Primer Trabajo Especial

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Primer Trabajo Especial"

Transcripción

1 FIUSAC, Depto. de Matemática, Matemática Aplicada 5N Primer Trabajo Especial Algebra y geometría de complejos Prof. José Saquimux bjetivo Ilustrar el uso del algebra y representaciones gracas de complejos, y sistemas algebraicos por computadora (SAC) en el estudio, análisis y descripción de algunas cantidades y dispositivos electricos ac elementales. Elaboracion y entrega Realizar las actividades solicitadas en grupos de trabajo colaborativo de no más de tres integrantes. Fecha de entrega: Lunes 13/ de marzo / Desarrollo y presentación del reporte Los textos explicativos, fórmulas, grácas, etc. que se requieran; deben crearse, ejecutarse y presentarse en un sistema de algebra computacional (el que preera). Corriente neutral en un sistema trifásico 1. Tres fases en uso, cargas balanceadas La Figura 1 muestra el esquema de un sistema trifásico de corriente alterna Y con neutro aterrizado balanceado, Fase B, I amps B I B Fase A, I amps I A I A Fase C, I amps I A Neutro, 0 amps I A 120 C I C A Figura 1: Tres fases en uso, cargas balanceadas. Las corrientes alternas en cada fase tienen la misma magnitud I y están desfasadas entre sí 120 = 2π/3. i A (t) = I sin(ωt), i B (t) = I sin(ωt + 2π/3), i C (t) = I sin(ωt 2π/3) (1) 1

2 Esas corrientes pueden representarse como fasores (números complejos) y visualizarse como tres vectores de posición (su cola en el origen) y con rotaciones equiangulares entre ellos en el plano complejo, Fig. 1. Ĩ A = I 0, ĨB = I 120. ĨC = I 120 (2) Donde los módulos de los fasores o longitudes de los vectores representan las amplituudes de la corrientes y los argumentos o ángulos de los fasores representan los angulos de desfase de las corrientes en ωt. Si i N (t) denota la corriente neutral, por la ley de corrientes de Kirchho en el nodo, en el tiempo, se cumple, i a (t) + i b (t) + i c (t) + i n (t) = 0 (3) I sin(ωt) + I sin(ωt + 2π/3) + I sin(ωt 2π/3) + i n (t) = 0 (4) Si ĨN denota el fasor de corriente neutral, por la ley de corrientes de Kirchho en el nodo, con fasores, se cumplen las ecuaciones fasoriales, Ĩ A + ĨB + ĨC + ĨN = 0 (5) I 0 + I I I N θ = 0 (6) (Nota: Según el cálculo o gráca, debe decidir si trabaja en modo Deg o Rad) 1. Usando identidades trigonométricas del seno de una suma y resta de ángulos, de la Ecuación (4) muestre que un sistema balanceado i N (t) = Usando SAC, en un mismo sistema de coordenadas graque i A (t), i B (t), i C (t), y i N (t) = (i A (t) + i B (t) + i C (t)) y verique que de la Ecuación (4), i N (t) = 0 (debe gracar con ωt como variable independiente y suponer un valor concreto para I, 2π ωt 2π) 3. Usando operaciones con complejos, de la Ecuación (6) muestre que en un sistema trifásico balanceado, el fasor corriente neutral I N θ = 0 4. Usando SAC para gracar los fasores de corriente y su suma en el plano complejo, de la Ecuación (6) ilustre que I N θ = 0 (suponga un valor concreto para I) 2. Dos fases en uso, cargas balanceadas La Figura 2 muestra el esquema de un sistema trifásico de corriente alterna Y con neutro aterrizado, dos fases en uso y cargas balanceadas, Las corrientes alternas en las fases A y B tienen la misma magnitud I, mientras que la magnitud de la corriente en la fase C gradualmente se aumenta para valores menores que I. i A (t) = I sin(ωt), i B (t) = I sin(ωt + 2π/3), i C (t) = I C sin(ωt 2π/3), con 0 I C < I (7) Esas corrientes se visualizan como fasores en el plano complejo, Fig. 2. Ĩ A = I 0, ĨB = I 120, ĨC = I C 120, con 0 I C < I (8) 2

3 Fase B, 10 amps B I B Fase A, 10 amps 2 A 10 A 4 A 6 A Fase C 10 A 8 A variable 10 A 0 10 amps C varía I C I A A Neutro Figura 2: Dos fases en uso, cargas balanceadas. Por la ley de corrientes de Kirchho en el nodo, en el tiempo, se cumple, i a (t) + i b (t) + i c (t) + i n (t) = 0 (9) I sin(ωt) + I sin(ωt + 2π/3) + I C sin(ωt 2π/3) + i n (t) = 0, con 0 I C < I (10) En forma fasorial se tiene, Ĩ A + ĨB + ĨC + ĨN = 0 (11) I 0 + I I C I N θ = 0, con 0 I C < I (12) 1. Usando identidades trigonométricas del seno de una suma y resta de ángulos, de la Ecuación (10) muestre que un sistema no balanceado i N (t) 0, cuando 0 I C < I. 2. Suponga I = 10 y valores de I C en 0 I C < 10. Usando SAC (en modo dinámico o con deslizadores), en un mismo sistema de coordenadas graque i A (t), i B (t), i C (t), y i N (t) = (i A (t) + i B (t) + i C (t)), describa la variación y determine el intervalo de variación de la amplitud de i N (t) al variar I C en el intervalo indicado. Determine si varia su ángulo de desfase de I N y que valor toma aproximadamente (debe gracar con ωt como variable independiente, 2π ωt 2π) 3. Suponga I = 10 y 0 I C < 10. Usanso SAC (elaborando tabla de valores) a partir de la Ecuación (12) I N θ = (I 0 + I I C 120 ); con 0 I C < I determine algunos valores que toma la amplitud de I N (use comando abs) y su fase (use comando arg), al variar I C en el intervalo indicado. Haga las grácas de abs(i N ) en función de I C y arg(i N ) en función de I C. 4. Usando SAC para gracar los fasores de corriente (vectores) y su suma en el plano complejo, de la Ecuación (6) ilustre grácamente las variaciones de I C 120 e I N θ 3

4 2. Dos fases en uso, cargas no balanceadas La Figura 3 muestra el esquema de un sistema trifásico de corriente alterna Y con neutro aterrizado y dos fases en uso y cargas no balanceadas, Fase B, 10 amps B I B Fase A, 0 amps Fase C variable 0 10 amps varía 10 A 2 A 4 A 6 A 8 A 10 A C I C Neutro Figura 3: Dos fases en uso, cargas no balanceadas. La magnitud de la corrientes en la fase B es de 10 amps. La corriente en la fase A es cero, mientras que la magnitud de la corriente en la fase C gradualmente se aumenta para valores en 0 I C < 10. i A (t) = 0, i B (t) = 10 sin(ωt + 2π/3), i C (t) = I C sin(ωt 2π/3), con 0 I C < 10 (13) Esas corrientes se visualizan como fasores en el plano complejo, Fig. 3. Ĩ A = 0, ĨB = , ĨC = I C 120, con 0 I C < 10 (14) Por la ley de corrientes de Kirchho en el nodo, en el tiempo, se cumple, i b (t) + i c (t) + i n (t) = 0 (15) En forma fasorial se tiene, 10 sin(ωt ) + I C sin(ωt 120 ) + i n (t) = 0, con 0 I C < 10 (16) Ĩ B + ĨC + ĨN = 0 (17) I C I N θ = 0, con 0 I C < 10 (18) 1. Usando identidades trigonométricas del seno de una suma y resta de ángulos, de la Ecuación (16) determine la expresión de i N (t), cuando 0 I C < 10. 4

5 2. Suponga I B = 10 y valores de I C en 0 I C < 10. Usando SAC (en modo dinámico o con deslizadores), en un mismo sistema de coordenadas graque i B (t), i C (t), y i N (t) = (i B (t) + i C (t)), describa la variación y determine el intervalo de variación de la amplitud de i N (t) al variar I C en el intervalo indicado. Determine si varia su ángulo de desfase de I N y qué valores toman aproximadamente (debe gracar con ωt como variable independiente 2π ωt 2π) 3. Suponga I B = 10 y 0 I C < 10. Usanso SAC (elaborando tabla de valores) a partir de la Ecuación (18) I N θ = ( I C 120 ); con 0 I C < I determine algunos valores de I C, y determine el menor valor que toma I N. (varíe I C de 10 en 10) 4. Usando SAC para gracar los fasores de corriente y su suma en el plano complejo, de la Ecuación (6) ilustre grácamente las variaciones de I C 120 e I N θ. 5. Suponga I A = 3, I B = 10 y 0 I C < 10. Usanso SAC (elaborando tabla de valores) a partir de la ecuación I N θ = ( I C 120 ); con 0 I C < I determine algunos valores de I C, y determine el menor valor que toma I N. 6. Suponga I A = 8, I B = 10 y 0 I C < 10. Usanso SAC (elaborando tabla de valores) a partir de la ecuación I N θ = ( I C 120 ); con 0 I C < I determine algunos valores de I C, y determine el menor valor que toma I N. 3. Sistema trifásico no balanceado operando a diferentes factores de potencia En los anteriores problemas hemos supuesto que los águnos de desfase de corrientes eran 0, 120 y 120, en este caso se dice que los factores de potencia de las cargas por fase son iguales a 1. En la practica los factores de potencia no son iguales a 1, es decir los ángulos de desfase entre ellas no es igual a 120. Suponga un sistema trifásico no balanceado con factores de potencia no iguales a 1, (el desfase entre ellas no es 120.) i A (t) = 4 cos(ωt 10π/180), i B (t) = 10 cos(ωt + 125π/180), i C (t) = I C cos(ωt 100π/180) (19) con 0 I C Suponga que I C en 0 I C < 12. Usando SAC (en modo dinámico o con deslizadores), en un mismo sistema de coordenadas graque i A (t), i B (t), i C (t), y i N (t) = (i A (t) + i B (t) + i C (t)), describa la variación y determine el intervalo de variación de la amplitud de i N (t) al variar I C en el intervalo indicado. Determine si varia su ángulo de desfase de I N y qué valores toman aproximadamente (debe gracar con ωt como variable independiente 2π ωt 2π) 2. Suponga que 0 I C < 12. Usanso SAC (elaborando tabla de valores) a partir de la Ecuación (18) I N θ = ( I C 100 ); con 0 I C < 10 determine algunos valores de I C, y determine el menor valor que toma I N. 5

6 Diagrama fasorial de una línea de transmisión corta La Figura 4 muestra el circuito equivalente de una línea corta (menos de 80 Kms. aproximadamente, a 60 Hz) de transporte de transmisión de energia eléctrica, donde I S e I R son, respectivamente, las corrientes en los extremos transmisor y receptor y V S y V R las tensiones entre fase y neutro en esos mismos puntos. + R jωl + Generador V V S V R Carga I S I R Figura 4: Circuito equivalente de una línea de transporte corta. Puesto que I S = I R, tomando V R como fasor de referencia, y suponiendo la corriente en extremo receptor I R θ, la tensión en el extremo distribuidor es, V S = V R + I R θz (20) donde X = ωl, V S = V R + I R θ(r + jωl) (21) V S = V R + RI R θ + jxi R θ (22) Suponiendo la corriente en el extremo receptor en retraso, un diagrama fasorial correspondiente a la Ecuación (22) se ilustra en la Figura 5. Figura 5: Diagrama fasorial de una línea corta. 6

7 Suponga los siguientes valores ideales: V R = 8, I R = 4, R = 1/2, X = 1 y θ variable en el intervalo 90 θ Usando la Ecuación (22), elabore una tabla de valores numéricos que presente valores de: θ, V S y V S, cuando θ varía en 90 θ 90, tomando valores de 10 en Usando sus valores encontrados, haga las grácas de V S y V S en función de θ. 3. Usando GeoGebra u otro software, elabore el diagrama fasorial de la Ecuación (22) con los datos proporcionados, similar al de la Figura 5. Su diagrama debe ser dinámico e interactivo, que permita visualizar los lugares geométricos de la corriente I R θ y V S (los semicirculos que generan las puntas de los fasores al variar θ, en intervalo indicado). Debe presentar copias cuando: θ = 90, 90 < θ < 0, θ = 0, 0 < θ < 90 y θ = De los valores calculados y grácas, determine los valores de θ que hacen que V S tome su menor y mayor valor. Referencias Grainger, J., Stevenson, W. (1996) Análisis de sistemas de potencia. México. McGraw Hill- Interamericana de México, S.A. 3. McPartland, J. F.(1970) How to make electrical calculations. New York. USA. Publilshed by Electrical Construction and Maintecance. MacGraw-Hill Publication. 4. Saadat, H. (1999) Power System Analysis. WCB/McGraw-Hill. USA - 7

Conceptos básicos Sistemas trifásicos balanceados

Conceptos básicos Sistemas trifásicos balanceados Introducción menudo, se estudian redes o circuitos lineales de corriente directa (DC) con fuentes de valor constantes, los cuales tienen una amplia aplicación en el campo de la electrónica, puesto que

Más detalles

CORRIENTE ALTERNA. Onda senoidal:

CORRIENTE ALTERNA. Onda senoidal: CORRIENTE ALTERNA Onda senoidal: En corriente alterna, la tensión varía continuamente en el tiempo, tomando valores positivos y negativos. La forma más común de corriente alterna es la senoidal. Se debe

Más detalles

ELECTROTECNIA Circuitos de Corriente Alterna

ELECTROTECNIA Circuitos de Corriente Alterna ELECTROTECNIA Circuitos de Corriente Alterna Juan Guillermo Valenzuela Hernández (jgvalenzuela@utp.edu.co) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan Valenzuela 1 Elementos de circuitos

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA

UNIVERSIDAD NACIONAL DEL SANTA UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 3 CURSO: SISTEMAS ELECTRICOS DE POTENCIA PROFESOR : MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA INGENIERO MECANICO ELECTRICISTA

Más detalles

Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA

Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA 2016 Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA Concepto de corriente alterna Generación de c.a. ondas sinusoidales valores característicos magnitudes fasoriales Ing. Rodríguez, Diego 01/01/2016 INTRODUCCIO

Más detalles

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.

En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía

Más detalles

Circuitos Eléctricos Trifásicos. Introducción.

Circuitos Eléctricos Trifásicos. Introducción. Circuitos Eléctricos Trifásicos. Introducción. La mayor parte de la generación, transmisión, distribución y utilización de la energía eléctrica se efectúa por medio de sistemas polifásicos; por razones

Más detalles

Aplicando la identidad trigonometrica en la expresión anterior:

Aplicando la identidad trigonometrica en la expresión anterior: UNIDAD 1: Fundamentos de los Sistemas Electicos de Potencia 1. Potencia en Circuitos de Corriente Alterna (C.A): La potencia es la rapidez con la cual se transforma la energía electrica en cualquier otro

Más detalles

Laboratorio de Simulación. Trimestre 08P Grupo CC03A Pablo Lonngi. Lección 4

Laboratorio de Simulación. Trimestre 08P Grupo CC03A Pablo Lonngi. Lección 4 Laboratorio de Simulación Trimestre 08P Grupo CC03A Pablo Lonngi Lección 4 Números Complejos. IIª parte. Representación polar de un complejo En la forma polar, llamada también forma trigonométrica, un

Más detalles

Calidad en el Servicio Eléctrico

Calidad en el Servicio Eléctrico magnitud de -Cargas y no David Llanos Rodríguez dllanosr@eia.udg.es Girona, Febrero 18 de 2003 magnitud de -Cargas y no Introducción: Uso racional de la energía eléctrica quiere decir obtener el máximo

Más detalles

SISTEMAS ELÉCTRICOS DE POTENCIA

SISTEMAS ELÉCTRICOS DE POTENCIA SISTEMAS ELÉCTRICOS DE POTENCIA Por: César Chilet 1. Conceptos de sistemas de potencia 1 1.1 INTRODUCCIÓN 2 Esquema de unidas basica SE 3 Sistema de potencia Es un conjunto de centrales eléctricas, transformadores,

Más detalles

TEORÍA DE LOS CIRCUITOS I Araguás & Perez Paina. Guia 5. Fasores

TEORÍA DE LOS CIRCUITOS I Araguás & Perez Paina. Guia 5. Fasores Guia 5. Fasores 1. Utilizando el metodo fasorial, encontrar la respuesta de estado estable de la tensión en el capacitor v C (t) del circuito de la figura 1. i(t) = 10cos(4t)[A] 4Ω 0,25F v C (t) Figura

Más detalles

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica PROBLEMA Nº 2 La ecuación de una onda armónica transversal que avanza por una cuerda es: y = [6 sen (0,01x + 1,8t)]cm.

Más detalles

Universidad de Costa Rica Escuela de ingeniería Eléctrica Programa del curso. IE0309: Circuitos Lineales II II-2016

Universidad de Costa Rica Escuela de ingeniería Eléctrica Programa del curso. IE0309: Circuitos Lineales II II-2016 Universidad de Costa Rica Escuela de ingeniería Eléctrica Programa del curso IE0309: Circuitos Lineales II II-2016 Sede Rodrigo Facio Grupo: 01, Aula: 208 IE Horario: L: 09:00 a 10:50, J: 09:00 a 10:50

Más detalles

PROGRAMA DE CURSO. Conversión de la Energía y Sistemas Eléctricos Nombre en Inglés Energy Conversion and Power Systems SCT

PROGRAMA DE CURSO. Conversión de la Energía y Sistemas Eléctricos Nombre en Inglés Energy Conversion and Power Systems SCT Código Nombre PROGRAMA DE CURSO EL 4001 Conversión de la Energía y Sistemas Eléctricos Nombre en Inglés Energy Conversion and Power Systems SCT Unidades Horas de Horas Docencia Horas de Trabajo Docentes

Más detalles

Sistemas Trifásicos. Departamento de Ingeniería Eléctrica UNEFA Maracay Redes Eléctricas II Chrystian Roa

Sistemas Trifásicos. Departamento de Ingeniería Eléctrica UNEFA Maracay Redes Eléctricas II Chrystian Roa Generador trifásico Secuencia de fases. Conexiones: estrella, delta. Carga trifásica. Estudio y resolución de sistemas en desequilibrio. Modelo equivalente monofásico. Estudio y resolución de sistemas

Más detalles

2. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces y la potencia.

2. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces y la potencia. CIDEAD. º BACHILLERATO. ELECTROTECNIA. Desarrollo del tema.. Concepto de elementos. Excitación sinusoidal.. Circuito resistivo. Los valores eficaces y la potencia. 3. Circuito inductivo. Los valores eficaces

Más detalles

En un circuito de CA los generadores suministran energía que es absorbida por los elementos pasivos (R, L y C). Esta energía absorbida puede:

En un circuito de CA los generadores suministran energía que es absorbida por los elementos pasivos (R, L y C). Esta energía absorbida puede: www.clasesalacarta.com 1 Elementos Lineales Tema 7.- CA Elementos Lineales Cuando se aplica una tensión alterna con forma de onda senoidal a los bornes de un receptor eléctrico, circula por él una corriente

Más detalles

VOLTAJE Y CORRIENTE ALTERNA CA

VOLTAJE Y CORRIENTE ALTERNA CA LECCIÓN Nº 05 VOLTAJE Y CORRIENTE ALTERNA CA 1. GENERALIDADES Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica

Más detalles

Análisis Senoidal Permanente de Circuitos Trifásicos Balanceados y Desbalanceados

Análisis Senoidal Permanente de Circuitos Trifásicos Balanceados y Desbalanceados Análisis Senoidal Permanente de Circuitos Trifásicos Balanceados y Desbalanceados Objetivo Analizar circuitos trifásicos balanceados y desbalanceados mediante el empleo del simulador PSpice. Primero se

Más detalles

Contenidos IB-Test Matemática NM 2014.

Contenidos IB-Test Matemática NM 2014. REDLAND SCHOOL MATHEMATICS DEPARTMENT 3 MEDIO NM 1.- Estadística y probabilidad. Contenidos IB-Test Matemática NM 2014. 1.1.- Conceptos de población, muestra, muestra aleatoria, y datos discretos y continuos.

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

CORRIENTE ALTERNA CORRIENTE ALTERNA

CORRIENTE ALTERNA CORRIENTE ALTERNA CORRIENTE ALTERNA La corriente alterna es generada por un alternador, las fuerzas mecánicas hacen girar una rueda polar y se obtienen tensiones inducidas en los conductores fijos del estator que la envían

Más detalles

Números Complejos. Contenido. Definición

Números Complejos. Contenido. Definición U Contenido Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Números Complejos William La Cruz Números Complejos...3

Más detalles

Circuitos de corriente alterna

Circuitos de corriente alterna Circuitos de corriente alterna Área Física Resultados de aprendizaje Calcular la corriente, frecuencia y otras magnitudes en circuitos de corriente alterna, como el RLC. Contenidos. Introducción teórica.

Más detalles

Práctica 5: Ondas electromagnéticas planas en medios dieléctricos

Práctica 5: Ondas electromagnéticas planas en medios dieléctricos Práctica 5: Ondas electromagnéticas planas en medios dieléctricos OBJETIVO Esta práctica de laboratorio se divide en dos partes principales. El primer apartado corresponde a la comprobación experimental

Más detalles

Funciones Trigonométricas

Funciones Trigonométricas UNIVERSIDAD LA REPÚBLICA ESCUELA DE INGENIERÍA FUNDAMENTOS DE LA MATEMÁTICA PROF. FRANCISCA GONZÁLEZ AY. GABRIEL SORIA TRABAJO: Funciones Trigonométricas FECHA: 22 de septiembre de 1999 INTEGRANTES: CARLOS

Más detalles

Números Complejos. Prof. Johnny Rengifo

Números Complejos. Prof. Johnny Rengifo Números Complejos Prof. Johnny Rengifo 22 de octubre de 2010 Capítulo 1 Números Complejos Existen muchas ecuaciones cuadráticas que no tienen solución en los números reales (R). Por ejemplo x 2 + 1 = 0

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

LA CORRIENTE ALTERNA

LA CORRIENTE ALTERNA LA CORRIENTE ALTERNA Índice INTRODUCCIÓN VENTAJAS DE LA C.A. PRODUCCIÓN DE UNA C.A. VALORES CARACTERÍSTICOS DE C.A. REPRESENTACIÓN DE UNA MAGNITUD ALTERNA SENOIDAL DESFASE ENTRE MAGNITUDES ALTERNAS RECEPTORES

Más detalles

MEDIDA DE POTENCIA EN TRIFÁSICA MÉTODO DE LOS DOS VATÍMETROS

MEDIDA DE POTENCIA EN TRIFÁSICA MÉTODO DE LOS DOS VATÍMETROS Práctica Nº 6 MEDID DE POTENI EN TRIFÁSI MÉTODO DE OS DOS VTÍMETROS 1. Objetivos a) Medida de la potencia activa, reactiva y el factor de potencia, en una red trifásica a tres hilos (sin neutro), utilizando

Más detalles

Procesos transitorios y frecuencia compleja

Procesos transitorios y frecuencia compleja Procesos transitorios y frecuencia compleja Objetivos 1. Comprender y familiarizarse con los procesos transitorios en circuitos de primer orden estimulados con corriente alterna, aplicando el método clásico

Más detalles

Análisis de circuitos trifásicos. Primera parte

Análisis de circuitos trifásicos. Primera parte Análisis de circuitos trifásicos. Primera parte Objetivos 1. Mencionar el principio de funcionamiento de los generadores trifásicos. 2. Establecer los tipos básicos de conexiones de circuitos trifásicos

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores El análisis de potencia es de suma importancia. La potencia es la cantidad más relevante en sistemas de suministro de electricidad,

Más detalles

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática. Álgebra Geometría Analítica Prof. Gisela Saslavsk Vectores en R en R 3. Rectas planos en el espacio Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..

Más detalles

GRADO EN INGENIERÍA EN TECNOLOGÍAS DE LA TELECOMUNICACIÓN. Asignatura: Electrónica de Potencia. Práctica 1

GRADO EN INGENIERÍA EN TECNOLOGÍAS DE LA TELECOMUNICACIÓN. Asignatura: Electrónica de Potencia. Práctica 1 GRADO EN INGENIERÍA EN TECNOLOGÍAS DE LA TELECOMUNICACIÓN Asignatura: Electrónica de Potencia Práctica 1 Introducción al Matlab/SIMULINK y análisis de potencia 1.- OBJETIVOS. Primera aproximación al entorno

Más detalles

INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-3 CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL

INACAP ELECTRICIDAD 2 GUIA DE APRENDIZAJE UNIDAD-3 CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL INACAP ELECTRICIDAD 2 GUIA DE APRENDIAJE UNIDAD-3 CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL CIRCUITOS ALTERNOS MONOFASICOS EN REGIMEN PERMANENTE SINUSOIDAL La aplicación de una tensión

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

SYLLABUS EE-112 ANÁLISIS DE CIRCUITOS ELÉCTRICOS II

SYLLABUS EE-112 ANÁLISIS DE CIRCUITOS ELÉCTRICOS II UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA (Aprobado en Consejo de Facultad en Sesión Extraordinaria Nº 14-00 del 07/08/2001)

Más detalles

Álgebra Lineal III: Planos y Líneas. Problemas Resueltos.

Álgebra Lineal III: Planos y Líneas. Problemas Resueltos. Álgebra Lineal III: Planos y Líneas. Problemas Resueltos. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato

Más detalles

U D I - I n g e n i e r í a E l é c t r i c a

U D I - I n g e n i e r í a E l é c t r i c a UNIVERSIDAD AUTÓNOMA DE ZACATECAS Francisco García Salinas ÁREA DE INGENIERÍAS Y TECNOLOGICAS UNIDAD ACADÉMICA DE INGENIERÍA I PROGRAMA DE INGENIERÍA MECÁNICA U D I I n g e n i e r í a E l é c t r i c

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que

Más detalles

VECTORES 1.2 CONCEPTOS Y DEFINICIONES FUNDAMENTALES. En este capítulo estudiaremos los vectores y su álgebra.

VECTORES 1.2 CONCEPTOS Y DEFINICIONES FUNDAMENTALES. En este capítulo estudiaremos los vectores y su álgebra. CAPITULO I CALCULO II VECTORES 1.1 INTRODUCCIÓN Los vectores son un auxiliar utilísimo para la geometría del espacio. En esta unidad partiendo de lo que ya se sabe de vectores en el plano, se contemplan

Más detalles

Carrera: ELC Participantes Representante de las academias de ingeniería eléctrica de los Institutos Tecnológicos.

Carrera: ELC Participantes Representante de las academias de ingeniería eléctrica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Sistemas Eléctricos de Potencia I. Ingeniería Eléctrica ELC-0534 4-2-10 2.- HISTORIA

Más detalles

de diseño CAPÍTULO 4. Métodos de análisis de los circuitos resistivos 4.1. Reto de diseño: Indicación del ángulo de un potenciómetro 4.2. Circuitos el

de diseño CAPÍTULO 4. Métodos de análisis de los circuitos resistivos 4.1. Reto de diseño: Indicación del ángulo de un potenciómetro 4.2. Circuitos el CAPÍTULO 1. VARIABLES DEL CIRCUITO ELÉCTRICO 1.1. Reto de diseño: Controlador de una válvula para tobera 1.2. Albores de la ciencia eléctrica 1.3. Circuitos eléctricos y flujo de corriente 1.4. Sistemas

Más detalles

GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA

GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA GUIA DE PROBLEMAS CIRCUITOA ELECTRICOS MODULO CORRIENTE ALTERNA 1. Un circuito serie de corriente alterna consta de una resistencia R de 200 una autoinducción de 0,3 H y un condensador de 10 F. Si el generador

Más detalles

Números Complejos y DFFT. Ing. Abel Augusto Durand Loaiza IBEROTEC. 05 de Diciembre de 2016

Números Complejos y DFFT. Ing. Abel Augusto Durand Loaiza IBEROTEC. 05 de Diciembre de 2016 Números Complejos y DFFT 1 Números Complejos y DFFT Ing. Abel Augusto Durand Loaiza IBEROTEC 05 de Diciembre de 2016 Números Complejos y DFFT 2 Resumen La presente guía didáctica comprende una aproximación

Más detalles

Tema 2.- Análisis de circuitos de corriente alterna

Tema 2.- Análisis de circuitos de corriente alterna Tema.- Análisis de circuitos de corriente alterna.1 ntroducción En el tema anterior se ha supuesto que los generadores suministran una diferencia de potencial entre sus extremos que no varia en el tiempo.

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Diseño de Líneas de Transmisión. Tema: Momento eléctrico. GUÍA 4 Pág. 1 I. OBJETIVOS.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Diseño de Líneas de Transmisión. Tema: Momento eléctrico. GUÍA 4 Pág. 1 I. OBJETIVOS. Tema: Momento eléctrico. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Diseño de Líneas de Transmisión. I. OBJETIVOS. Determinar el porcentaje de regulación en una línea de transporte de energía.

Más detalles

PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. PRIMERA PARTE

PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. PRIMERA PARTE PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. PRIMERA PARTE GRADO EN INGENIERÍA ELÉCTRICA GRADO EN INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA GRADO EN INGENIERÍA MECÁNICA GRADO EN INGENIERÍA QUÍMICA

Más detalles

son dos elementos de Rⁿ, definimos su suma, denotada por

son dos elementos de Rⁿ, definimos su suma, denotada por 1.1 Definición de un vector en R², R³ y su Interpretación geométrica. 1.2 Introducción a los campos escalares y vectoriales. 1.3 La geometría de las operaciones vectoriales. 1.4 Operaciones con vectores

Más detalles

Práctico Inversores. Electrónica de Potencia. Curso (Examen de Electrónica de Potencia 1-23 de febrero de 1996)

Práctico Inversores. Electrónica de Potencia. Curso (Examen de Electrónica de Potencia 1-23 de febrero de 1996) Práctico Inversores Electrónica de Potencia Curso 2016 Ejercicio 1 (Examen de Electrónica de Potencia 1-23 de febrero de 1996) Sea un inversor trifásico de tensión (VSI) compuesto por sus tres ramas inversoras

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS. Ingeniería y Ciencias Exactas 2015.

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS. Ingeniería y Ciencias Exactas 2015. BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS Ingeniería y Ciencias Exactas 2015. 1 ÁREA DE INGENIERIAS Y CIENCIAS EXACTAS INTRODUCCIÓN El propósito

Más detalles

ELT-2510 CIRCUITOS ELÉCTRICOS II GESTIÓN 2010 DOCENTE: ING. OSCAR W. ANAVE LEÓN LABORATORIO NO. 2 APLICACIÓN DE DIAGRAMAS FASORIALES TRIFÁSICOS A LA

ELT-2510 CIRCUITOS ELÉCTRICOS II GESTIÓN 2010 DOCENTE: ING. OSCAR W. ANAVE LEÓN LABORATORIO NO. 2 APLICACIÓN DE DIAGRAMAS FASORIALES TRIFÁSICOS A LA LABORATORIO NO. 2 APLICACIÓN DE DIAGRAMAS FASORIALES TRIFÁSICOS A LA CONEXIÓN DE TRANSFORMADORES TRIFÁSICOS 2.1. OBJETIVO DEL LABORATORIO. 2.1.1. OBJETIVO GENERAL. Aplicar características de los Diagramas

Más detalles

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA R. Artacho Dpto. de Física y Química ÍNDICE 1. Áreas y volúmenes de figuras geométricas. Funciones trigonométricas 3. Productos de vectores

Más detalles

ELECTROTECNIA 2º B.S. PROF. DIEGO C. GIMÉNEZ INST. SAN PABLO - LUJAN -

ELECTROTECNIA 2º B.S. PROF. DIEGO C. GIMÉNEZ INST. SAN PABLO - LUJAN - ELECTROTECNIA º B.S. PROF. DIEGO C. GIMÉNE PAG. MODULO Nº 3 CIRCUITOS R-L EN CORRIENTE ALTERNA Conexión en serie Sean dos bobinas con las resistencias R y R y los coeficiente de autoinducción L y L conectadas

Más detalles

Laboratorio Problemas introductorios Circuitos en corriente continua

Laboratorio Problemas introductorios Circuitos en corriente continua Laboratorio 66.02 Problemas introductorios Circuitos en corriente continua 1) Para el circuito de la figura, determine: a) Tensión en cada componente. b) Corriente en cada componente. c) Resistencia equivalente.

Más detalles

INDICE Capitulo 1. Variables y Leyes de Circuitos 1.1. Corriente, Voltaje y Potencia 1.2. Fuentes y Cargas (1.1) 1.3. Ley de Ohm y Resistores (1.

INDICE Capitulo 1. Variables y Leyes de Circuitos 1.1. Corriente, Voltaje y Potencia 1.2. Fuentes y Cargas (1.1) 1.3. Ley de Ohm y Resistores (1. INDICE Capitulo 1. Variables y Leyes de Circuitos 1 1.1. Corriente, Voltaje y Potencia 3 Carga y corriente * Energía y voltaje * Potencia eléctrica * Prefijos de magnitud 1.2. Fuentes y Cargas (1.1) 11

Más detalles

2 OBJETIVOS TERMINALES Como resultado de aprender adecuadamente los contenidos del curso el estudiante estará en capacidad de:

2 OBJETIVOS TERMINALES Como resultado de aprender adecuadamente los contenidos del curso el estudiante estará en capacidad de: MATERIA: Matemáticas para el diseño CÓDIGO: 08287 REQUISITOS: Algebra y funciones (08272) PROGRAMAS: Diseño Industrial, Diseño de Medios Interactivos. PERÍODO ACADÉMICO: 2016-2 INTENSIDAD SEMANAL: 4 Horas

Más detalles

CORRIENTE ALTERNA. Fasor tensión Vm. Por supuesto, en forma análoga podrá escribirse la expresión de la transformada de la intensidad comoi

CORRIENTE ALTERNA. Fasor tensión Vm. Por supuesto, en forma análoga podrá escribirse la expresión de la transformada de la intensidad comoi CORRENTE ALTERNA 1 1) Dominio de la frecuencia y ecuaciones transformadas Sea una tensión senoidal del tipo v( t) = V$ cos( ωt+ ϕ ). En virtud de la ecuación de Euler, la anterior expresión puede ser escrita

Más detalles

CORRIENTE ALTERNA. Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados.

CORRIENTE ALTERNA. Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados. CORRIENTE ALTERNA Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados. Generalidades sobre la c. alterna. Respuesta de los elementos pasivos básicos

Más detalles

VECTORES Y OPERACIONES CON VECTORES

VECTORES Y OPERACIONES CON VECTORES BOLILLA 2 Sistema de Coordenadas VECTORES Y OPERACIONES CON VECTORES Un sistema de coordenadas permite ubicar cualquier punto en el espacio. Un sistema de coordenadas consta de: Un punto fijo de referencia

Más detalles

1. Conjuntos de números

1. Conjuntos de números 1.2. Números complejos 1.2.1. FORMA BINÓMICA Números complejos en forma binómica Se llama número complejo a cualquier expresión de la forma z = x + yi donde x e y son números reales cualesquiera e i =

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS 1 ÁREA DE INGENIERIAS Y CIENCIAS EXACTAS INTRODUCCIÓN El propósito de este temario es proveer información

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS. Ingeniería y Ciencias Exactas 2013.

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS. Ingeniería y Ciencias Exactas 2013. BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS Ingeniería y Ciencias Exactas 2013. 1 ÁREA DE INGENIERIAS Y CIENCIAS EXACTAS INTRODUCCIÓN El propósito

Más detalles

RESOLUCIÓN DE CIRCUITOS CON IMPEDANCIAS EN SERIE

RESOLUCIÓN DE CIRCUITOS CON IMPEDANCIAS EN SERIE 6.5.3.- RESOLCÓN DE CRCTOS CON MPEDNCS EN SERE Supongamos un circuito con tres elementos pasivos en serie, al cual le aplicamos una intensidad alterna senoidal, vamos a calcular la tensión en los bornes

Más detalles

.En nuestro aprendizaje de aritmética tratamos con números reales, tales como 3, -5, 7

.En nuestro aprendizaje de aritmética tratamos con números reales, tales como 3, -5, 7 .En nuestro aprendizaje de aritmética tratamos con números reales, tales como 3, -5, 7 4,Π, etc., los cuales pueden usarse para medir distancias en una u otra dirección desde un punto fijo. Un número tal

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

TEXTO: CIRCUITOS ELECTRICOS II, UN NUEVO ENFOQUE

TEXTO: CIRCUITOS ELECTRICOS II, UN NUEVO ENFOQUE UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA INSTITUTO DE INVESTIGACIÓN INFORME FINAL DE TRABAJO DE INVESTIGACIÓN TEXTO: CIRCUITOS ELECTRICOS II, UN NUEVO ENFOQUE AUTOR:

Más detalles

Resonancia en Circuito RLC en Serie AC

Resonancia en Circuito RLC en Serie AC Laboratorio 5 Resonancia en Circuito RLC en Serie AC 5.1 Objetivos 1. Determinar las caracteristicas de un circuito resonante RLC en serie. 2. Construir las curvas de corriente, voltaje capacitivo e inductivo

Más detalles

INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos

INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos INDICE Capitulo 1. Variables del Circuito Eléctrico 1 1.1. Albores de la ciencia eléctrica 2 1.2. Circuitos eléctricos y flujo de corriente 10 1.3. Sistemas de unidades 16 1.4. Voltaje 18 1.5. Potencia

Más detalles

El número real y complejo

El número real y complejo El número real y complejo Dpto. Matemática Aplicada Universidad de Málaga Sistema de números reales Números naturales N = {0,1,2,3,...} Números enteros Z = {..., 3, 2, 1,0,1,2,3,...} { } p Números racionales

Más detalles

UNIVERSIDAD DE COSTA RICA. Facultad de Ingeniería. Escuela de Ingeniería Eléctrica. Laboratorio de Electrotecnia I - IE0303

UNIVERSIDAD DE COSTA RICA. Facultad de Ingeniería. Escuela de Ingeniería Eléctrica. Laboratorio de Electrotecnia I - IE0303 UNIVERSIDAD DE COSTA RICA Facultad de Ingeniería Escuela de Ingeniería Eléctrica Laboratorio de Electrotecnia I - IE0303 Reporte 2: Ángulo de Fase, Potencia y Fasores, Circuitos Trifásicos y Potencia Trifásica

Más detalles

Asignaturas antecedentes y subsecuentes

Asignaturas antecedentes y subsecuentes PROGRAMA DE ESTUDIOS CIRCUITOS ELÉCTRICOS Área a la que pertenece: Área de Formación Integral Profesional Horas teóricas: 3 Horas prácticas: 3 Créditos: 9 Clave: F0120 Asignaturas antecedentes y subsecuentes

Más detalles

TRABAJO COLABORATIVO III (Guía de Ejercicios)

TRABAJO COLABORATIVO III (Guía de Ejercicios) TRABAJO COLABORATIVO III (Guía de Ejercicios) CIRCUITOS DE CORRIENTE ALTERNA La actividad se divide en dos partes: Evaluación Grupal y Evaluación Individual. Generalidades Evaluación Grupal: (1) La guía

Más detalles

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo

9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo PROBLEMAS DE CIRCUITOS EN CORRIENTE ALTERNA 25. Una fuente de voltaje senoidal, de amplitud Vm = 200 V y frecuencia f=500 Hz toma el valor v(t)=100 V para t=0. Determinar la dependencia del voltaje en

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBS DE CCESO L UNIERSIDD L.O.G.S.E CURSO 2004-2005 - CONOCTORI: ELECTROTECNI EL LUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS

CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS CIRCUITO R-L-C CONECTADO EN SERIE. Debido a que la impedancia (Z) es un termino general que se puede referir a una resistencia, una reactancia o combinación

Más detalles

LINEAS DE TRANSMISIÓN CAPACITANCIA SUSANIBAR CELEDONIO, GENARO

LINEAS DE TRANSMISIÓN CAPACITANCIA SUSANIBAR CELEDONIO, GENARO LINEAS DE TRANSMISIÓN CAPACITANCIA SUSANIBAR CELEDONIO, GENARO Introducción La capacitancia es el resultado de la diferencia de potencial entre los conductores y origina que ellos se carguen de la misma

Más detalles

Circuitos de Corriente. Alterna. Fundamentos Físicos y Tecnológicos de la Informática

Circuitos de Corriente. Alterna. Fundamentos Físicos y Tecnológicos de la Informática Fundamentos Físicos y Tecnológicos de la Informática ircuitos de orriente - Tensión y corriente alterna. Funciones sinusoidales. Valores medio y eficaz. - Relación tensión corriente en los elementos de

Más detalles

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / 2016 Materia: ELECTROTECNIA 1. COMENTARIOS Y/O ACOTACIONES RESPECTO AL TEMARIO EN RELACIÓN CON LA PAU: Indicaciones

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo

Más detalles

Planificación General: Líneas de Transmisión I

Planificación General: Líneas de Transmisión I ELC-30714 Líneas de Transmisión I : Líneas de Transmisión I Prof. Francisco M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/lt.htm 1. Descripción del Curso y Objetivos Este curso

Más detalles

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA www.ceduvirt.com CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA EJEMPLO 1: Cinco ciclos de una señal ocurren en un tiempo de 25 msg. Hallar el periodo y la frecuencia. Solución Si

Más detalles

Calidad en el Servicio Eléctrico

Calidad en el Servicio Eléctrico balanceados, David Llanos Rodríguez dllanosr@eia.udg.es Girona, Febrero 20 de 2003 balanceados, Triángulo de Potencias La potencia activa se genera como consecuencia de la corriente activa. Esto permite

Más detalles

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRÓNICA SÍLABO PLAN DE ESTUDIOS 2000

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRÓNICA SÍLABO PLAN DE ESTUDIOS 2000 UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRÓNICA SÍLABO PLAN DE ESTUDIOS 2000 I. DATOS ADMINISTRATIVOS CURSO : CIRCUITOS ELECTRICOS II CÓDIGO : IE

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS. Ingeniería y Ciencias Exactas 2010.

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS. Ingeniería y Ciencias Exactas 2010. BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA GUÍA TEMÁTICA DEL ÁREA DE INGENIERÍAS Y CIENCIAS EXACTAS Ingeniería y Ciencias Exactas 2010. 1 ÁREA DE INGENIERIAS Y CIENCIAS EXACTAS INTRODUCCIÓN El propósito

Más detalles

PLANES CURRICULARES GRADO9º/ 01 PERIODO

PLANES CURRICULARES GRADO9º/ 01 PERIODO PLANES CURRICULARES GRADO9º/ 01 PERIODO Grado: 9º Periodo: 01 PRIMERO Aprobado por: G. Watson - Jefe Sección Asignatura: MATEMATICAS Profesor: Gloria rueda y Jesús Vargas ESTANDARES P.A.I. I.B. A. Conocimiento

Más detalles

A. R D. 4R/5 B. 2R E. R/2 C. 5R/4 F. Diferente

A. R D. 4R/5 B. 2R E. R/2 C. 5R/4 F. Diferente TEST 1ª PREGUNT RESPUEST El circuito de la figura está formado por 10 varillas conductoras de igual material y sección, con resistencia R. La resistencia equivalente entre los terminales y B será igual

Más detalles

Respuesta en Frecuencia de un Circuito RC

Respuesta en Frecuencia de un Circuito RC de un Circuito RC Omar X. Avelar & Diego I. Romero SISTEMAS ELECTRICOS INDUSTRIALES (ESI 13AA) Instituto Tecnológico y de Estudios Superiores de Occidente () Departamento de Electrónica, Sistemas e Informática

Más detalles

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA.

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA. PRÁCTCA NÚMERO 6. ESTUDO DE UN CRCUTO RLC EN CORRENTE ALTERNA. 6.. Análisis Teórico del Circuito. En las prácticas anteriores se ha analizado el comportamiento del circuito RLC cuando este es alimentado

Más detalles

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia

Más detalles

GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo

GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo GUÍA 7: CORRIENTE ALTERNA Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de Tres

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

Capítulo 1 SEMANA 7. Capítulo 2 POTENCIA EN CORRIENTE ALTERNA

Capítulo 1 SEMANA 7. Capítulo 2 POTENCIA EN CORRIENTE ALTERNA Capítulo 1 SEMANA 7 Capítulo 2 POTENCIA EN CORRIENTE ALTERNA Potencia instantánea 1 : Esta definida como la potencia entregada a un dispositivo (carga) en cualquier instante de tiempo. Es el producto de

Más detalles

Tema 11: CIRCUITOS ELÉCTRICOS

Tema 11: CIRCUITOS ELÉCTRICOS Tema 11: CIRCUITOS ELÉCTRICOS Esquema 1. Estructura atómica 2. El circuito eléctrico 3. Magnitudes eléctricas básicas 4. Ley de Ohm 5. Energía eléctrica. Efecto Joule. 6. Potencia eléctrica. Tipos de resistencias

Más detalles

CORRIENTE ALTERNA DEFINICION.

CORRIENTE ALTERNA DEFINICION. DEFINICION. CORRIENTE ALTERNA La forma de oscilación de la corriente alterna más comúnmente utilizada es la de una oscilación sinusoidal, puesto que se consigue una transmisión más eficiente de la energía.

Más detalles

Matemáticas para estudiantes de Química

Matemáticas para estudiantes de Química Matemáticas para estudiantes de Química PROYECTO EDITORIAL BIBLIOTECA DE QUÍMICAS Director: Carlos Seoane Prado Catedrático de Química Orgánica Universidad Complutense de Madrid Matemáticas para estudiantes

Más detalles

Primer examen parcial del curso Física II, M

Primer examen parcial del curso Física II, M Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El

Más detalles