AMPLIACIÓN DE MATEMÁTICAS
|
|
|
- Julián Cortés Correa
- hace 8 años
- Vistas:
Transcripción
1 AMPLIACIÓN DE MATEMÁTICAS GRUPOS CÍCLICOS. Los grupos que pueden ser generados por un único elemento se llaman Grupos Cíclicos. Un único elemento como generador hace que sea fácil trabajar con ellos. Además, más adelante, veremos que los grupos multiplicativos de los cuerpos finitos son todos cíclicos, algo que tiene implicaciones en criptografía. Definición 1. Sea (G, ) un grupo. A: Si existe {g 1, g 2,..., g n } G, un subconjunto finito de G, de modo que < g 1, g 2,..., g n >= G se dice que G está finitamente generado. B: Si existe g G de modo que < g >= G, se dice que G es un grupo cíclico y que g es un generador de G. Ejemplos < 2 >= 2Z, así el grupo (2Z, +) es cíclico y 2 es un generador. 2. < 1 >= Z. 3. (R, +) no está finitamente generado. Definición 2. Sea (G, ) un grupo. Sea g G. Se llama orden de g al menor entero k N\{0} de modo que Escribiremos Ord(g) = k. g k = g g... k veces... g = e. Puede haber elementos de un grupo con orden infinito (por ejemplo 2 (Z, +)) lo cuál no es muy interesante. En los grupos finitos (de orden finito) todos sus elementos tiene orden finito. 1
2 2 C. RUIZ Proposición 1. Sea (G, ) un grupo finito. Todo elemento a de G tiene orden finito. Si a G y n es su orden entonces {a, a 2,..., a n = e} forma un subgrupo cíclico de G. Demostración: Tomemos un elemento a G y consideramos el conjunto de las potencias del elemento a, {a, a 2,..., a k,...} (solo operamos a con el mismo). Como G es finito estas potencias de a se tienen necesariamente que repetir. Sea k, r N de modo que a k = a k+r a k = a k a r, ahora multiplicando por el inverso de a k tenemos que e = a r. Ahora solo hace falta tomar el menor de los r N con a r = e para conseguir el orden de a. Consideremos ahora {a, a 2,..., a n = e}. Todas estas potencias son distintas, de los contrario existirían k, r N con k + r n de modo que a k = a k+r y por el argumento anterior a r = e. Lo cuál no es posible ya que r < n y por definición de n (el orden de a) es el menor natural que verifica a n = e. Sean ahora a k 1, a k 2 {a, a 2,..., a n = e}. Claramente (a k 2 ) 1 = a n k 2 {a, a 2,..., a n } y además a k 1 (a k 2 ) 1 = a k 1 a n k 2 = a k 1+n k 2 {a, a 2,..., a n = e} (claro, como 0 < k 1 + n k 2 < 2n, si 0 < k 1 + n k 2 n es clara la pertenencia anterior, si k 1 + n k 2 = n + r con r < n entonces a k 1+n k 2 = a n+r = a n a r = a r ). Por la caracterización de subgrupos vemos que {a, a 2,..., a n = e} es un subgrupo de G de orden exactamente n ( {a, a 2,..., a n = e} = n). Además, claramente < a >= {a, a 2,..., a n = e}, luego es un subgrupo cíclico Propiedades de los grupos finitos cíclicos son las siguientes.
3 APUNTES AM 3 Proposición 2. Si (G, ) es un grupo finito cíclico y a es un generador, entonces G = {a, a 2,..., a k,..., a G = 1} (donde 1 es el elemento neutro y a k = a a a... k veces... a). Demostración: Sea n el orden de a, que sabemos que existe por ser G finito. Por la proposición anterior sabemos que < a >= {a, a 2,..., a n = 1} G es un subgrupo cíclico de G. Como a es un generador de G, esto solo puede ocurrir si n = {a, a 2,..., a n = 1} = G Proposición 3. Todo subgrupo de un grupo cíclico finito es a su vez cíclico. Demostración: Sea G =< a >, un grupo cíclico finito con a un generador. Sea S un subgrupo de G (S G). Como G = {a, a 2,..., a k,..., a G = 1}, tomamos a k 0 S de modo que k 0 = mín{k : a k S }. Solo nos falta ver que < a k 0 >= S. Como S es subgrupo es claro que < a k 0 > S. Sea ahora a k S. Si k 0 k es claro que a k < a k 0 >. Si no, por el Teorema del Resto, k = qk 0 + r con r < k 0 y así a k = a qk 0+r = (a k 0 ) q a r ((a k 0 ) q ) 1 a k = a r S lo cuál no es posible ya que por elección de k 0, éste es el menor natural de modo que al elevar a a él, ésta potencia pertenece a S Proposición 4. Si S es un subgrupo de un grupo cíclico finito G, entonces el orden del subgrupo divide al orden del grupo ( S G ). Demostración: Sea a un generador de G, con orden de a igual a G y sea a k 0 un generador de S con orden S. Entonces (a k 0 ) S = a k 0 S = 1, como el orden de a es G se tiene que k 0 S = m.c.m(k 0, G ). De la definición de máximo común múltiplo y su caracterización como el producto de los primos divisores comunes o no, se sigue que S divide a G
4 4 C. RUIZ Esta propiedad de que el orden del subgrupo divide al orden del grupo es una propiedad general de los grupos finitos. En el caso de grupos cíclicos es más o menos sencillo de probar. En el caso general, el Teorema de Lagrange, nos va a llevar un poco más de trabajo. Antes de avanar más, veamos algunos ejemplos del cálcuo de ordenes de elementos de un grupo. Ejemplo 1. Sea (Z 5 \{0}, ) = ({[1], [2][3], [4]}, ). Éste es un grupo multiplicativo, ya que 5 es primo y sus congruencias todas tienen inverso. [1] tiene orden 1 claramente. [2] tiene orden 4, ya que [2 4 ] = [16] = [1] y [2 2 ] = [4] y [2 3 ] = [3]. Luego [2] es un generador del grupo. [3] tiene orden 4, ya que [3 4 ] = [81] = [1] y [3 2 ] = [4] y [3 3 ] = [2]. Luego [3] es un generador del grupo. [4] tiene orden 2, ya que [4 2 ] = [16] = [1]. Ejemplo 2. Sea (Z 9, ) = ({[1], [2], [4], [5], [7], [8]}, ). Éste es un grupo multiplicativo como hemos visto anterioremente. Además, Z 9 = 6 [2] tiene orden 6, ya que [2 6 ] = [64] = [1] y [2 2 ] = [4], [2 3 ] = [8], [2 4 ] = [16] = [7] y [2 5 ] = [32] = [5]. Luego [2] es un generador del grupo. [4] tiene orden 3, ya que [4 3 ] = [64] = [1] y [4 2 ] = [16] = [7]. [5] tiene orden 6, ya que [5 2 ] = [25] = [7] y [5 3 ] = [125] = [8]. Como el grupo es finito y cíclico (ya que 2 es un generador), entonces el orden de [5] tiene que dividir al del grupo; como este orden no es ni 2 ni 3, solo puede ser 6. [7] tiene orden 3, ya que [7 2 ] = [14] = [5] y [7 3 ] = [343] = [1]. [8] tiene orden 2, ya que [8 2 ] = [64] = [1]. Siempre encontramos que el orden de un elemento divide al orden del grupo, ya que el orden del elemento es igual al orden del subgrupo que engendra en el grupo.
5 APUNTES AM 5 Ejemplo 3. Sea un grupo (G, ) y sean a, b G. Hay que probar que 1. Si Ord(a) = n y n = pq, entonces Ord(a p ) = q. 2. Ord(a 1 ) = Ord(a) y Ord(ab) = Ord(ba) (G no tiene por que ser conmutativo). 3. Si a y b conmutan y tienen ordenes finitos primos entre si, entonces < a > < b >= {e}. Demostración: En el primer caso, por definición de orden e = a n = (a p ) q. Si Ord(a p ) = r < q, entonces e = (a p ) r y se tendría que Ord(a) pr < n, lo que contradice la hipótesis. e = a n, despejando (a n ) 1 = e, como (a n ) 1 = (a 1 ) n, deducimos que Ord(a 1 ) = n. Por otro lado si Ord(ab) = 1, entonces a y b son inversos y Ord(ba) = 1. Ahora se procede por inducción. Si c < a > < b > se tiene que c = a n = b k para ciertos n, k N. c está dentro de grupos finitos y ciclícos, luego existe Ord(c) con Ord(c) Ord(a) y Ord(c) Ord(b). Como ambos ordenes son primos entre si, se tiene que Ord(c) = 1 y así c = e Referencias Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense, Madrid, Spain address: Cesar [email protected]
AMPLIACIÓN DE MATEMÁTICAS. a = qm + r
AMPLIACIÓN DE MATEMÁTICAS CONGRUENCIAS DE ENTEROS. Dado un número natural m N\{0} sabemos (por el Teorema del Resto) que para cualquier entero a Z existe un único resto r de modo que con a = qm + r r {0,
AMPLIACIÓN DE MATEMÁTICAS DIVISIBILIDAD DE POLINOMIOS.
AMPLIACIÓN DE MATEMÁTICAS DIVISIBILIDAD DE POLINOMIOS. Ejemplo 1. Dados dos polinomios p, q Z[x] con q mónico se puede dividir p entre q. x 2 + 2x + 1 x + 1 0 x + 1 ; x 2 + 2x + 2 x + 1 1 x + 1 ; 3x2 +
AMPLIACIÓN DE MATEMÁTICAS
AMPLIACIÓN DE MATEMÁTICAS RAÍCES MÚLTIPLES. Dado un polinomio con coeficientes en un cuerpo existirá siempre un elemento del cuerpo que anula el polinomio? Siempre existe un cuerpo donde podamos encontrar
AMPLIACIÓN DE MATEMÁTICAS
AMPLIACIÓN DE MATEMÁTICAS EJEMPLOS DE EXTENSIONES DE CUERPOS. Comenzamos con el primer ejemplo. Aquí ya vamos a ver las ideas que después desarrollaremos. Ejemplo 1. Consideramos el polinomio x 2 2 Q[x]
SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente.
ANÁLISIS MATEMÁTICO BÁSICO. SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. Ejemplo.. Sea la sucesión (x n
Ejercicios resueltos Introducción a la teoría de los grupos. J. Armando Velazco
Ejercicios resueltos Introducción a la teoría de los grupos J. Armando Velazco 1 de mayo de 2015 Ejercicio 1: Pruebe que si G es un grupo finito con identidad e y con un número par de elementos, entonces
AMPLIACIÓN DE MATEMÁTICAS
AMPLIACIÓN DE MATEMÁTICAS TEOREMA DE EXTENSIÓN DE KRONECKER. Los polinomios irreducibles sobre un cuerpo no tienen raíces sobre ese cuerpo, salvo que sean de grado uno. Ya hemos visto que Ejemplo 1. x
La estructura de un cuerpo finito.
9. CUERPOS FINITOS El objetivo de este capítulo es determinar la estructura de todos los cuerpos finitos. Probaremos en primer lugar que todo cuerpo finito tiene p n elementos, donde p es la característica
Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría
ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teoría Tema 1: Grupos y subgrupos. 1.1. Introducción Definición 1.1. Un grupo es un par (G, ), donde G es un conjunto no vacío,
Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.
ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con
Álgebra y estructuras finitas/discretas (Grupos A)
Álgebra y estructuras finitas/discretas (Grupos A) Curso 2007-2008 Soluciones a algunos de los ejercicios propuestos en el Tema 2 Antes de ver la solución de un ejercicio, repase la teoría correspondiente
Tema 2: El grupo de las permutaciones
Tema 2: El grupo de las permutaciones Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Octubre de 2014 Olalla (Universidad de Sevilla) Tema 2: El grupo de las
Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición
Teorema de Lagrange Capítulo 3 3.1 Introducción En este capítulo estudiaremos uno de los teoremas más importantes de toda la teoría de grupos como lo es el Teorema de Lagrange. Daremos en primer lugar
Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.
Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.
Peter Ludwig Mejdell Sylow, matemático noruego ( ).
CONCURSO ÁLGEBRA Y LÓGICA 473426 PRUEBA DE OPOSICIÓN: DR. MARCO ANDRÉS FARINATI Teoremas de Sylow [1872, Math. Ann.] Peter Ludwig Mejdell Sylow, matemático noruego (1832-1918). Sea G un grupo finito y
AMPLIACIÓN DE MATEMÁTICAS
AMPLIACIÓN DE MATEMÁTICAS SUCESIONES DE FUNCIONES En primer curso estudiamos el concepto de convergencia de una sucesión de números. Decíamos que dada una sucesión de números reales (x n ) n=1 R, ésta
Ampliación Matemática Discreta. Justo Peralta López
Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁLGEBRA Y ANÁLISIS MATEMÁTICO 1 2 cíclicos 3 Subgrupos 4 Algoritmos 5 ElGamal Definición Un grupo es un conjunto de elementos sobre los cuales
Estructuras algebraicas
Semana 10[1/14] 26 de abril de 2007 Semana 10[2/14] Grupos Un grupo es un caso particular de una estructura algebraica. Veremos que esta noción rescata ampliamente las propiedades de estructuras tales
Definición. 1. Se define la función logaritmo (neperiano ) por. ln x =
ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES LOGARITMO Y EXPONENCIAL. A partir de la integral y el Teorema Fundamental del Cálculo podemos definir y demostrar las propiedades de las funciones logaritmo y
Estructuras algebraicas
Estructuras algebraicas Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Relaciones binarias 11 Recordatorio Definición Dados dos conjuntos A y B se llama producto cartesiano de A por B
Grupos libres. Presentaciones.
S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad
Con esta definición de grupo, es directo que el neutro es único, al igual que el inverso de. , donde es conmutativo, se denomina Abeliano.
Teoría de Grupos Definiciones Básicas Definición 5 (Grupo) Sea una estructura algebraica con una ley de composición interna. Decimos que es un grupo si: 1. es asociativa. 2. tiene neutro. 3. toda tiene
Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad
Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad 1.1 Grupos Al haber alterado el orden de los temas, este apartado ya se ha visto en el tema 9 1.2 Anillos y cuerpos Definición 1.2.1.
un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:
CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse
Polinomios (lista de problemas para examen)
Polinomios (lista de problemas para examen) En esta lista de problemas el conjunto de los polinomios de una variable con coeficientes complejos se denota por P(C). También se usa la notación C[x], si la
Estructuras Algebraicas
Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos
Álgebra Básica C Grado en Matemáticas Examen 1
Álgebra Básica C Grado en Matemáticas Examen 1 Lee detenidamente las preguntas antes de contestarlas. Justifica todas tus respuestas. Evita los cálculos innecesarios y las repeticiones. Nombre y apellido(s):
Cálculo diferencial e integral I. Eleonora Catsigeras
Cálculo diferencial e integral I Eleonora Catsigeras Universidad de la República Montevideo, Uruguay 01 de setiembre de 2011. CLASE 14 complementaria. Sobre sucesiones y conjuntos en la recta real. Sucesiones
Grupos. Subgrupos. El Teorema de Lagrange. Grupo cociente. Teoremas de
TEMA 8 Grupos. Subgrupos. El Teorema de Lagrange. Grupo cociente. Teoremas de Isomorfía En la primera sección introducimos los conceptos de grupo y subgrupo y, además de presentar varios ejemplos, prestamos
Funciones y Cardinalidad
Funciones y Cardinalidad Definición 1 Llamaremos función f entre dos conjuntos A y B a una relación que verifica las siguientes propiedades: i) Dom(f) = A ii) Si (a, b), (a, c) f entonces b = c Dicho de
Ejercicios de Estructuras Algebraicas 1
Ejercicios de Estructuras Algebraicas 1 Números enteros y polinomios 1. Para cada una de las siguientes parejas de números enteros, hallar el máximo común divisor, el mínimo común múltiplo y una identidad
Espacios compactos. 7.1 Espacios compactos
58 Capítulo 7 Espacios compactos 7.1 Espacios compactos Definición 7.1.1 (Recubrimiento). Sea X un conjunto y sea S X. Un recubrimiento de S es una familia A = {A i } i I de subconjuntos de X tales que
1. Conjuntos y funciones
Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 1: CONJUNTOS. 1 1. Conjuntos y funciones Ejercicio 1. Si I es un conjunto y A α es
Álgebra. Curso
Álgebra. Curso 2012-2013 14 de junio de 2013 Resolución Ejercicio. 1. (2 puntos) Utiliza el teorema del descenso (o alternativamente la localización en primos) para probar el siguiente resultado: Sea K
Los números naturales. Definición y propiedades
Los números naturales. Definición y propiedades Con la idea de abrir boca para empezar los estudios de matemáticas en bachillerato, en un artículo anterior se hablaba sobre la introducción al número real
Seguridad Informática
Seguridad Informática Fundamentos Matemáticos de la Criptografía Ramón Hermoso y Matteo Vasirani Universidad Rey Juan Carlos Índice 1 Divisibilidad 2 Artimética modular 3 Grupos 4 El problema del logaritmo
Teoría de números. Herbert Kanarek Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre
Teoría de números Herbert Kanarek Universidad de Guanajuato Enero Junio 2012 Eugenio Daniel Flores Alatorre Bibliografía The theory of numbers Ivan Nivan H. Zuckerman H. Montgomery Temario I. Divisibilidad
Sucesiones. Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como
Universidad de la República Facultad de Ingeniería IMERL Sucesiones Curso Cálculo 1 2008 Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como a 1, a
Espacios métricos completos
5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.
Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).
ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas
14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo
TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo Así como al estudiar conjuntos hablamos de la existencia de términos primitivos (que no se definen), para definir algunos conjuntos,
520142: ALGEBRA y ALGEBRA LINEAL
520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición
Grupos y Subgrupos El concepto de grupo Sea G un conjunto no vacío y sea G G G
Capítulo 1 Grupos y Subgrupos 001. El concepto de grupo Sea G un conjunto no vacío y sea G G G una operación interna en G para la cual denotaremos a la imagen de un par (x, y) mediante xy. Supongamos que
DERIVADAS DE FUNCIONES DE VARIAS VARIABLES. Curvas Paramétricas. Dada una curva paramétrica
ANÁLISIS MATEMÁTICO BÁSICO DERIVADAS DE FUNCIONES DE VARIAS VARIABLES Curvas Paramétricas Dada una curva paramétrica γ : [a, b] R R n t γ(t) = (f 1 (t), f 2 (t),, f n (t)), donde las funciones f k : [a,
COMPLEMENTO DEL TEÓRICO
ÁLGEBRA I PRIMER CUATRIMESTRE - AÑO 2016 COMPLEMENTO DEL TEÓRICO El material de estas notas fue dictado en las clases teóricas pero no se encuentra en el texto que seguimos en las mismas ( Álgebra I -
ÁLGEBRA MODERNA. Índice 1. El grupo de permutaciones y el grupo alternante 1
ÁLGEBRA MODERNA DANIEL LABARDINI FRAGOSO TOMÓ ESTAS NOTAS: ALEJANDRO DE LAS PEÑAS CASTAÑO FECHA: 9/MARZO/2016 Índice 1. El grupo de permutaciones y el grupo alternante 1 1. El grupo de permutaciones y
Estructuras algebraicas
Semana 11[1/22] 4 de mayo de 2007 Anillos y cuerpos Semana 11[2/22] Anillos Comenzamos ahora el estudio de estructuras algebraicas que tengan definidas dos operaciones, y las clasificaremos en anillos
Capítulo 7. Espacios vectoriales. 7.1 Definición y ejemplos
Capítulo Espacios vectoriales.1 Definición y ejemplos Un espacio vectorial sobre un cuerpo K (que supondremos conmutativo es un conjunto no vacío junto con 1. una operación interna, +, a la que llamaremos
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto
1. Dominio de integridad: Si a, b son enteros, y a 0, b 0 entonces
1 Números enteros 1.1 Operaciones Pretendemos precisar nuestro conocimiento intuitivo de los números enteros, lo denotamos por Z (del alemán Zahl número). Definición 1 Los números enteros admiten tres
Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma
Polinomios Definición 1.1. Un conjunto K junto con dos operaciones definidas en él que denotaremos por + : K K K : K K K para las cuales se cumplen las siguientes propiedades: Asociatividad Conmutatividad
Anillo de polinomios con coeficientes en un cuerpo
Capítulo 2 Anillo de polinomios con coeficientes en un cuerpo En el conjunto Z se ha visto cómo la relación ser congruente módulo m para un entero m > 1, es compatible con las operaciones suma y producto.
Introducción a los números reales
Grado en Matemáticas Curso 2009-2010 Índice Conjuntos numéricos 1 Conjuntos numéricos Tienen nombre Y cuatro operaciones básicas 2 Teoremas y demostraciones Métodos de demostración 3 El axioma fundamental
Mariano Suárez-Álvarez ÁLGEBRA LINEAL 21 de noviembre de 2016 F F 8 f f
Mariano Suárez-Álvarez ÁLGEBRA LINEAL 21 de noviembre de 2016 F F 8 f f This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license. Índice 1 Espacios
Espacios vectoriales. Capítulo Espacios vectoriales y subespacios Preliminares
Capítulo 1 Espacios vectoriales En diversos conjuntos conocidos, por ejemplo los de vectores en el plano o en el espacio (R 2 y R 3 ), o también el de los polinomios (R[X]), sabemos sumar sus elementos
Clase 2: Algoritmo de Euclídes
Clase 2: Algoritmo de Euclídes Dr. Daniel A. Jaume, * 8 de agosto de 2011 1. Máximo común divisor Para entender que es el máximo común divisor de un par de enteros (no simultáneamente nulos). Lidearemos
SUCESIONES DE CAUCHY DE NÚMEROS RACIONALES.
SUCESIONES DE CAUCHY DE NÚMEROS RACIONALES La construcción más habitual, es la que se utiliza los límites las sucesiones de Cauchy del cuerpo Donde Una sucesión, se dice que es de CAUCHY si satisface:
TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN
1 TEMA 1: NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN 1. INTRODUCCIÓN Los números naturales aparecen debido a la necesidad que tiene el hombre para contar. Para poder construir este conjunto N, podemos seguir
Introducción a la Teoría de Números
Introducción a la Teoría de Números La Teoría de Números es un área de las matemáticas que se encarga de los números primos, factorizaciones, de qué números son múltiplos de otros, etc. Aunque se inventó
Departamento de Ingeniería Matemática - Universidad de Chile
Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial
MatemáticaDiscreta&Lógica 1. Conjuntos. Aylen Ricca. Tecnólogo en Informática San José 2014
MatemáticaDiscreta&Lógica 1 Conjuntos Aylen Ricca Tecnólogo en Informática San José 2014 http://www.fing.edu.uy/tecnoinf/sanjose/index.html CONJUNTOS.::. Definición. Según el diccionario de la Real Academia
UNIDAD 1 NUMEROS COMPLEJOS
UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo
EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos
EL TEOREMA DE SEIFERT-VAN KAMPEN 1. Preliminares sobre grupos Sea G un grupo. Denotaremos de forma multiplicativa la operación en G. Así, el producto de x, y G es x y, y el inverso de x G es x 1. Para
MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño
MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2014 Universidad Nacional de Colombia
Conjuntos finitos y conjuntos numerables
Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos
Sistemas basados en la Teoría de Números
Criptografía de clave pública Sistemas basados en la Teoría de Números Departamento de Sistemas Informáticos y Computación DSIC - UPV http://www.dsic.upv.es p.1/20 Criptografía de clave pública Sistemas
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS ESTRUCTURAS ALGEBRAICAS B.1 Operaciones (leyes de composición interna).
58 7. ESPACIOS COCIENTE
CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.
Conjuntos relaciones y grupos
Matemáticas NS Conjuntos relaciones y grupos Tema opcional 2 Índice 1. Conjuntos y relaciones 5 1.1. Introducción.......................................... 5 1.2. Operaciones con conjuntos..................................
sup si A no es acotado.
Capítulo 6 Espacios completos 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y
Problemas de VC para EDVC elaborados por C. Mora, Tema 4
Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,
Conjuntos finitos y conjuntos numerables
Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos
Capítulo II. Pruebas en Matemáticas
Capítulo II Pruebas en Matemáticas Ahora nos concentramos en afirmaciones matemáticas y sus pruebas. Se encuentra que tratar de escribir pruebas justificando cada paso se vuelve rápidamente inmanejable,
Continuidad y monotonía
Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados
1 Introducción al Álgebra conmutativa
1 Introducción al Álgebra conmutativa Escrito por: Patrizio Guagliardo y Miguel Monsalve. A continuación, daremos algunas definiciones básicas de estructuras algebraicas para empezar a trabajar rápidamente
TRIÁNGULOS: RELACIONES DE DESIGUALDAD ENTRE SEGMENTOS Y ÁNGULOS
TRIÁNGULOS: RELACIONES DE DESIGUALDAD ENTRE SEGMENTOS Y ÁNGULOS Introducción.- Anteriormente, a partir de la congruencia de triángulos, hemos estudiado las condiciones que han de verificarse para que dos
1. Conjuntos y funciones
PRACTICO 1: CONJUNTOS. 1. Conjuntos y funciones Es útil saber de memoria las siguientes propiedades de conjuntos y funciones. Tanto como saber las tablas. Ejercicio 1. Si I es un conjunto y A α es un conjunto
Extensiones normales.
10. TEORÍA DE GALOIS Este capítulo, donde se establece el Teorema Principal de la Teoría de Galois, puede ser considerado como la culminación de la asignatura. Aquí se relacionarán las Teorías de Grupos
Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales.
Capítulo V Valores y vectores propios. Diagonalización de operadores lineales. Hemos visto que la aplicaciones lineales de en están definidas a través de una expresión de la forma ; pero esta fórmula puede
Ejercicios del Tema 2: Estructuras algebraicas básicas
Ejercicios del Tema 2: Estructuras algebraicas básicas En los ejercicios 1, 2, 8 y 9 se utilizará que si G = {g 1,...,g n } es un conjunto finito y * una operación interna definida en G, podemos utilizar
MATEMÁTICAS BÁSICAS. 2 de marzo de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS
2 de marzo de 2009 Parte I Conjuntos Definición intuitiva de conjunto Definición Un conjunto es una colección de objetos. Ejemplos A = {a, e, i, o, u} B = {blanco, gris, negro} C = {2, 4, 6, 8, 9} D =
Tema 1: Fundamentos.
Tema 1: Fundamentos. 1. Nociones básicas de la Teoría de Conjuntos. Definición. Un conjunto es una colección de objetos. A los objetos de un conjunto se les llama elementos del conjunto. Se denominará
Espacios Vectoriales
Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios
