Calidad en el Servicio Eléctrico
|
|
|
- Alfonso Gómez Montoya
- hace 9 años
- Vistas:
Transcripción
1 magnitud de -Cargas y no David Llanos Rodríguez [email protected] Girona, Febrero 18 de 2003
2 magnitud de -Cargas y no Introducción: Uso racional de la energía eléctrica quiere decir obtener el máximo rendimiento de la energía consumida y de las instalaciones necesarias para su generación transporte y utilización, garantizando un funcionamiento sin interferencias de todos los receptores conectados a la red de distribución.
3 magnitud de -Cargas y no Para poder juzgar sobre dicha calidad debemos definir previamente un modelo ideal de la red. En el caso de las redes industriales trifásicas con neutro, este modelo ideal consistirá en tres fuentes de tensión alterna, perfectamente senoidal, perfectamente iguales y desfasadas 120º.
4 magnitud de -Cargas y no Las principales desviaciones de este modelo pueden clasificarse en tres grandes grupos, según afecten: a la frecuencia, la amplitud o a la simetría del sistema trifásico.
5 Clasificación de las principales no idealidades de la red Introducción. magnitud de -Cargas y no
6 de los circuitos de Introducción. magnitud de -Cargas y no En este capítulo se considerarán el caso mas normal de redes de de baja y media tensión casi ideales. En los capítulos sucesivos se irán introduciendo los problemas de redes distorsionadas y las posibles formas de solucionarlos.
7 La red de Introducción. magnitud de -Cargas y no Lo que denominamos red de o red industrial, suele estar constitudida por un sistema trifásico de conductores, alimentado por tensiones desfasadas 120º entre cada una de las fases.
8 magnitud de -Cargas y no En condiciones ideales: Conjunto de tres fuentes de tensión perfectamente senoidal. En la práctica: Los generadores y sistemas de distribución tienen cierta impedancia interna. Las cargas absorben corrientes transitorias.
9 Definiciones de magnitud de Introducción. magnitud de -Cargas y no Parámetros eléctricos que habitualmente se manejan para caracterizar la red de. Definiciones de magnitudes Valor instantáneo Amplitud, A Periodo, T Frecuencia, f Pulsación, w Desfase
10 Tensión y corriente en un sistema monofásico Introducción. magnitud de -Cargas y no U(t) = U o sen(wt) i(t) = I o sen(wt+φ)
11 Medida de magnitudes Introducción. magnitud de -Cargas y no Valor eficaz: para funciones periódicas, es la medida cuadrática de la función a lo largo de un período. U ef T S1 S = 1 ( u( t)) 2. dt = + T T 0 2
12 magnitud de -Cargas y no Valor eficaz de una onda de tensión o corriente
13 magnitud de -Cargas y no Valor medio: media aritmética de los valores instantáneos a lo lardo de un periodo. T S1 S2 U ef = 1 ( u( t)). dt = + T T 0
14 magnitud de -Cargas y no Representación : Fasores Es frecuente representar las magnitudes mediante vectores giratorios.
15 magnitud de -Cargas y no Dos magnitudes retrasadas una respecto a otra en el tiempo pueden reprensarse como vectores giratorios con cierto ángulo de desfase entre ellos.
16 magnitud de -Cargas y no En el caso de redes industriales se suele trabajar con magnitudes de igual frecuencia, interesándose en la amplitud y fase. Se consideran los vectores fijos, dando origen a los diagramas fasoriales.
17 magnitud de -Cargas y no Diagrama de fasores de i o y U o con desfase φ.
18 magnitud de -Cargas y no Cargas y no en los circuitos de Carga lineal: tensión y corriente relacionadas por un factor constante. Igual frecuencia. Carga no lineal: relación tensión/corriente no es una constante.
19 magnitud de -Cargas y no Curvas (U,i) para un elemento lineal y uno no lineal
20 magnitud de -Cargas y no Las están formadas por: Fuentes de tensión Fuentes de corriente Elementos pasivos R, L, C.
21 magnitud de -Cargas y no Impedancias de las Las leyes básicas de Ohm y de Kirchoff son aplicables a circuitos de siempre que esté formado por elementos. Corriente con diferente fase dependiendo de la carga. La impedancia será otro vector, con módulo y fase.
22 magnitud de -Cargas y no Impedancia de un circuito serie y sus componentes
23 magnitud de -Cargas y no Las reglas para obtener la impedancia en serie o en paralelo son las clásicas, pero ahora se trabaja con vectores.
24 Corriente activa y Introducción. magnitud de -Cargas y no En cualquier caso: Corriente activa, I a, en fase con la tensión. Corriente, I r, desfasada 90º con respecto a la tensión.
25 Significado físico: Introducción. magnitud de -Cargas y no Corriente aparente I: la que se mide con un amperímetro, con la que se dimensionan las conductores. Corriente activa I a : es la única que produce trabajo. Corriente I r : se consume en la creación de campos eléctricos y magnéticos.
26 Potencia en circuitos de senoidal Introducción. magnitud de -Cargas y no p = U o sen wt. I o sen(wt+φ) p = UIcosφ + UIcos(2wt+φ) U e I son los valores eficaces. UIcosφ: potencia activa (P) UIcos(2wt+φ): variante en forma periódica. El término UI se denomina potencia aparente (S).
27 magnitud de -Cargas y no Potencia instantánea y potencia media para carga R
28 Potencia instantánea y potencia media para carga L Introducción. magnitud de -Cargas y no
29 Potencia instantánea y potencia media para carga C Introducción. magnitud de -Cargas y no
30 Potencia instantánea y potencia media para carga R-L Introducción. magnitud de -Cargas y no
31 magnitud de -Cargas y no Potencia activa y potencia en cargas R-L
Unidad Didáctica 2. Corriente Alterna Monofásica. Instalaciones y Servicios Parte II. Corriente Alterna Monofásica
Instalaciones y Servicios Parte II Corriente Alterna Monofásica Unidad Didáctica 2 Corriente Alterna Monofásica Instalaciones y Servicios Parte II- UD2 CONTENIDO DE LA UNIDAD Introducción a la corriente
Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA
2016 Módulo 2 CIRCUITOS DE CORRIENTE ALTERNA Concepto de corriente alterna Generación de c.a. ondas sinusoidales valores característicos magnitudes fasoriales Ing. Rodríguez, Diego 01/01/2016 INTRODUCCIO
COLECCIÓN DE PROBLEMAS IV REPASO
COLECCIÓN DE PROBLEMAS I REPASO 1. Una tensión alterna de 100Hz tiene un valor eficaz de 10. Deducir la expresión de la corriente instantánea que circularía por una bobina de L=3H si se le aplica dicha
TENSIONES Y CORRIENTES SINUSOIDALES: REPRESENTACIÓN GRÁFICA
TENSIONES Y CORRIENTES SINUSOIDALES: REPRESENTACIÓN GRÁFICA Como ya se dicho, manejaremos, en lo sucesivo, expresiones del tipo: v = V o sen (wt + ϕ) (12.1) i = I o sen (wt + ϕ) (12.2) siendo, v = v(t):valor
LA CORRIENTE ALTERNA
LA CORRIENTE ALTERNA Índice INTRODUCCIÓN VENTAJAS DE LA C.A. PRODUCCIÓN DE UNA C.A. VALORES CARACTERÍSTICOS DE C.A. REPRESENTACIÓN DE UNA MAGNITUD ALTERNA SENOIDAL DESFASE ENTRE MAGNITUDES ALTERNAS RECEPTORES
Calidad en el Servicio Eléctrico
balanceados, David Llanos Rodríguez [email protected] Girona, Febrero 20 de 2003 balanceados, Triángulo de Potencias La potencia activa se genera como consecuencia de la corriente activa. Esto permite
Conceptos básicos Sistemas trifásicos balanceados
Introducción menudo, se estudian redes o circuitos lineales de corriente directa (DC) con fuentes de valor constantes, los cuales tienen una amplia aplicación en el campo de la electrónica, puesto que
SISTEMA TRIFASICO. Mg. Amancio R. Rojas Flores
SISTEMA TRIFASICO Mg. Amancio R. Rojas Flores GENERACION DE VOLTAJE TRIFASICO (b) Forma de onda de voltaje (a) Generador Básico de CA (c) Fasor Un generador monofásico básico 2 (b) Forma de onda de voltaje
C.A. : Circuito con Resistencia R
Teoría sobre c.a obtenida de la página web - 1 - C.A. : Circuito con Resistencia R Intensidad Instantánea i(t) e Intensidad Eficaz I v(t) = V sen t) V I = ----- R V = R I i(t) = I sen t) V R = ----- I
9 José Fco. Gómez Glez., Benjamín Glez. Díaz, María de la Peña Fabiani, Ernesto Pereda de Pablo
PROBLEMAS DE CIRCUITOS EN CORRIENTE ALTERNA 25. Una fuente de voltaje senoidal, de amplitud Vm = 200 V y frecuencia f=500 Hz toma el valor v(t)=100 V para t=0. Determinar la dependencia del voltaje en
CORRIENTE ALTERNA CORRIENTE ALTERNA
CORRIENTE ALTERNA La corriente alterna es generada por un alternador, las fuerzas mecánicas hacen girar una rueda polar y se obtienen tensiones inducidas en los conductores fijos del estator que la envían
Unidad Didáctica 3 (Parte I) Corriente Alterna Trifásica.
Instalaciones y Servicios Parte II Corriente Alterna Trifásica Unidad Didáctica 3 (Parte I) Corriente Alterna Trifásica. Instalaciones y Servicios Parte II- UD3 CONTENIDO DE LA UNIDAD Introducción Corriente
1. Las funciones periódicas. Ondas sinusoidales. 3. La representación vectorial de una onda.
DESARROLLO DEL AMA: 1. Las funciones periódicas. Ondas sinusoidales.. Características de una onda. 3. La representación vectorial de una onda. 4. Ondas sinusoidales simultáneas con la misma frecuencia:
ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna
ELECTROTECNIA Análisis Fasorial de Circuitos de Corriente Alterna Juan Guillermo Valenzuela Hernández ([email protected]) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan Valenzuela
Electrotecnia General (Prof. Dr. José Andrés Sancho Llerandi) Tema 14 CORRIENTES ALTERNAS
TEMA 14 CORRIENTES ALTERNAS 14.1. VALORES ASOCIADOS A LAS ONDAS SENOIDALES. Sea un cuadro rectangular de lados h y l, formado por N espiras devanadas en serie, que gira a velocidad angular constante ω
Circuitos Eléctricos Trifásicos. Introducción.
Circuitos Eléctricos Trifásicos. Introducción. La mayor parte de la generación, transmisión, distribución y utilización de la energía eléctrica se efectúa por medio de sistemas polifásicos; por razones
En un circuito de CA los generadores suministran energía que es absorbida por los elementos pasivos (R, L y C). Esta energía absorbida puede:
www.clasesalacarta.com 1 Elementos Lineales Tema 7.- CA Elementos Lineales Cuando se aplica una tensión alterna con forma de onda senoidal a los bornes de un receptor eléctrico, circula por él una corriente
Guía de Problemas Nº 4 - Electrotecnia 2 Corrientes No Senoidales
FACULTAD DE INGENIERIA - U.N.M.D.P. DEPARTAMENTO DE INGENIERIA ELECTRICA. ASIGNATURA : Electrotecnia 2 (Plan 2004) CARRERA : Ingeniería Eléctrica y Electromecánica. PROBLEMA Nº 1: Encuentre la serie trigonométrica
BLOQUE III CIRCUITOS ELÉCTRICOS EN CA
1.- Una tensión viene dada por la expresión es de: v(t)=240 sen( t+30). Si se aplica la tensión v(t) a un receptor puramente inductivo cuya impedancia es de j2 2 Ω, hallar el valor de la intensidad instantánea
FUNDAMENTOS DE INGENIERÍA ELÉCTRICA - PROBLEMAS -
SITEMAS DE CORRIENTE TRIFÁSICA 9. Tres bobinas de resistencia 10 Ω y coeficiente de autoinducción 0,01 H cada una se conectan en estrella a una línea trifásica de 80 V, 50 Hz. Calcular: a) Tensión de fase.
INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA
INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / 2016 Materia: ELECTROTECNIA 1. COMENTARIOS Y/O ACOTACIONES RESPECTO AL TEMARIO EN RELACIÓN CON LA PAU: Indicaciones
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y
ELECTROTECNIA Circuitos de Corriente Alterna
ELECTROTECNIA Circuitos de Corriente Alterna Juan Guillermo Valenzuela Hernández ([email protected]) Universidad Tecnológica de Pereira Segundo Semestre de 2014 Juan Valenzuela 1 Elementos de circuitos
CORRIENTE ALTERNA. Onda senoidal:
CORRIENTE ALTERNA Onda senoidal: En corriente alterna, la tensión varía continuamente en el tiempo, tomando valores positivos y negativos. La forma más común de corriente alterna es la senoidal. Se debe
Tecnología Eléctrica
Dpto. Ingeniería Eléctrica Ingeniero Técnico Industrial en Electrónica Industrial PRÁCTICA 1 Medidas en Sistemas Trifásicos Equilibrados y Desequilibrados. Curso 2007-2008 Dpto. de Ingeniería Eléctrica.
Tema 2. Sistemas Trifásicos. Ingeniería Eléctrica y Electrónica
1 Tema 2. Sistemas Trifásicos 2 Sistemas trifásicos. Historia. Ventajas. Índice Conexión en estrella y en triángulo Sistemas trifásicos equilibrados Potencia en sistemas trifásicos equilibrados 3 Sistema
CIDEAD. 2º BACHILLERATO. ELECTROTECNIA. Tema 11.- La potencia en los circuitos de corriente alterna
Desarrollo del tema.- 1. Los dipolos. 2. Las relaciones de potencia en los dipolos. 3. Concepto de potencia aparente y reactiva. 4. La notación compleja de la potencia. 5. El teorema de Boucherot. 6. El
FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser
FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,
SISTEMAS TRIFASICOS.
SISTEMAS TRIFASICOS. Indice: 1. SISTEMAS TRIFASICOS...2 1.1. Producción de un sistema trifásico de tensiones equilibradas...2 1.2. Secuencia de fases...3 2. CONEXIONES DE FUENTES EN ESTRELLA Y EN TRIÁNGULO...3
Clase 7 Inductancia o Reactancia Inductiva
Clase 7 Inductancia o Reactancia Inductiva 1 La Bobina - Autoinducción Autoinducción es un fenómeno electromagnético que se presentan en determinados sistemas físicos como por ejemplo cicuitos eléctricos
Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.
Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia
Aplicación de funciones de variable compleja en circuitos eléctricos: fasores
Aplicación de funciones de variable compleja en circuitos eléctricos: fasores Ocampo Matias Estudiante de Ingeniería Eléctrica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina
Máster Universitario en Profesorado
Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente
CORRIENTE ALTERNA. Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados.
CORRIENTE ALTERNA Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados. Generalidades sobre la c. alterna. Respuesta de los elementos pasivos básicos
En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca.
Página 1 de 7 TENSION ALTERNA En la figura 1 se observan los cambios de polaridad (positivo y negativo) y las variaciones en amplitud de una onda de ca. Puede definirse un voltaje alterno como el que varía
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBS DE CCESO L UNIERSIDD L.O.G.S.E CURSO 2004-2005 - CONOCTORI: ELECTROTECNI EL LUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico
RÉGIMEN PERMANENTE DE CORRIENTE ALTERNA SINUSOIDAL
CPÍTULO 3 RÉGIMEN PERMNENTE DE CORRIENTE LTERN SINUSOIDL PR1. TEÓRICO-PRÁCTICO FSORES... 2 PR2. TEÓRICO-PRÁCTICO FSORES... 2 PR3. MÉTODOS SISTEMÁTICOS... 3 PR4. POTENCIS... 3 PR5. POTENCIS... 4 PR6. POTENCIS...
Tema 11: CIRCUITOS ELÉCTRICOS
Tema 11: CIRCUITOS ELÉCTRICOS Esquema 1. Estructura atómica 2. El circuito eléctrico 3. Magnitudes eléctricas básicas 4. Ley de Ohm 5. Energía eléctrica. Efecto Joule. 6. Potencia eléctrica. Tipos de resistencias
CAPITULO 8 FILTROS ACTIVOS INTRODUCCIÓN 8.1 EL PROBLEMA DE LOS FILTROS PASIVOS
CAPITULO 8 FILTROS ACTIVOS INTRODUCCIÓN Uno de los tópicos que ha recibido mayor atención en la compensación de armónicas en los últimos años, es el de los filtros activos de potencia. Estos filtros están
CIDEAD. 2º Bachillerato. Electrotecnia Tema 12.- Sistemas trifásicos.
Desarrollo del tema.1. Concepto de sistemas polifásicos. 2. Conexión de las fuentes en estrella y en triángulo. 3. La conexión de los receptores. 4. Conexión en estrella y triángulo en receptores. 5. Resolución
Se quiere construir el diagrama fasorial cualitativo (DF) del circuito mostrado.
Análisis de circuitos monofásicos en corriente alterna Objetivo Aplicar los teoremas y métodos generales de análisis de circuitos eléctricos, los conceptos y fórmulas de los distintos tipos de potencia,
ANÁLISIS DE CIRCUITOS SENOIDALES. Ing. Pablo M. Flores Jara
ANÁLISIS DE CIRCUITOS SENOIDALES Onda Senoidal (I) La corriente alterna es una corriente eléctrica cuyo valor y sentido varían continuamente, tomando valores positivos y negativos en distintos instantes
1º- CORRIENTE ALTERNA
º- CORRIENTE ALTERNA Se denomina corriente alterna a toda corriente eléctrica que cambia de polaridad periódicamente, pero en la práctica toma este nombre la corriente alterna de tipo senoidal: e Voltaje
Práctico 4 - Int. a la Electrotécnica
Práctico 4 - Int. a la Electrotécnica Transformador Trifásico Problema 1 Tres transformadores monofásicos se conectan entre si para formar un banco trifásico. Los transformadores tienen relación de vueltas
Práctico 3. IIE - Facultad de Ingeniería - Universidad de la República
Ejercicio 3.1 Práctico 3 IIE - Facultad de Ingeniería - Universidad de la República Siendo Z = 10e j30 (Ω) calcular en ambos casos (donde la fuente es equillibrada, de valor 220 V) los valores de la corriente
Electrónica de potencia e instalaciones eléctricas: Sistemas trifásicos
Electrónica de potencia e instalaciones eléctricas: Sistemas trifásicos Desde que Emilio ha empezado a estudiar la electricidad, cada vez está más sorprendido. Primero fue la corriente continua, después
Objetivos. Tema Corriente alterna sinusoidal (c.a.s.) Introducción. Generación de cas. Características de una cas. cos t ϕ i.
ema 0 orriente alterna sinusoidal Objetivos onocer las característi de la corriente alterna, y su efecto sobre resistencias, condensadores y bobinas. nterpretar el desfase entre diferencia de potencial
Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.
Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia
LEY DE OHM EN CORRIENTE CONTINUA
LEY DE OHM EN CORRIENTE CONTINA "La intensidad de corriente que circula por un circuito de C. C. es directamente proporcional a la tensión aplicada, e inversamente proporcional a la Resistencia R del circuito."
POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA
POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar
CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS
CIRCUITOS DE CORRIENTE ALTERNA CON NUMEROS COMPLEJOS CIRCUITO R-L-C CONECTADO EN SERIE. Debido a que la impedancia (Z) es un termino general que se puede referir a una resistencia, una reactancia o combinación
Contenido Capítulo 1 Diseño de circuitos impresos PCB...1
Contenido Introducción... XVII Material de apoyo en la web... XVIII Capítulo 1 Diseño de circuitos impresos PCB...1 1.1. Introducción... 2 1.2. Qué es una PCB?... 3 1.3. Proceso de implementación en PCB
Circuitos Trifásicos con receptores equilibrados
FACULTAD DE INGENIERIA U.N.M.D.P. DEPARTAMENTO DE INGENIERIA ELECTRICA. ASIGNATURA: Electrotecnia 2 (Plan 2004) CARRERA: Ingeniería Eléctrica y Electromecánica Circuitos Trifásicos con receptores equilibrados
Aplicando la identidad trigonometrica en la expresión anterior:
UNIDAD 1: Fundamentos de los Sistemas Electicos de Potencia 1. Potencia en Circuitos de Corriente Alterna (C.A): La potencia es la rapidez con la cual se transforma la energía electrica en cualquier otro
UNIVERSIDAD NACIONAL DEL SANTA
UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 3 CURSO: SISTEMAS ELECTRICOS DE POTENCIA PROFESOR : MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA INGENIERO MECANICO ELECTRICISTA
Figura 1: Sistemas trifásicos: secuencia positiva (izq); secuencia negativa (der).
SISTEMA TRIFÁSICO Definición: Diremos que un sistema trifásico de fuentes sinusoidales de igual frecuencia, es equilibrado si la suma de los fasores asociados a cada fuente es nula. Diremos también que
Potencia en corriente alterna
Potencia en corriente alterna En una corriente eléctrica la potencia se define como el producto entre la tensión y la intensidad de corriente: P(t) = V(t) I(t) En corriente alterna, al ser valores que
Colección de problemas de Monofásica ( Mayo/2006)
olección de problemas de Monofásica ( Mayo/006) Problema M- En el circuito de la figura determinar la lectura de los tres vatímetros que hay conectados. omprobar los resultados. D 3 +j +j 0 V -j B Problema
Unidad Académica de Ingeniería Eléctrica
Universidad Autónoma de Zacatecas Unidad Académica de Ingeniería Eléctrica Programa del curso Circuitos Eléctricos y Laboratorio Carácter Semestre recomendado Obligatorio 4o. Sesiones Créditos Antecedentes
Bloque II: 5- Motores de corriente alterna (Motores trifásicos)
Bloque II: 5- Motores de corriente alterna (Motores trifásicos) 1.- Introducción: Corriente alterna y red trifásica Se denomina corriente alterna a la corriente eléctrica en la que la magnitud y dirección
3.1. FUNCIÓN SINUSOIDAL
11 ÍNDICE INTRODUCCIÓN 13 CIRCUITOS DE CORRIENTE CONTINUA 19 Corriente eléctrica. Ecuación de continuidad. Primera ley de Kirchhoff. Ley de Ohm. Ley de Joule. Fuerza electromotriz. Segunda ley de Kirchhoff.
IEM-315-T Ingeniería Eléctrica
IEM-315-T Ingeniería Eléctrica Potencia en el Estado Estable. Potencia Instantánea y Potencia Promedio. Potencia Instantánea. La potencia instantánea suministrada a cualquier dispositivo está dada por
Boletín Tema 6. FFI. Ingeniería Informática (Software). Grupo 2. curso
oletín Tema 6 Generador de corriente alterna 1. Un generador sencillo de corriente alterna consiste en una bobina girando en un campo magnético uniforme. La variación temporal del flujo que atraviesa a
Corriente Alterna: Potencia en corriente alterna
Corriente Alterna: Potencia en corriente alterna Si le preguntaran a Emilio que lámpara lucirá más, una de 100 W o una de 60 W, la respuesta sería inmediata: la de 100, que tiene mas potencia. Luego, está
ELECTROTECNIA CONTENIDOS 2º BACHILLERATO
CONTENIDOS Los contenidos de la asignatura de Electrotecnia son los publicados en el DECRETO 67/2008, de 19 de junio, del Consejo de Gobierno, por el que se establece para la Comunidad de Madrid el currículo
ALTERNA (III) TRIFÁSICA: Problemas de aplicación
ALTERNA (III) TRIFÁSICA: Problemas de aplicación 1º.- Determinar la tensión compuesta que corresponde a un sistema trifásico que posee una tensión simple de 127 V. Solución: 220 V 2º.- Si la tensión de
Ejercicios corriente alterna
Ejercicios corriente alterna 1. EJERCICIO 2. (2.5 puntos) A una resistencia de 15Ω en serie con una bobina de 200 mh y un condensador de 100µF se aplica una tensión alterna de 127 V, 50 Hz. Hallar: a)
EXAMEN DE CIRCUITOS NOMBRE: TEST DE CIRCUITOS 1ª PREGUNTA RESPUESTA
NOMRE: TEST DE CIRCUITOS 1ª PREGUNT RESPUEST El circuito de la figura está formado por 12 varillas conductoras de igual material y sección, con resistencia R. La resistencia equivalente entre los terminales
CONTENIDO TEMA VIII. ONDAS DE SEÑAL: ONDA ALTERNA SENOIDAL (I) 8.2. Ondas senoidales, generación de las mismas y valores asociados.
CONTENIDO TEMA VIII. ONDAS DE SEÑAL: ONDA ALTERNA SENOIDAL (I) 8.1. Introducción. 8.2. Ondas senoidales, generación de las mismas y valores asociados. 8.3. Representación compleja de una onda senoidal.
GRADO EN INGENIERÍA ELECTRICA CIRCUITOS MAGNÉTICOS Y TRANSFORMADORES JUAN CARLOS BURGOS
GRADO EN INGENIERÍA ELECTRICA CIRCUITOS MAGNÉTICOS Y TRANSFORMADORES JUAN CARLOS BURGOS TEMA 0: ESTRUCTURA DE UNA RED ELÉCTRICA MISIÓN DE LOS TRANSFORMADORES EN LAS REDES ELÉCTRICAS 1 1 Capítulo basado
INSTALACIONES ELECTRICAS ELECTROTECNIA CORRIENTE CONTINUA Y ALTERNA
INSTALACIONES ELECTRICAS ELECTROTECNIA CORRIENTE CONTINUA Y ALTERNA 1) BIBLIOGRAFIA 2) LEY DE OHM 3) INTRODUCCION CORRIENTE CONTINUA 4) CIRCUITOS de CORRIENTE CONTINUA 5) INTRODUCCION CORRIENTE ALTERNA
A. R D. 4R/5 B. 2R E. R/2 C. 5R/4 F. Diferente
TEST 1ª PREGUNT RESPUEST El circuito de la figura está formado por 10 varillas conductoras de igual material y sección, con resistencia R. La resistencia equivalente entre los terminales y B será igual
1. Corriente alterna senoidal
BLOQUE 3-. CCUTOS ELÉCTCOS EN COENTE AL TENA 1. Corriente alterna senoidal 1-Tipos de corrientes: La corriente eléctrica puede clasificarse con el modo en que varía medida que transcurre el tiempo como:
18. Potencia y Energía en circuitos trifásicos.
18. Potencia y Energía en circuitos trifásicos. 18.1. Potencia en los circuitos trifásicos equilibrados. 1) eceptor en estrella: La potencia consumida por un receptor trifásico es la suma de las potencias
CIRCUITOS TRIFÁSICOS
CRCTOS TRFÁSCOS CRCTOS TRFÁSCOS a generación, transporte, distribución y utilización de energía de cierta potencia se realiza por sistemas polifásicos, en especial el de 3 fases o trifásico. n sistema
UNIDADES: 3 HORAS TEORÍA PRÁCTICA TRAB. SUPERV. LABORATORIO SEMINARIO TOTALES DE ESTUDIO 2 1
. CÓDIGO: PAG.: 1 PROPÓSITO Al término de esta asignatura los estudiantes estarán en capacidad de comprender la teoría básica de los circuitos eléctricos necesarios para el uso de máquinas eléctricas utilizadas
MÁSTER OFICIAL EN SISTEMAS ELECTRÓNICOS AVANZADOS, SISTEMAS INTELIGENTES. Asignatura: Convertidores Avanzados de Potencia.
MÁSTER OFICIAL EN SISTEMAS ELECTRÓNICOS AVANZADOS, SISTEMAS INTELIGENTES Asignatura: Convertidores Avanzados de Potencia Práctica 0 Introducción al Matlab/SIMULINK y análisis de potencia 1.- OBJETIVOS.
9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3
1. Un alternador a) es una maquina rotativa de corriente continua b) es una máquina estática de corriente alterna c) es una máquina rotativa de corriente alterna d) ninguna de las anteriores es correcta
Tipos de corrientes y distribución
Electricidad ENTREGA 2 Tipos de corrientes y distribución Elaborado Por: Néstor Quadri (extracto libro Instalaciones Eléctricas en Edificios, Cesarini hnos. Editores) Tipos de corriente eléctrica Corriente
TRABAJO PRÁCTICO DE LABORATORIO 6. Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA.
TRABAJO PRÁCTICO DE LABORATORIO 6 Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA. OBJETIVO: Analizar el comportamiento de circuitos RC, RL y RLC cuando son alimentados con corriente alterna.
CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA
www.ceduvirt.com CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA EJEMPLO 1: Cinco ciclos de una señal ocurren en un tiempo de 25 msg. Hallar el periodo y la frecuencia. Solución Si
Análisis de circuitos trifásicos. Primera parte
Análisis de circuitos trifásicos. Primera parte Objetivos 1. Mencionar el principio de funcionamiento de los generadores trifásicos. 2. Establecer los tipos básicos de conexiones de circuitos trifásicos
TEMA VENTAJAS DEL USO DE SISTEMAS TRIFÁSICOS. Se usan 3 ó 4 hilos (3 fases + neutro). 400 Posibilidad de 2 tensiones.
TEMA 10 SSTEMAS TRFÁSCOS. 10.1.- VENTAJAS DE USO DE SSTEMAS TRFÁSCOS. Se usan ó 4 hilos ( fases + neutro). 400 Posibilidad de 2 tensiones. 20 Tensiones entre fases es veces mayor que entre fase y neutro.
Contenido. Circuitos Eléctricos - Dorf. Alfaomega
CAPÍTULO 1 Variables de circuitos eléctricos... 1 1.1 Introducción... 1 1.2 Circuitos eléctricos y corriente... 1 1.3 Sistemas de unidades... 5 1.4 Voltaje... 7 1.5 Potencia y energía... 7 1.6 Análisis
INDICE Prefacio 1. Introducción 2. Conceptos de circuitos 3. Leyes de los circuitos 4. Métodos de análisis
INDICE Prefacio XIII 1. Introducción 1.1. magnitudes eléctricas y unidades del S.I. 1 1.2. fuerza, trabajo y potencia 2 1.3. carga y corriente eléctrica 3 1.4. potencial eléctrico 1.5. energía y potencia
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. / L.O.C.E
PRUEBS DE CCESO UNIVERSIDD.O.G.S.E. /.O.C.E CURSO 2003-2004 - CONVOCTORI: JUNIO EECTROTECNI E UMNO EEGIRÁ UNO DE OS DOS MODEOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje
TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS.
TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS. 9.. Potencias en sistemas equilibrados y simétricos en tensiones Un sistema trifásico puede considerarse como circuitos monofásicos, por lo que la potencia total
GUÍA DOCENTE DE LA ASIGNATURA DE TEORÍA DE CIRCUITOS ADAPTADA AL ESPACIO EUROPEO DE EDUCACIÓN SUPERIOR
GUÍA DOCENTE DE LA ASIGNATURA DE TEORÍA DE CIRCUITOS ADAPTADA AL ESPACIO EUROPEO DE EDUCACIÓN SUPERIOR Vicente Barranco López, Tomás Morales Leal, Francisco Ramón Lara Raya Departamento de Ingeniería Eléctrica,
Pruebas de Acceso a la Universidad. Criterios de Corrección. Los criterios generales de corrección de los exámenes serán los siguientes:
Pruebas de Acceso a la Universidad Criterios de Corrección. Materias: - Tecnología Industrial II - Electrotecnia Los criterios generales de corrección de los exámenes serán los siguientes: 1.- El correcto
SISTEMAS TRIFASICOS RESTA DE VECTORES: VAB VCD -1-
CONVENCIONES GENERALES Para la representación vectorial y fasorial utilizaremos un par de ejes cartesianos (eje real a 0 y eje imaginario a 90 ) como se muestra en la Figura 1.1. y en la Figura 1.2: DESIGNACIÓN
Universidad de Costa Rica Escuela de ingeniería Eléctrica Programa del curso. IE0309: Circuitos Lineales II II-2016
Universidad de Costa Rica Escuela de ingeniería Eléctrica Programa del curso IE0309: Circuitos Lineales II II-2016 Sede Rodrigo Facio Grupo: 01, Aula: 208 IE Horario: L: 09:00 a 10:50, J: 09:00 a 10:50
Conversión de Corriente alterna a Corriente continua es sencilla y barata.
TEMA 7 CORRIENTE ALTERNA. En los inicios del desarrollo de los sistemas eléctricos, la electricidad se producía en forma de corriente continua mediante las dinamos, este tipo de generador es más complejo
PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA.
PRÁCTCA NÚMERO 6. ESTUDO DE UN CRCUTO RLC EN CORRENTE ALTERNA. 6.. Análisis Teórico del Circuito. En las prácticas anteriores se ha analizado el comportamiento del circuito RLC cuando este es alimentado
Introducción a las armónicas
Se le asigna mucha importancia a las armónicas. Sabemos que el exceso de distorsión armónica puede causar problemas de calidad de suministro debido al calor generado. Estos problemas de calidad de suministro
LABORATORIO NO. 3 CONEXIÓN TRIÁNGULO DE CARGAS EQUILIBRADAS
LABORATORIO NO. 3 CONEXIÓN TRIÁNGULO DE CARGAS EQUILIBRADAS 1.1. OBJETIVO DEL LABORATORIO. 1.1.1. OBJETIVO GENERAL. Conocer las características de operación de la Conexión Triángulo y la derivada Delta
