.5 LÍNEAS TRIGONOMÉTRICAS
5.5 LÍNES TRIGONOMÉTRIS Sea (O, ) una circunferencia con centro en el origen de coordenadas O(0, 0) radio la unidad. Si se construe un ángulo con vértice en el origen sentido positivo podemos obtener las
