) d{sp,) Va: Volumen de gas almacenado en la tuberia medido a Condiciones Base, PCN (m \

Tamaño: px
Comenzar la demostración a partir de la página:

Download ") d{sp,) Va: Volumen de gas almacenado en la tuberia medido a Condiciones Base, PCN (m \"

Transcripción

1 Aumentar la capacidad de trans porte del gasoducto. Aumentar la capacidad de almacenamiento del gasoducto. a capacidad de almacenamiento de una tuberia se conoce como el cambio en el volumen almacenado del tubo, cuando la demanda del gas pasa de la demanda mas alta (demanda pico) a la mas baja, suponiendo que el gas se introduce a la misma presion P 1 Cuando la demanda es baja, la presion al final de la linea es alta, hay un volumen alto de gas almacenado, y se dice que la tuberia esta empacada. Cuando la demanda es alta, la presion al final de la linea es baja, hay poco gas almacenado y se dice que la tuberia esta desempacada EI volumen de gas almacenado en una tuberia cuando en esta el flujo es isotermico y se presenta una caida de presion de P 1 a P 2, se obtiene de la siguiente forma EI contenido de gas en una tuberia, cuando en esta se presenta flujo bajo condiciones estables se puede obtener con la siguiente ex presion obtenida aplicando la ecuacion de Clinedinst (4 ) r' '>, (sp )2 ( r '" (.IP )2, AU;, IP J, 'z d sp, )- J, ' d(sp, ) PJ J, r" r(sp 'z ) d{spr )- J) r,'r(sp ' ) d{sp,) V() = * (163) donde, Va: Volumen de gas almacenado en la tuberia medido a Condiciones Base, PCN (m \ Tb Y Pb; Condiciones Base, 520 o R, 14,7 PCA (273,15 K y 101,325 KPa) sp c : Presion critica del gas, pca (Pa). T: Temperatura de Flujo, or (K). A Y; Area transversal y longitud de la tuberia, pies 2 y pie (m 2 y m), sp r : Presion Seudoreducida Ylos puntos 1 y 2 se refieren a la entrada y salida de la linea. os integrales que aparecen en el numerador de la ecuacion (1.63) se pueden encontrar, evaluados, en la tabla A 7 de la referencia (4) en funclon de la 49

2 temperatura reducida y las integrales que aparecen en el denominador de la misma ecuacion aparecen evaluados en la tabla A6 de la misma referencia tambien en funcion de la temperatura reducida. Normalmente en un gasoducto, la presion de entrega y la tasa de entrada se mantienen constantes y varia en la presion de salida al variar la demanda de gas Cuando la presion de salida alcanza el maximo valor se dice que la tuberla esta empacada y cuando liega al mlnimo valor se dice que la tuberla esta desempacada a capacidad de almacenamiento de la tuberla es la diferencia entre el volumen almacenado en la tuberla cuando esta esta empacada y el volumen almacenado cuando esta desempacada ; ambos volumenes calculados haciendo uso de la ecuacion (1.63). Ejemplo 4 Una tuberla de 100 millas (160.9 kms) y pulgadas (340 mm) de diametro transporta un gas de Yg = EI gas entra a la tuberla a tasa constante y presion de 1300 pca (8.96 MPa) tambien constante. EI gas sale de la tuberia cuando la demanda es baja a 1000 pca (6892 MPa) y a 300 pca (2.068 MPa) cuando la demanda es alta. Calcular la capacidad de almacenamiento de la tuberfa considerando la temperatura de flujo Igual 40 F Soluci6n Se debe obtener primero las propledades criticas del gas. Para un gas de Yg = sus propiedades crlticas son ( calculadas con las mismas expresiones usadas en el ejemplo 2) sp c = 678 pca. as presiones reducidas correspondiente5 a 1300, 1000 Y 300 pca son: ~ _-: == s7~ = = De acuerdo con la ecuacion (1.63) el volumen de la tuberia empacada es 50

3 r I'r (s P ) 2 r Pr ( S P ) ~.h ' Zr d (.\P,. ) - 1, z' d(sp, ) AT,sP Vo = ', * Ph T r Pr r Sp" d(sp) _ r Pr, spr d(sp ) J) Z ' J) Z I' y de la tabla A7 de la referencia (4) se obtiene (con st r =1 25) Pr, ( sp ): r')j ( SP I ' z' )2 d(spr ) = J) zr d (sp,) = 4.52 J, ~ ''-'- ( \P ' )~ d(sp. )=1.71 'z ' y de la tabla A6 se obtiene. (con st r = 1.25) r <) 1 sp I'r \P I r.' Z" d(sp,. ) =.b -t d(sp r ) = 2.43 i I ~7 sp - ' d(s/~) Z 1[ ( ) 2 * 100 *5280 *520*678* ( ) Vo== * = 6, 1736 * 10 7 pen De igual manera, el volumen de la tuberia desempacada es. r 91 (\P )2 ~1 ~4 ( SP ) 2 * J) ' Zr d(spr )- J, Z' d(spr ).'II J, ( SP I' } /(SP)- l "qq ( SPr J d(sp) ) Z I' ) Z ' De la tabla A7 (con st r = 1,25) 44 ( SP )2 [ - ' d(sp) = I Z ' y de la tabla A6, (a st r == 1,25) H ' ) ( - sp ' Jd(sP) = 0.10 I Z ' 5 1

4 52 o sea que el almacenamiento de la tuberia desempacada es: Vo = 7[ ( ) 2 * 100*5280 *520*678*( ) = I XI * y la capacidad de almacenamiento de la tuberia es : Capacidad de Almacenam iento =( ) * 10 7 = MPCN =37205 Km 3 os casos mas comunes de modificaci6n de tuberias (gasoductos) existentes son: Combinaci6n de Tuberias. Cuando se cambia un tramo de tube ria existente por otro de mayor diametro; tambien se conoce como tuberias en serie Tuberias en Paralelo Cuando se tiende una 0 varias tuberias adicionales a la existente, de iguallongitud y diametro igual 0 diferente. azos de Tuberias (oops) En este caso se tiende paralelamente a la tuberia existente y por una longitud menor que la original, una 0 varias tuberias de iguallongitud. Tanto en el caso de las tuberias paraleias como en el de lazos, las tuberias nuevas van conectadas a la tuberia original en sus extremos iniciales y finales os sistemas de tuberias antes mencionados, se conocen como sistemas sencillos y se caracterizan porque el fluido entra por un solo punto del sistema y sale de esto por otro IJnico punto. En estos casos los calculos que se puedan presentar son : encontrar la nueva capacidad del sistema cuando se ha definido la nueva configuraci6n del mismo, o determinar esta ultima cuando se tiene definida la nueva capacidad requerida del sistema. En cualquiera de las situaciones planteadas se pueden desarrollar ecuaciones, dependiendo del calculo a realizar, haciendo usa de las ecuaciones presentadas para flujo de gas en tuberias. Usando, por ejemplo, la ecuaci6n de Weymouth ( ecuaci6n (143)) se tendria Esta ecuaci6n en forma general cuando se tlenen fijas las presiones, las propiedades del gas y la temperatura de flujo, se puede escribir as)

5 11(, ;., ) (I~ c/ = K * -( - I I ( (1.64 ) donde K1 est a dada por (1.65) y C es una constante que depende de las unidades usadas. Se habla de un sistema equivalente de tuberia cuando se quiere encontrar una tuberia de una logitud y un diametro dados que pueda transportar la misma cantidad de gas bajo las mismas condiciones de caida de presion que una tuberia de longitud y diametro establecidos. Por ejemplo, si tengo una tuberia A de longitud A y diametro da y una tuberia B de longitud B y diametro db puedo encontrar una tuberia con diametro da que teniendo una longltud eab sea equivalente a la tuberia B Matematicamente seria los siguiente Aplicando la ecuacion (1.64) se tendria: de donde despejando eab se tiene * d I 1-' /1.- ( ) d ll 1/, ',' ( 1.66) Serie: Supongamos ahora que se tiene un sistema de ~ I J, I I i I t J, I t I ~ f-- I., I. ~ I 1" ~ I I 53

6 Este sistema, que se conoce como de tuberfas en serie 0 tuberfa combinada, se puede Ilevar a un sistema equivalente que tenga diametro de Y una longitud e Para ello, aplicando la ecuacion (1.66) se tendrfa 'T' = ~ ( -t d. ) " I ("~ Recordando que la calda de presion total del sistema es igual a la suma de las caldas de presion en cada tramo y como todos los tramos se han Ilevado a tramos equivalentes con el mismo diametro de, la longitud equivalente del sistema sera ell =I", Si por ejemplo se supone que de =d 1, se tlene et =e11 + e12 + eo (167) Cuando se tiene inicialmente una tuberfa de longitud y diametro d1, Y se plensa modificar su capacidad Ilevando el sistema de tuberla inicial al mostrado en la figura anterior, el nuevo valor de la capacidad del sistema cumple con la siguiente relacion : :',;.'; =_1 ( d l ('13)"' K * " ( K * I d~ '(~l ' )'" ( ~ : ru{ )'" I (1.68) y suponiendo que de =d 1 entonces, 54

7 q IlC" ( 0.' q:- ~ t=:- ) (169) Por otra parte, si se tiene definido la variacion deseada en la capacidad del gasoducto y se requiere es conocer la longitud de los tramos a cambiar, se puede utilizar la ecuaciones (166), (1.67) Y (168) as! Il, = d ) 1(>.; "', *. ( J, ' y suponlendo que el diametro equivalente es d1 se tendria 0" 4 1)c \.I (170) a ecuacion (1.70) supone que se van camblar dos tramos y que el tramo 1 tendra una longitud 1 conocida. Cuando se va cambiar solo un tramo para conseguir un cambio en la tasa de flujo, la ecuacion (1.70) se convierte en 0.:' (171 ) De las ecuaciones (170) y (171) se puede despejar X, y en el caso de la ecuacion (1.70) conociendo X y 1 se puede conocer - l - X. Tuberias en Paralelo. Se tienen cuando todos los tramos del sistema de tuber!as tienen puntos iniciales y finales comunes. Supongamos la sltuacion que se muestra en la pagina siguiente Inicialmente se tiene la tuberia 1 que ~ransporta una cierta tasa de gas del punto A al punto B, y se quiere aumentar su capacidad colocando lineas paralelas, de un diametro dado, desde A hasta B. Este sistema resultante se conoce como de tuber!as en paralelo. 55

8 I, ~ I I~ ~------~ ~ Cuando se tienen tuberias en paralelo, el sistema tambien se puede IIevar a un sistema equivalente. Para cada tuberfa la caida de presion es la misma y la tasa de flujo total es la suma de las tasas de flujo. I " d l l(",~ )fi< (I = K * - I, ( y el sistema de tuberfas se puede representar por una tuberia de longitud e y diametro de que "eve la misma cantidad de gas bajo la misma ca ida de presion. de donde y como, es la misma para todas las tuberias ~ (1.72) a ecuacion (1 7 2) es la longitud equivalente para un sistema de lineas paralelas. 56

9 Nuevamente, suponiendo de =d 1, el incremento en la capacidad del sistema se puede calcular de (1.69) Sistema de azos. Cuando la linea paralela tiene una longitud menor que el sistema inicial se habla de un sistema de lazos (oops); en este caso la situacion es la siguiente!\ I~ "1 -- I ~ ~~--- I, y un sistema equivalente se puede obtener, lievando el tramo de tuberias paralelas a un sistema equivalente y luego el sistema resultante a un nuevo sistema equivalente. Suponiendo como diametro equivalente, el diametro de la tuberia original se puede tener - ongitud equivalente al sistema de tuberias paralelas (ecuacion (172)) - ongitud equivalente del sistema total EI cambio en la tasa de flujo por la adicion del lazo se calcula de: (173) 57

10 I JX "'( )0) (1.68) : ':,~.'; = ( ({; te Cuando se tiene decidido el incremento en la capacidad de la linea y se requiere conocer la longitud dellazo se puede usar la ecuaci6n (1.69) asi ~ ( l::... = )11,'3 q u,,, ~ ( ) e qa'd d,. y cuando de=d. X. Y despejando - se tlene X J. 1 1 H ~; r'r (1.74) as ecuaciones (1.66) - (1.74) se obtuvieron utilizando la ecuaci6n de Weymouth, si se usan por ejemplo las de Panhandle se obtienen ecuaciones similares. En general se puede decir 10 sigulente Cualquiera de las formas conocidas como ecuaciones pr,kticas para el flujo de gas en tuberias se puede presentar en forma general asi T (d,,* (p 2_P2))\h _I * 1 -C* j, 1 2 * (1.75) (ft, -. P I, ZTl-, --,.,, ' r.~ r y para cuando las variables a analizar sean d y, la anterior ecuaci6n se puede presentar asi: r. _ K* (~ ) n (176) It. / 58

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y I ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y aplicaciones, 1ª edición, McGraw-Hill, 2006. Tabla A-9. II ANEXO

Más detalles

Resistores en circuitos eléctricos

Resistores en circuitos eléctricos Resistores en circuitos eléctricos Experimento : Resistencias en circuitos eléctricos Estudiar la resistencia equivalente de resistores conectados tanto en serie como en paralelo. Fundamento Teórico. Cuando

Más detalles

UNIDAD IV. Ecuaciones diferenciales Lineales

UNIDAD IV. Ecuaciones diferenciales Lineales UNIDAD IV Ecuaciones diferenciales Lineales 24 UNIDAD 4 0, ECUACIONES DIFERENCIALES LINEALES Se llama ecuación lineal de primer orden a la que es lineal con respecto a la función incógnita y su derivada.

Más detalles

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión

Más detalles

Ley de Boyle. A temperatura constante, el volumen de una muestra dada de gas es inversamente proporcional a su presión

Ley de Boyle. A temperatura constante, el volumen de una muestra dada de gas es inversamente proporcional a su presión LOS GASES Un gas es una porción de materia cuya forma y volumen son variables ya que se adaptan a la del recipiente que lo contiene, el cual ocupan totalmente. LEYES DE LOS GASES Ley de Boyle Robert Boyle,

Más detalles

Velocidad de descarga

Velocidad de descarga Velocidad de descarga Dr. Guillermo Becerra Córdoa Uniersidad utónoma Chapingo Dpto. de Preparatoria grícola Área de Física Profesor-Inestigador 59595500 ext. 539 E-mail: gllrmbecerra@yahoo.com Km. 38.5

Más detalles

Estudio de fallas asimétricas

Estudio de fallas asimétricas Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Estudio de fallas asimétricas Autor: Ingeniero Gustavo L. Ferro Prof. Adjunto Electrotecnia EDICION 2012 1.

Más detalles

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera 1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?

Más detalles

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de

Más detalles

XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA

XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVIII..- EFICACIA DE LOS INTERCAMBIADORES DE CALOR En muchas situaciones lo único que se conoce es la descripción física del intercambiador, como

Más detalles

W. Bolton, Año 2001 Ingeniería de Control. Cap. 2

W. Bolton, Año 2001 Ingeniería de Control. Cap. 2 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 8 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA-INGENIERO MECANICO ELECTRICISTA 1.BLOQUES

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

Capítulo 4. (Respuesta Natural de circuitos RL y RC) Circuitos RL y RC sin fuentes conectadas para t>0

Capítulo 4. (Respuesta Natural de circuitos RL y RC) Circuitos RL y RC sin fuentes conectadas para t>0 Capítulo 4 (Respuesta Natural de circuitos R y RC) Circuitos R y RC sin fuentes conectadas para t>0 En este capítulo se analizan circuitos Resistivos-inductivos (R-) y circuitos resistivos-capacitivos

Más detalles

Electrotecnia General Tema 26 TEMA 26 CÁLCULO DE REDES DE DISTRIBUCIÓN II

Electrotecnia General Tema 26 TEMA 26 CÁLCULO DE REDES DE DISTRIBUCIÓN II TEMA 26 CÁLCULO DE REDES DE DISTRIBUCIÓN II 26.1. DISTRIBUCIONES PERFECTAMENTE CERRADAS CON TENSIÓN CONSTANTE Y SECCIÓN UNIFORME. Las distribuciones perfectamente cerradas son aquellas en las que el distribuidor

Más detalles

Operaciones Básicas de Transferencia de Materia Problemas Tema 6

Operaciones Básicas de Transferencia de Materia Problemas Tema 6 1º.- En una torre de relleno, se va a absorber acetona de una corriente de aire. La sección de la torre es de 0.186 m 2, la temperatura de trabajo es 293 K y la presión total es de 101.32 kpa. La corriente

Más detalles

El estudio del movimiento de los cuerpos generalmente se divide en dos fases, por conveniencia: la cinemática y la dinámica.

El estudio del movimiento de los cuerpos generalmente se divide en dos fases, por conveniencia: la cinemática y la dinámica. Tema 1: Cinemática. Introducción. Describir el movimiento de objetos es una cuestión fundamental en la mecánica. Para describir el movimiento es necesario recurrir a una base de conceptos o ideas, sobre

Más detalles

La presión promedio se calcula al dividir la fuerza normal que empuja contra un área plana entre dicha área.

La presión promedio se calcula al dividir la fuerza normal que empuja contra un área plana entre dicha área. PRÁCTICA N. 5: MANOMETRÍA Y PRESIONES ESTÁTICAS 1. OBJETIVOS 1.1 Realizar mediciones de presión estática en un fluido por una tubería aplicando los conceptos de presión absoluta y manométrica. 1.2 Manejar

Más detalles

6. Diagramas de flujo.

6. Diagramas de flujo. Ingeniería de Control I Tema 6 Diagramas de flujo 1 6. Diagramas de flujo. Representación en DF Simplificaciones Fórmula de Mason Formas de Kalman Sistemas MIMO Diagramas de Flujo 2 1 Bibliografía Señales

Más detalles

Diseño de Transformadores Monofásicos

Diseño de Transformadores Monofásicos Jorge Romo L. El diseño de cualquier equipo es un proceso de cálculo mediante el cual se trata de determinar sus dimensiones geométricas, de modo de obtener un comportamiento preespecificado. Así, en el

Más detalles

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma.

V B. g (1) V B ) g, (2) +ρ B. =( m H. m H (3) ρ 1. ρ B. Aplicando al aire la ecuación de estado de los gases perfectos, en la forma. Un globo de aire caliente de volumen =, m 3 está abierto por su parte inferior. La masa de la envoltura es =,87 kg y el volumen de la misma se considera despreciable. La temperatura inicial del aire es

Más detalles

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una

Más detalles

Hidrología. Ciencia que estudia las propiedades, distribución y circulación del agua

Hidrología. Ciencia que estudia las propiedades, distribución y circulación del agua Hidrología Ciencia que estudia las propiedades, distribución y circulación del agua Semana 6 - Procesos de Pérdida de Precipitación. - La Infiltración. Fenómenos que originan las pérdidas de precipitación:

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 IMPEDANCIA EN SERIE DE LINEAS DE TRANSMISION : RESISTENCIA

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 IMPEDANCIA EN SERIE DE LINEAS DE TRANSMISION : RESISTENCIA UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 9 CURSO: SISTEMAS ELECTRICOS DE POTENCIA PROFESOR : MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA INGENIERO MECANICO ELECTRICISTA

Más detalles

Hidrodinámica. Conceptos

Hidrodinámica. Conceptos Conceptos Hidrostática tica Caudal Es la cantidad de líquido que pasa en un cierto tiempo. Concretamente, el caudal sería el volumen de líquido que circula dividido el tiempo: Sus unidades son volumen

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

GASES IDEALES. Contiene una mezcla de gases CP + O 2. Volumen = 1 litro Temperatura = 23 C = ,15 = 298,15K =585 = 0,7697 =250 = 0,3289

GASES IDEALES. Contiene una mezcla de gases CP + O 2. Volumen = 1 litro Temperatura = 23 C = ,15 = 298,15K =585 = 0,7697 =250 = 0,3289 GASES IDEALES PROBLEMA 10 Mezclas de los gases ciclopropano (C 3H 8) y oxígeno se utilizan mucho como anestésicos. a) Cuántos moles de cada gas están presentes en un recipiente de 1 litro a 23 C, si la

Más detalles

Primaria Sexto Grado Matemáticas (con QuickTables)

Primaria Sexto Grado Matemáticas (con QuickTables) Primaria Sexto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real. Ejercicio 1

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real. Ejercicio 1 Ejercicio 1 Se desea trasegar agua desde el depósito A al C utilizando para ello la bomba B. Las pérdidas de carga por fricción son del 5 por mil, y las pérdidas de carga localizadas en cada punto del

Más detalles

1. (a) Enunciar la Primera Ley de la Termodinámica.

1. (a) Enunciar la Primera Ley de la Termodinámica. ESCUELA SUPERIOR DE INGENIEROS Universidad de Navarra Examen de TERMODINÁMICA II Curso 2000-200 Troncal - 7,5 créditos 7 de febrero de 200 Nombre y apellidos NOTA TEORÍA (30 % de la nota) Tiempo máximo:

Más detalles

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4.

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 2: PROPIEDADES DE LAS SUSTANCIAS PURAS La preocupación por el hombre y su destino debe ser el interés primordial

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

2.2 SISTEMAS TERMODINÁMICOS

2.2 SISTEMAS TERMODINÁMICOS 2.2 SISTEMAS TERMODINÁMICOS En termodinámica se puede definir como sistema a toda aquella parte del universo que se separa para su estudio. Esta separación se hace por medio de superficies que pueden ser

Más detalles

Control Moderno. Ene.-Jun. 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun. 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 2007 Dr. Rodolfo Salinas abril 2007 Control Moderno N1 abril 2007 Dr. Rodolfo Salinas Modelo Ecuación

Más detalles

Práctica No. 2 Leyes de Kirchhoff Objetivo Hacer una comprobación experimental de las leyes de Kirchhoff.

Práctica No. 2 Leyes de Kirchhoff Objetivo Hacer una comprobación experimental de las leyes de Kirchhoff. Práctica No. Leyes de Kirchhoff Objetivo Hacer una comprobación experimental de las leyes de Kirchhoff. Material y Equipo 6 Resistencias de 00Ω ¼ o ½ Watt Resistencias de 0Ω ¼ o ½ Watt Resistencias de

Más detalles

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) =

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) = Transformada de Laplace - Conceptos Básicos Definición: Sea f (t) una función de t definida para t > 0. La Transformada de Laplace de f(t) se define como: L { f (t) } = F(s) = 0 e -st f(t)dt Algunas Propiedades

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

Interpretación de la derivada en situaciones de cambio y variación

Interpretación de la derivada en situaciones de cambio y variación Grado 11 Matemáticas - Unidad 3 Conoce el cambio en un instante y describe la situación Tema Interpretación de la derivada en situaciones de cambio y variación relacionados (Pre clase) Objetivos Habilidad

Más detalles

Ejemplos del temas VII

Ejemplos del temas VII 1. Metano líquido es comúnmente usado en varias aplicaciones criogénicas. La temperatura crítica del metano es de 191 K, y por lo tanto debe mantenerse por debajo de esta temperatura para que este en fase

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

Solución de Examen Final Física I

Solución de Examen Final Física I Solución de Examen Final Física I Temario A Departamento de Física Escuela de Ciencias Facultad de Ingeniería Universidad de San Carlos de Guatemala 28 de mayo de 2013 Un disco estacionario se encuentra

Más detalles

El tubo De Vénturi. Introducción

El tubo De Vénturi. Introducción El tubo De Vénturi Recopilado a partir de http://www.monografias.com/trabajos6/tube/tube.shtml por: Jose Carlos Suarez Barbuzano. Técnico Superior Química Ambiental. Técnico del Centro Canario del Agua

Más detalles

Bloque 2. Geometría. 4. Iniciación a las Cónicas

Bloque 2. Geometría. 4. Iniciación a las Cónicas Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Entradas (E) - Salidas (S) = Cambio de Almacenamiento. Recarga total Descarga total = Cambio de almacenamiento en la unidad hidrogeológica

Entradas (E) - Salidas (S) = Cambio de Almacenamiento. Recarga total Descarga total = Cambio de almacenamiento en la unidad hidrogeológica 8.- BALANCE INTEGRAL DE AGUAS SUBTERRÁNEAS Un balance de aguas subterráneas consiste en registrar las entradas, salidas y cambio en el volumen de almacenamiento, que acontecen en un volumen específico

Más detalles

GUÍA DE EJERCICIOS GASES

GUÍA DE EJERCICIOS GASES GUÍA DE EJERCICIOS GASES Área Química Resultados de aprendizaje Aplicar conceptos básicos de gases en la resolución de ejercicios. Desarrollar pensamiento lógico y sistemático en la resolución de problemas.

Más detalles

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

CAPITULO VII BOMBEO HIDRÁULICO TIPO JET (A CHORRO)

CAPITULO VII BOMBEO HIDRÁULICO TIPO JET (A CHORRO) GENERALIDADES. CAPITULO VII BOMBEO HIDRÁULICO TIPO JET (A CHORRO) El bombeo hidráulico tipo jet es un sistema artificial de producción especial, a diferencia del tipo pistón, no ocupa partes móviles y

Más detalles

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot)

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) 1. Deducir qué forma adopta la primera ley de la termodinámica aplicada a un gas ideal para

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar

Más detalles

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría.

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría. PRELIMINARES. COORDENADAS EN UN PLANO Cuando se trabaja un sistema de coordenadas Geometría Analítica = Unión de Álgebra con la Geometría. La geometría Analítica se origina al asignar coordenadas numéricas

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

Funciones y ecuaciones exponenciales y logarítmicas

Funciones y ecuaciones exponenciales y logarítmicas MB000 _MAAL_Eponenciales Versión: Septiembre 01 Funciones y ecuaciones eponenciales y arítmicas por Oliverio Ramírez Juárez Las funciones eponenciales sirven de apoyo en distintos campos del conocimiento

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

1. Análisis de Sensibilidad

1. Análisis de Sensibilidad 1. Análisis de Sensibilidad Considerando que la evaluación de los proyectos se basa en proyecciones de variables económicas, es lógico pensar que existe un factor de incertidumbre en los indicadores financieros

Más detalles

CAPÍTULO 4 RESULTADOS Y DISCUSIÓN

CAPÍTULO 4 RESULTADOS Y DISCUSIÓN CAPÍTULO 4 RESULTADOS Y DISCUSIÓN 4.1 Verificación del código numérico Para verificar el código numérico, el cual simula la convección natural en una cavidad abierta considerando propiedades variables,

Más detalles

Amplificadores Operacionales

Amplificadores Operacionales Amplificadores Operacionales Configuraciones básicas del amplificador operacional Los amplificadores operacionales se pueden conectar según dos circuitos amplificadores básicos: las configuraciones (1)

Más detalles

TEMA II.9. Ecuación de Bernoulli. Dr. Juan Pablo Torres-Papaqui

TEMA II.9. Ecuación de Bernoulli. Dr. Juan Pablo Torres-Papaqui TEMA II.9 Ecuación de Bernoulli Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PUEBLA

UNIVERSIDAD TECNOLÓGICA DE PUEBLA TÉRMICA. PRÁCTICA NÚMERO 5 Simulación de Ley de Boyle. OBJETIVO: Confirmar de manera experimental la ley de Boyle. Analizar con base en gráficos obtenidos a partir de los datos experimentales de presión

Más detalles

MATEMÁTICA TICA SUPERIOR APLICADA. Ejemplos de Ecuaciones No Lineales en

MATEMÁTICA TICA SUPERIOR APLICADA. Ejemplos de Ecuaciones No Lineales en MATEMÁTICA TICA SUPERIOR APLICADA Ejemplos de Ecuaciones No Lineales en Ingeniería a Química Universidad Tecnológica Nacional Facultad Regional Rosario Ejemplos de Aplicación A continuación n se presentan

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS

UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS 1. Objetivos UNIVERSIDAD SIMÓN BOLÍVAR PRÁCTICA ESTUDIO DEL FLUJO TURBULENTO EN TUBERÍAS LISAS Analizar flujo turbulento en un banco de tuberías lisas. Determinar las pérdidas de carga en tuberías lisas..

Más detalles

Problemas de Física 4

Problemas de Física 4 1. Termometría Problemas de Física 4 Termometría y Calorimetría (a) Una serie de mediciones de los volúmenes que ocupan un mol de un gas mantenido a temperatura constante T 0 en función de la presión produce

Más detalles

Determinación de constantes de ionización

Determinación de constantes de ionización Capítulo 5. Determinación de constantes de ionización Se determinaron las constantes de ionización de diversos compuestos mediante curvas de titulación ácido-base empleando métodos espectrofotométricos

Más detalles

Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional.

Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional. Análisis dimensional Toda cantidad física tiene unidades características. El reconocimiento de tales unidades y de sus combinaciones se conoce como análisis dimensional. Se consideran siete cantidades

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Química

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Química Gases RECUERDEN QUE: En los ejercicios de gases SIEMPRE deben trabajar con la temperatura en K ( C + 273). Además, por conveniencia, en esta unidad cuando hablemos de masa molar en gases, usaremos la sigla

Más detalles

Programación NO Lineal (PNL) Optimización sin restricciones

Programación NO Lineal (PNL) Optimización sin restricciones Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de

Más detalles

CAPITULO XII PUENTES DE CORRIENTE ALTERNA

CAPITULO XII PUENTES DE CORRIENTE ALTERNA CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este

Más detalles

Ejercicios y problemas de neumática e hidráulica

Ejercicios y problemas de neumática e hidráulica Ejercicios y problemas de neumática e hidráulica 1. Un depósito contiene aire comprimido a 4 atm. Cuál es su presión en pascales? (Sol.: 400.000 pascales). 2. Si tenemos una jeringuilla que contiene 0,02

Más detalles

TEOREMA DE PITÁGORAS. INTRODUCCIÓN

TEOREMA DE PITÁGORAS. INTRODUCCIÓN TEOREMA DE PITÁGORAS. INTRODUCCIÓN Pitágoras es muy conocido, a pesar de que no publicó ningún escrito durante su vida. Lo que sabemos de Pitágoras ha llegado a través de otros filósofos e historiadores.

Más detalles

Ejercicio 1. L=200 m L=800 m. (B) H B =34 mca. Ejercicio 2

Ejercicio 1. L=200 m L=800 m. (B) H B =34 mca. Ejercicio 2 Ejercicio 1 Se desea trasegar agua desde el depósito A al C utilizando para ello la bomba B. Las pérdidas de carga por fricción son del 5 por mil, y las pérdidas de carga localizadas en cada punto del

Más detalles

7.- Teorema integral de Fourier. Transformada de Fourier

7.- Teorema integral de Fourier. Transformada de Fourier 7.- Teorema integral de Fourier. Transformada de Fourier a) Introducción. b) Transformada de Fourier. c) Teorema integral de Fourier. d) Propiedades de la Transformada de Fourier. e) Teorema de Convolución.

Más detalles

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos).

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). 1) Explique los siguientes conceptos y/o ecuaciones: a) Circulación. B) Volumen de control. B) Teorema

Más detalles

UTN Facultad Regional La Plata Integración III

UTN Facultad Regional La Plata Integración III Balance de energía El concepto de balance de energía macroscópico, es similar al concepto del balance de materia macroscópico. Acumulación Transferencia Transferencia Generación Consumo de energía de energía

Más detalles

Tabla 2. Costo del colector solar plano. Fuente y elaboración: propia

Tabla 2. Costo del colector solar plano. Fuente y elaboración: propia 7. ANALÍSIS DE COSTOS A continuación se hará un costeo del calentador completo por metro cuadrado. Primero se enlistarán los materiales a utilizar junto con el costo de los mismos. No se tomará en cuenta

Más detalles

EXPRESIONES VARIABLES

EXPRESIONES VARIABLES EXPRESIONES VARIABLES.1.1.1. Un variable es un símbolo que se usa para representar uno o más números. Es común usar letras del alfabeto como variables. El valor del variable que se usa varias veces en

Más detalles

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno: UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

Principios de Medida - Presión. James Robles Departamento de Instrumentación Huertas Junior College

Principios de Medida - Presión. James Robles Departamento de Instrumentación Huertas Junior College James Robles Departamento de Instrumentación Huertas Junior College En esta presentación: Definición de presión Unidades de Medida de Presión Ley de Pascal Ejemplos de cálculo de presión Elementos de Medida

Más detalles

CAPITULO XIII RECTIFICADORES CON FILTROS

CAPITULO XIII RECTIFICADORES CON FILTROS CAPITULO XIII RECTIFICADORES CON FILTROS 13.1 INTRODUCCION En este Capítulo vamos a centrar nuestra atención en uno de los circuitos más importantes para el funcionamiento de los sistemas electrónicos:

Más detalles

Aritmética: Fracciones

Aritmética: Fracciones Antes de comenzar la unidad de fracciones algebraicas es preciso tener muy bien cimentados los conocimientos relativos a fracciones aritméticas adquiridos en cursos anteriores. a. Si un objeto se divide

Más detalles

Electrónica: Electrotecnia y medidas. UNIDAD 1. Leyes de Kirchhoff

Electrónica: Electrotecnia y medidas. UNIDAD 1. Leyes de Kirchhoff Electrónica: Electrotecnia y medidas. UNIDAD 1 Leyes de Kirchhoff Tabla de Contenido Presentación. Divisores de voltaje y corriente. Primera Ley de Kirchhoff. o Pasos para la utilización de la primera

Más detalles

6 PRÁCTICAS DE BALANCE DE MATERIA Y ENERGÍA (CLAVE 8987)

6 PRÁCTICAS DE BALANCE DE MATERIA Y ENERGÍA (CLAVE 8987) 6 PRÁCTICAS DE BALANCE DE MATERIA Y ENERGÍA (CLAVE 8987) Este capítulo trata conceptos fundamentales para el estudio de Balances de Materia y Energía, como: - Balances de masa y diagramas de flujo en procesos

Más detalles

C E C y T 13 Ricardo Flores Magón

C E C y T 13 Ricardo Flores Magón ESTEQUIOMETRÍA La estequiometria es una parte de la química que usa los pesos combinados de los elementos que forman los compuestos y las cantidades de sustancia que intervienen en una reacción química

Más detalles

Anexo III: Lazo de corriente en instalaciones industriales. Tipos y modos de funcionamiento.

Anexo III: Lazo de corriente en instalaciones industriales. Tipos y modos de funcionamiento. Anexo III: Lazo de corriente en instalaciones industriales. Tipos y modos de funcionamiento. 1. Introducción Las señales analógicas en entornos industriales viene regulada por la norma ANSI/ISAS50.1-1982(R1992)

Más detalles

4.3 Problemas de aplicación 349

4.3 Problemas de aplicación 349 4. Problemas de aplicación 49 4. Problemas de aplicación Ejemplo 4.. Circuito Eléctrico. En la figura 4.., se muestra un circuito Eléctrico de mallas en el cual se manejan corrientes, una en cada malla.

Más detalles

CAPACITANCIA Introducción

CAPACITANCIA Introducción CAPACITANCIA Introducción Además de los resistores, los capacitores y los inductores son otros dos elementos importantes que se encuentran en los circuitos eléctricos y electrónicos. Estos dispositivos,

Más detalles

Unidad 12. Anualidades Diferidas

Unidad 12. Anualidades Diferidas Unidad 12 Anualidades Diferidas Una anualidad diferida es aquella cuyo plazo no comienza sino hasta después de haber transcurrido cierto número de periodos de pago; este intervalo de aplazamiento puede

Más detalles

unicoos Funciones lineales Objetivos 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

unicoos Funciones lineales Objetivos 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta lección aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

TEOREMAS DE REDES. Mg. Amancio R. Rojas Flores

TEOREMAS DE REDES. Mg. Amancio R. Rojas Flores TEOREMAS DE REDES Mg. Amancio R. Rojas Flores PROPIEDAD DE LINELIDAD La linealidad es a propiedad de un elemento que describe una relación lineal entre causa y efecto. Esta propiedad es una combinación

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

Definiendo Proporciones

Definiendo Proporciones Definiendo Proporciones Bitácora del Estudiante Realiza las siguientes actividades, mientras trabajas con el tutorial.. Para qué se necesitan cuatro tipos de oficiales de carrera en la carrera de bicicleta?

Más detalles

Los estudiantes aprenderán cómo analizar y resolver problemas de circuitos con resistencias en paralelo.

Los estudiantes aprenderán cómo analizar y resolver problemas de circuitos con resistencias en paralelo. Resistencia Eléctrica Resistencia en paralelo Los estudiantes aprenderán cómo analizar y resolver problemas de circuitos con resistencias en paralelo. Ecuaciones clave Resistencias en paralelo: Todas las

Más detalles

SELECCIÓN DEL CALIBRE DE UN CONDUCTOR ELÉCTRICO EN TUBERÍA (CONDUIT) DE ACUERDO CON LA NORMA DE INSTALACIONES ELÉCTRICAS NOM-001-SEDE-2005

SELECCIÓN DEL CALIBRE DE UN CONDUCTOR ELÉCTRICO EN TUBERÍA (CONDUIT) DE ACUERDO CON LA NORMA DE INSTALACIONES ELÉCTRICAS NOM-001-SEDE-2005 SELECCIÓN DEL CALIBRE DE UN CONDUCTOR ELÉCTRICO EN TUBERÍA (CONDUIT) DE ACUERDO CON LA NORMA DE INSTALACIONES ELÉCTRICAS NOM-001-SEDE-2005 La transmisión energía eléctrica en forma segura y eficiente pen

Más detalles

1.-LEY DE OHM: VOLTAJE, CORRIENTE Y RESISTENCIA

1.-LEY DE OHM: VOLTAJE, CORRIENTE Y RESISTENCIA Área : Tecnología Asignatura : Tecnología e Informática Grado : 7 Nombre del docente: Jorge Enrique Giraldo Valencia 1.-LEY DE OHM: VOLTAJE, CORRIENTE Y RESISTENCIA La ley de Ohm expresa la relación que

Más detalles

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES OBJETIVOS CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES Reportar correctamente resultados, a partir del procesamiento de datos obtenidos a través de mediciones directas. INTRODUCCION En el capítulo de medición

Más detalles

6.4. APLICACIÓN DE REDES NEURONALES EN EL CÁLCULO DE LA TASA DE CONTORNEAMIENTOS Velocidad de retorno del rayo con distribución uniforme

6.4. APLICACIÓN DE REDES NEURONALES EN EL CÁLCULO DE LA TASA DE CONTORNEAMIENTOS Velocidad de retorno del rayo con distribución uniforme Aplicación de redes neuronales en el cálculo de sobretensiones y tasa de contorneamientos 233 6.4. APLICACIÓN DE REDES NEURONALES EN EL CÁLCULO DE LA TASA DE CONTORNEAMIENTOS 6.4.1. Introducción Como ya

Más detalles

Sistemas de ecuaciones diferenciales y el uso de operadores

Sistemas de ecuaciones diferenciales y el uso de operadores Sistemas de ecuaciones diferenciales y el uso de operadores En la clase anterior resolvimos algunos sistemas de ecuaciones diferenciales sacándole provecho a la notación matricial. Sin embrago, algunos

Más detalles

LABORATORIO DE FENÓMENOS COLECTIVOS

LABORATORIO DE FENÓMENOS COLECTIVOS LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,

Más detalles