AMPLIACIÓN DE MATEMÁTICAS
|
|
|
- Adrián Domínguez Juárez
- hace 9 años
- Vistas:
Transcripción
1 AMPLIACIÓN DE MATEMÁTICAS SUCESIONES DE FUNCIONES En primer curso estudiamos el concepto de convergencia de una sucesión de números. Decíamos que dada una sucesión de números reales (x n ) n=1 R, ésta convergía a un número x (o ite de la sucesión) y escribiamos x n = x o x n x si para todo para todo ɛ > se puede encontrar un natural n N de modo que si n > n entonces ocurre siempre que x x n < ɛ. Ejemplos 1. a) 1 n b) N n= 1 n! N e c) El método de las tangentes de Newton nos permitía encontrar una sucesión que converge a la solución de una ecuación del tipo f(x) = Figura 1. Tangentes de Newton Otro problema distinto, más general, es él de aproximar una función dada f por otras f n, que han de ser más sencillas y que se acercan a f cuando n se hace grande. La primera cuestión que se plantea es 1
2 2 C. RUIZ que significa que una función este cerca de otra o equivalentemente como medimos la distancia entre dos funciones. Veamos los siguientes ejemplos gráficos. Ejemplos 2. Figura 2. Convergencia en media cuadrática Vamos a estudiar los dos primeros tipos de convergencias. La convergencia en media cuadrática es sin embargo la más apropiada para estudiar señales (de alguna forma la integral de la función al cuadrado mide la energía de la señal). Definición 1. Sea (f n ) n=1 una sucesión de funciones definidas sobre un mismo dominio A R (podemos pensar que A es un intervalo). 1. Decimos que la función f : A R R es el ite puntual de la sucesión (f n ) n=1 si para todo x A se verifica que f n (x) = f(x).
3 APUNTES AM 3 2. Decimos que la función f : A R R es el ite uniforme de la sucesión (f n ) n=1 si para todo ɛ > existe un natural n N de manera que f(x) f n (x) < ɛ para todo x A (o también, equivalentemente, que sup{ f(x) f n (x) : x A} < ɛ). Ejemplo 1. Consideramos la sucesión de funciones f n (x) = x n donde x A = [, 1] y n N. Las gráficas de las funciones de la sucesión son del tipo Figura 3. Gráficas de f 1,f 2,..,f n En primer lugar calculamos su ite puntual { si x < 1 xn = 1 si x = 1 { si x < 1 luego la función f(x) = es el ite puntual de la 1 si x = 1 sucesión. Sin embargo f no puede ser el ite uniforme de la sucesión; si tomamos ɛ = 1/4 no es posible que f(x) x n < 1/4 para todo x [, 1].
4 4 C. RUIZ Figura 4 Lo que si ocurre siempre, y no es más que un sencillo ejerciccio para conprobar si se ha entendido las definiciones anteriores, es Observación 1. Si f es el ite uniforme de una sucesión (f n ) n=1, entonces f también es el ite putual de tal sucesión (el recíproco no es cierto como vimos en el ejemplo anterior). Ejemplo 2. Condideramos la sucesión ( x n ) n=1, x [, 1]. En primer x lugar calculamos el ite puntual. =, para todo x [, 1] n ( Hay que acordarse de calcular ites!). Por tanto f es el ite puntual de la sucesión y candidato a ite uniforme. Ahora f(x) f n (x) = x n = x n 1 n, luego para todo ɛ > tomando un n N de modo que 1 n que para todo n > n se verifica que < ɛ, se tiene x n ) = 1 n 1 n < ɛ para todo x [, 1]. Luego deducimos que también f es el ite uniforme de la sucesión. Un resultado que nos ayuda a entender la importancia de la convergencia uniforme es el siguiente. Teorema 1. Sea (f n ) n=1 una sucesión de funciones f n : [a, b] R R que converge uniformemente a la función f sobre el intervalo [a, b].
5 APUNTES AM 5 1. Si cada función f n es continua en [a, b], entonces f es continua en [a, b]. 2. Si cada función f n es integrable en el intervalo [a, b], entonces f también es integrable en el intervalo [a, b] y además se verifica la fórmula b a f(x)dx = b a f n (x)dx. Si no hay convergencia uniforme, lo enunciado en el teorema anterior no tiene por que ser cierto. Ejemplo 3. La sucesión (x n ) n=1, x [, 1], está formada por funciones f n (x) = x n continuas { en el intervalo [, 1]. El ite puntual es la si x < 1 función f(x) =. Esta función no es continua en todo 1 si x = 1 [, 1], ya que es discontinua en x = 1. Luego no puede ser el ite uniforme de la sucesión (algo que vimos antes; este es otro método de comprobarlo). Ejemplo 4. Sea (f n ) n=1 la sucesión de funciones sobre [, 1] dadas por el dibujo observemos que f n (x) = para todo x [, 1]; y que además f n(x)dx = 1 para todo n N. Luefo f es el ite puntual de la sucesión, que no es uniforme en [, 1] ya que no es cierto que dx = = Ejemplo 5. Para calcular f n (x)dx = 1. ne x dx, en primer lugar calcu- n + x lamos el ite puntual de la sucesión de funciones ( nex n + x ) n=1 con
6 6 C. RUIZ x [, 1], ne x n + x = ex para todo x [, 1]. Ahora comprobamos que este ite es uniforme e x nex n + x = ex 1 n n + x = x ex n + x e 1 n (donde la desigualdad se tiene ya que x 1). Luego f(x) = e x es el ite uniforme de la sucesión de funciones f n. Estas funciones son continuas en [, 1] y por tanto integrables en [, 1]. Luego por el teorema anterior se sigue que ne x n + x dx = e x dx = e x 1 = e 1. Otro ejemplo completo del estudio de la convergencia puntual y uniforme de una sucesión de funciones es el siguiente. sen nx Ejemplo 6. Sea la sucesión de funciones ( 1 + nx ) n=1 para x. Se pide estudiar la convergencia puntual y uniforme de la sucesión. Vamos a calcular el ite puntual, veremos que no hay convergencia uniforme sobre [, ). Sin embargo si hay convergencia uniforme sobre [a, ) si a es un número mayor que. 1. El ite puntual es sen nx 1 + nx = { si x > si x = luego f = es el ite puntual de la función. sen nx 2. Vamos a representar la gráfica de la función f n (x) =, para un n fijo. f n es continua en x ; además f n () = y 1+nx x f n (x) =. f n cambia de signo cuando lo hace la función sen nx. Derivando vemos que f n(x) n = (cos nx sen nx+nx cos nx). (1 + nx) 2 Localizar los máximos y mínimos locales en este caso no parece sencillo. Se puede observar, sin embargo, que para x = π se tiene que 2n f n ( π 2n ) = π independientemente de n. Así nuestra función 2 será como
7 APUNTES AM 7 Figura 5. Gráfica de f n No es posible meter casi todas las funciones f n (todas salvo un número finito de ellas) dentro de una banda suficientemente estrecha alrededor de la función f =. Por tanto no hay convergencia uniforme en [, 1]. 3. Por otro lado si x [a, ) con a >, entonces sen nx sen nx f(x) f n (x) = = 1 + nx 1 + nx an ya que sen t 1 para todo t y x a >. Todo ello independientemente de x. Por tanto f n f = uniformemente sobre [a, ), siendo a un número mayor que cero. Referencias Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense, 284 Madrid, Spain address: Cesar [email protected]
SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente.
ANÁLISIS MATEMÁTICO BÁSICO. SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. Ejemplo.. Sea la sucesión (x n
Sucesiones y series de funciones
Sucesiones y series de funciones Renato Álvarez Nodarse Departamento de Análisis Matemático Facultad de Matemáticas. Universidad de Sevilla http://euler.us.es/ renato/ 8 de octubre de 2012 Sucesiones y
Apellidos:... Nombre:... Examen
Cálculo Numérico I. Grado en Matemáticas. Curso 0/0. 0 de Junio de 0 Apellidos:... Nombre:... Examen. Decidir razonadamente si las siguientes afirmaciones son verdaderas o falsas, buscando un contraejemplo
CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II
CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier
MÉTODOS MATEMÁTICOS DE LA FÍSICA II Segunda Parte. 10 de Febrero de 2005.
MÉTODOS MATEMÁTICOS DE LA FÍSICA II Segunda Parte. 0 de Febrero de 005. Tenéis 3 horas para hacer estos ejercicios. Podéis usar una versión de los apuntes como están en la red, sin ninguna anotación. No
AMPLIACIÓN DE MATEMÁTICAS
AMPLIACIÓN DE MATEMÁTICAS TEOREMA DE EXTENSIÓN DE KRONECKER. Los polinomios irreducibles sobre un cuerpo no tienen raíces sobre ese cuerpo, salvo que sean de grado uno. Ya hemos visto que Ejemplo 1. x
Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral
ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES TRIGONOMÉTRICAS. La función f(x) = 1 x 2 es continua en el intervalo [ 1, 1]. Su gráfica como vimos es la semicircunferencia de radio uno centro el origen de coordenadas.
AMPLIACIÓN DE MATEMÁTICAS
AMPLIACIÓN DE MATEMÁTICAS CLASIFICACIÓN DE GRUPOS FINITOS. Vamos a ver una clasificación de los grupos finitos. Va a ser un poco superficial, pero nos dará una idea de como puede ser usada en algunas aplicaciones.
Nombre y Apellidos: e f(x) dx. Estudiar si converge la integral impropia
Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Febrero 27 de Enero de 26 Nombre y Apellidos: DNI: 6.25 p.) ) Se considera la función f : [, ) R definida
AMPLIACIÓN DE MATEMÁTICAS
AMPLIACIÓN DE MATEMÁTICAS GRUPOS CÍCLICOS. Los grupos que pueden ser generados por un único elemento se llaman Grupos Cíclicos. Un único elemento como generador hace que sea fácil trabajar con ellos. Además,
Integración numérica
Integración numérica Javier Segura Cálculo Numérico I. Tema 4. Javier Segura (Universidad de Cantabria) Integración numérica CNI 1 / 21 Introducción y definiciones Estructura de la presentación: 1 Introducción
Apellidos:... Nombre:... Examen
Cálculo Numérico I. Grado en Matemáticas y doble grado Física/Matemáticas. 16 de junio de 017 Curso 016/017. Apellidos:... Nombre:... Examen 1. Explicar razonadamente si las siguientes afirmaciones son
Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x
Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Nombre y Apellidos: Cálculo I Convocatoria de Diciembre de Diciembre de 008 DNI: (6.5 p.) ) Se considera la función f : R R definida
AMPLIACIÓN DE MATEMÁTICAS. DIVISIBILIDAD DE NÚMEROS ENTEROS. En el conjunto de los números enteros
AMPLIACIÓN DE MATEMÁTICAS DIVISIBILIDAD DE NÚMEROS ENTEROS. En el conjunto de los números enteros Z = {..., n,..., 2, 1, 0, 1, 2, 3,..., n, n + 1,...} tenemos definidos una suma y un producto para los
Tema 2: Series numéricas
Tema 2: Series numéricas Una serie infinita (o simplemente serie) es una suma formal de infinitos términos a + a 2 + a 3 + + + Al número se le denomin-ésimo término de la serie Se llama sucesión de sumas
1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido
E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña
CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º
SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) TEMA Ejercicio ( puntos) Dada la función f(x) = a sen(x + π). Hallar el valor de la constante a R sabiendo que f ( π ) = a + Se sabe que
CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º
SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) TEMA Ejercicio ( puntos) Hallar él o los puntos del gráfico de la función para los cuales la recta tangente sea horizontal f(x) = e x 3x
El Teorema de Fubini-Tonelli
Capítulo 23 El Teorema de Fubini-Tonelli Veremos en este capítulo que el cálculo de una integral múltiple se reduce al de integrales simples. Concretamente se va a probar que si f(x, y) es una función
Definición. 1. Se define la función logaritmo (neperiano ) por. ln x =
ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES LOGARITMO Y EXPONENCIAL. A partir de la integral y el Teorema Fundamental del Cálculo podemos definir y demostrar las propiedades de las funciones logaritmo y
Nombre y Apellidos: x (1 + ln(x)) si x > 0 f(x) = 0 si x = 0.
Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Septiembre de Septiembre de 008 Nombre y Apellidos: DNI: (6.5 p.) ) Se considera la función f : [0,
Variable Compleja I ( ) Ejercicios resueltos. Las convergencias puntual y uniforme de sucesiones y series de funciones
Variable Compleja I (205-6) Ejercicios resueltos Las convergencias puntual y uniforme de sucesiones y series de funciones Recordemos la definición de la convergencia uniforme: f n (z) f (z) en un conjunto
Teoremas de convergencia y derivación bajo el signo integral
Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones
Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple
Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.
Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Continuidad
1 Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Continuidad Hasta hace muy poco se creía que una función continua siempre tenía una primera derivada cuyo
AMPLIACIÓN DE MATEMÁTICAS
AMPLIACIÓN DE MATEMÁTICAS RAÍCES MÚLTIPLES. Dado un polinomio con coeficientes en un cuerpo existirá siempre un elemento del cuerpo que anula el polinomio? Siempre existe un cuerpo donde podamos encontrar
10.1. Modelo Opción A
10.1. Modelo 009 - Opción A Problema 10.1.1 (3 puntos) Dados el plano π : x + y z =, la recta: r : x 3 = y 1 = z 5 4 y el punto P (, 3, ), perteneciente al plano π, se pide: 1. (0,5 puntos) Determinar
Resolución numérica de ecuaciones no lineales
Resolución numérica de ecuaciones no lineales Son muchas las situaciones en las que se presenta el problema de obtener las soluciones de ecuaciones de la forma f(x) = 0. En algunos casos existe una fórmula
Cálculo Diferencial en una variable
Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia
El Teorema de la Convergencia Dominada
Capítulo 22 l Teorema de la Convergencia Dominada Los dos teoremas de convergencia básicos en la integración Lebesgue son el teorema de la convergencia monótona (Lema 19.10), que vimos el capítulo y el
Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones
Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará
Análisis Matemático I
Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Matemática Análisis Matemático I Evaluación Final - Agosto de 26. Nombre: Dirección correo electrónico: Ejercicio. Sea f una
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 4 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
CÁLCULO NUMÉRICO I (Tema 2 - Relación 1)
CÁLCULO NUMÉRICO I (Tema - Relación 1) 1 Cuáles de los siguientes algoritmos son finitos? a) Cálculo del producto de dos números enteros. b) Cálculo de la división de dos números enteros. c) Cálculo de
SUCESIONES Y SERIES INFINITAS
de SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Septiembre de 2012 de SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Septiembre de 2012 de Una serie de potencia es aquella que tiene la forma c
DERIVADAS DE FUNCIONES DE VARIAS VARIABLES. Curvas Paramétricas. Dada una curva paramétrica
ANÁLISIS MATEMÁTICO BÁSICO DERIVADAS DE FUNCIONES DE VARIAS VARIABLES Curvas Paramétricas Dada una curva paramétrica γ : [a, b] R R n t γ(t) = (f 1 (t), f 2 (t),, f n (t)), donde las funciones f k : [a,
La pendiente de una línea recta es la variación de y que corresponde a una unidad de variación de x
MEDICINA 2013 -- teórico práctico 04 -- Derivadas Pendiente de una recta-repaso Ya sabemos que las gráficas de las funciones que llamamos tipo ax+b a las que algunos libros llaman lineales son siempre
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
El Teorema de Fubini-Tonelli
Capítulo 26 El Teorema de Fubini-Tonelli Veremos en este capítulo que el cálculo de una integral múltiple se reduce al de integrales simples. Concretamente se va a probar que si f(x, y) es una función
2 Obtener el término general de las siguientes sucesiones definidas por recurrencia: y0 = a > 0
CÁLCULO NUMÉRICO I (Ejercicios Temas 1 y ) 1 Cuáles de los siguientes algoritmos son finitos? (a) Cálculo del producto de dos números enteros. (b) Cálculo de la división de dos números enteros. (c) Cálculo
Veamos ahora el comportamiento de la función parte entera (f(x) = E(x)). Si x se aproxima a 2, a qué valor tiende f(x)?
LÍMITES Y CONTINUIDAD DE FUNCIONES. C O N C E P T O D E L Í M I T E D E U N A F U N C I Ó N E N U N P U N T O Consideremos la función f(x)x², cuya gráfica es una parábola. Si x se aproxima a, a qué valor
AMPLIACIÓN DE MATEMÁTICAS DIVISIBILIDAD DE POLINOMIOS.
AMPLIACIÓN DE MATEMÁTICAS DIVISIBILIDAD DE POLINOMIOS. Ejemplo 1. Dados dos polinomios p, q Z[x] con q mónico se puede dividir p entre q. x 2 + 2x + 1 x + 1 0 x + 1 ; x 2 + 2x + 2 x + 1 1 x + 1 ; 3x2 +
Reconocer y utilizar las propiedades sencillas de la topología métrica.
3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,
PAU: Aplicaciones de la derivada MATEMÁTICAS II 1. 2cos. x 0 x 0
PAU: Aplicaciones de la derivada MATEMÁTICAS II JULIO 0 ESPECÍFICA. Calcule a para que las siguientes funciones: sen a cos f( ) g() tengan el mismo límite en el punto 0. Calculamos cada límite: sen a 0
Opción de examen n o 1
Septiembre-206 PAU Cantabria-Matemáticas II Opción de examen n o. a) Según el enunciado, se tiene: A B = C Ö è Ö è a b 2 c b c a = Ö è 0 Al igualar las matrices obtenidas se llega a: 2 + a + b = 2c + +
Sucesiones y Series Sucesiones
Capítulo 6 Sucesiones y Series 6.. Sucesiones En particular estudiaremos las sucesiones de números reales, es decir, las que verifican la siguiente definición. Definición 6... Llamaremos sucesión a la
Múltiple Opción. Respuestas. Sean {a n } y {b n } dos sucesiones A A D C E. Para cada a R +, el área encerrada A D B C D
Universidad de la República - Facultad de Ingeniería - IMERL Cálculo Solución - Examen 2 de julio de 206 Múltiple Opción Respuestas Sean {a n } y {b n } dos sucesiones... 2 3 4 5 A A D C E Para cada a
3.4 El Teorema de Taylor. Extremos relativos
3.4. EL TEOREMA DE TAYLOR. EXTREMOS RELATIVOS 103 3.4 El Teorema de Taylor. Extremos relativos La derivación está directamente relacionada con la posibilidad de aproximar localmente funciones suficientemente
Grado en Ingeniería en Tecnologías Industriales. Matemáticas II. Examen de Prueba. 1deDiciembrede2011. Curso
Matemáticas II Grado en Ingeniería en Tecnologías Industriales 7 Grado en Ingeniería en Tecnologías Industriales Matemáticas II Examen de Prueba dediciembrede0 Curso 0-0 Ejercicio Sea C la curva situada
MODELO DE EXAMEN MATEMÁTICAS II PRIMERA EVALUACIÓN CURSO 2017/2018
MODELO DE EXAMEN MATEMÁTICAS II PRIMERA EVALUACIÓN CURSO 2017/2018 Límites de funciones. Continuidad Derivadas Aplicaciones de las derivadas Primitiva de una función Integral definida EJERCICIO 1. Dada
INTEGRALES. EL PROBLEMA DEL ÁREA III
INTEGRALES. EL PROBLEMA DEL ÁREA III En esta relación de ejercicios vamos a aplicar el concepto de integral definida para calcular el área limitado por gráficas de funciones. Recuerda que para realizar
INTEGRALES. EL PROBLEMA DEL ÁREA II
INTEGRALES. EL PROBLEMA DEL ÁREA II En esta relación de ejercicios vamos a practicar el cálculo de integral es definidas. Para realizar el cálculo de la integral definida aplicaremos el Teorema Fundamental
METODO DE LA BISECCIÓN Si f : a, b es continua con f a f b 0,el procedimiento de la
METODO DE LA BISECCIÓN Si f : a, b es continua con f a f b,el procedimiento de la bisección genera una sucesión (s n ) n convergente siendo s n a n b n ytal 2 que si lim s n s se cumple que f s y n s n
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio,
Es decir, tenemos una función continua en el intervalo [2, 3] donde signo de f(2) signo de f(3).
TEOREMA DE BOLZANO: Probar que la ecuación x 3-4x - 2 = 0 tiene alguna raíz real, aproximando su valor hasta las décimas. Consideramos la función f(x) = x 3-4x - 2 la cual es continua por ser polinómica.
Cálculo Integral Criterios de convergencia. Universidad Nacional de Colombia
Cálculo Integral Criterios de convergencia Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 205 Criterios de convergencia Cuando estudiamos las
Universidad Carlos III de Madrid
Universidad Carlos III de Madrid Ejercicio 1 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 0 de Enero de 015 APELLIDOS: Duración del Examen: horas NOMBRE: DNI: Titulación:
CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º Cuatrimestre 2017 SEGUNDO TURNO (22/11/2017) TEMA 1
SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 17 SEGUNDO TURNO (/11/17) TEMA 1 Ejercicio 1 ( puntos) Dada la función exponencial f(x) = x 1, determinar el conjunto de negatividad y positividad. Ya que la función
Problemas tipo examen
Problemas tipo examen La división en temas no es exhaustiva. Las referencias (H n- m) indican el problema m de la hoja n y las referencias (A- cd), con A en números romanos indican un examen del mes A
Práctica 8 Series de Fourier
MATEMATICA 4 - Análisis Matemático III Primer Cuatrimestre de 8 Práctica 8 Series de Fourier. (**) a) Verificar que f n (x) = { n si x n si x > n converge uniformemente a cero en R pero que (f n ) no converge
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 201 Capítulo 4 Año 200 4.1. Modelo 200 - Opción A Problema 4.1.1 2 puntos Determinar los valores
TEMA 4 SEGUNDO TURNO (22/11/2017) Ejercicio 1 (2 puntos) Respuesta. Ejercicio 2 (3 puntos) Respuesta. Material de uso exclusivamente didáctico 1
SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 17 SEGUNDO TURNO (/11/17) TEMA 4 Ejercicio 1 ( puntos) Hallar las coordenadas del punto de la gráfica de la función h(x) = ln(x + x + 1) + 5x donde la pendiente
1. Teorema de Fubini. Teorema de Fubini.
1. El teorema de Fubini nos va a dar una técnica para el cálculo de integrales de funciones de varias variables mediante el cálculo de varias integrales de funciones de una variable. partir de ahí se podrán
Métodos Numéricos I. Curso Colección de Problemas Capítulo 3. Ecuaciones no lineales. Iteración funcional HOJA 1
HOJA 1 1. Determinase que la función f(x) = x 3 + 4x 2 10 tiene una única raíz α en I = [1; 2]. Estime teóricamente cuántas iteraciones serán necesarias utilizando el método de bisección, para hallar un
Continuidad. 5.1 Continuidad en un punto
Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos
El Teorema de Stone-Weierstrass
Capítulo 3 El Teorema de Stone-Weierstrass Vamos a ver en esta lección el teorema clásico de Weierstrass y la importante generalización del mismo dada por Stone. El teorema de Weierstrass El teorema de
TEMA 4. Series de potencias
TEMA 4 Series de potencias. Introducción En el tema anterior hemos estudiado la aproximación polinómica local de funciones mediante el polinomio de Taylor correspondiente. En particular, vimos para la
Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación
Tema 8 Ceros de funciones Versión: 23 de abril de 2009 8.1 Introducción Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación f(x) = 0. (8.1) La
