Investigación sobre choques en una dimensión: la relación entre la masa y el sonido

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Investigación sobre choques en una dimensión: la relación entre la masa y el sonido"

Transcripción

1 D 1 Investigación sobre choques en una dimensión: la relación entre la masa y el sonido Investigación D 2 El propósito del experimento es investigar la relación entre la masa y el sonido producido en un choque en una dimensión entre un carrito de madera y una superficie de madera. Esto se hará cambiando la masa del carrito y, a continuación, registrando el sonido del choque por medio de un micrófono y un osciloscopio. El carrito rodará siempre hacia abajo por un carril la misma distancia y desde la misma altura inicial, por lo que debería chocar cada vez con la misma velocidad. La teoría de la energía cinética dice que la energía cinética es proporcional al cuadrado de la velocidad (que debería ser constante) y proporcional a la masa. Por tanto, cuando la masa aumenta la energía cinética aumenta. Toda la energía cinética se pierde en el choque, en su mayoría debido al calor pero también al sonido. Suponiendo que el porcentaje de energía transformada en sonido es la misma en todos los choques, entonces predigo que cuando la masa aumente también aumentará el sonido. Hay una relación de proporcionalidad directa y la relación es lineal. El gráfico ideal se esquematiza más abajo. sonido Masa en función del sonido masa

2 D 1 Variables La variable independiente es la masa del carrito La variable dependiente es la intensidad del sonido medida en unidades arbitrarias (cuadrados sobre el osciloscopio de rayos catódicos) Las variables controladas incluyen la aceleración de gravedad, la altura de la inclinación de la rampa, la posición del carrito y el micrófono, la superficie de impacto. D 2 Aparatos Carrito Rampa de madera Bloque de madera Regla Nueve masas de 10 gramos (0,010 kg) Micrófono para registrar el sonido Osciloscopio para mostrar los picos del sonido Cables Cámara para registrar los picos del sonido Trípode para sostener la cámara Diagrama del experimento Vástago para añadir masas Micrófono Osciloscopio Rampa Cables Carrito 2

3 D 2 Se puso una cámara frente al osciloscopio para grabar el pico más alto registrado con el micrófono. Método D 3 Colocar los aparatos como se muestra en el diagrama Colocar la rampa a 30,0 cm de altura y mantenerla constante durante todo el experimento. Colocar el micrófono a una distancia de 5,0 cm del punto del choque y mantenerla constante durante todo el experimento. Comenzar a grabar con la cámara. Registrar el sonido del primer choque sin masas añadidas. Añadir 10 gramos y registrar otro choque. Repetir este proceso hasta llegar a 90 g. Repetir el proceso hasta lograr tres resultados coherentes para reducir errores, y entonces hacer un promedio del resultado. Este es un primer plano de lo que grababa la cámara y se puede ver dónde está el pico de sonido más alto. Cada cuadrado sobre la pantalla del ORC es una unidad. La masa M es la masa añadida al carrito, y no incluye la del carrito mismo.

4 OPD 1 OPD 2 Datos Masa M / kg ±0,001 kg 1 a prueba S 1 Sonido S / unidades arbitrarias ±0,5 unidades 2 a prubea 3 a prueba S 2 S 3 Sonido medio S m / unidades ±0,5 unidad 0,000 0,5 1,0 0,5 0,7 0,010 1,0 1,0 0,5 0,8 0,020 2,0 1,5 2,0 1,8 0,030 2,0 2,5 1,5 2,0 0,040 2,5 3,0 2,5 2,7 0,050 3,0 3,5 3,0 3,2 0,060 3,5 3,5 3,5 3,5 0,070 3,5 4,0 3,5 3,4 0,080 4,5 5,0 4,5 4,7 0,090 4,5 5,5 5,0 5,0 OPD 2 S1 + S2 + S3 1,0 + 1,0 + 0,5 El promedio de tres medidas de sonido es, por ejemplo, Sm = = 0,8 3 3 Incertidumbre de la masa La masa del carrito no es pertinente aquí, así que podemos ignorar su incertidumbre. La incertidumbre en las masas añadidas es ±0,001 kg. Esto está determinado por las cifras significativas dadas en el juego de masas. Incertidumbre del sonido Puesto que hice la lectura de las unidades de sonido empleando un video del ORC, no es fácil determinar la incertidumbre porque la línea verde es tenue y fina, así que diría que en el peor de los casos, la incertidumbre del nivel sonoro es de ±0,5 unidades. Esto se trasladará al promedio del sonido. Gráfica de los datos Mis datos para representar la gráfica se ajustan entonces de modo que puedan pasar por el origen. Para hacerlo resto el nivel sonoro para masa cero, lo que supone un promedio de 0,5 unidades; esto significa que se resta la masa del carrito del total, de modo que el nivel sonoro debido a las masas añadidas es ahora igual a S masa = S masa+carrito S carrito = S masa 0,67 unidades S masa 0,8 unidades.

5 OPD 2 Datos para la gráfica Masa M / kg ±0,001 kg Sonido medio debido a la masa añadida S m (masa añadida) / unidades ±0,5 unidades 0, ,010 0,2 0,020 1,2 0,030 1,3 0,040 2,0 0,050 2,5 0,060 2,8 0,070 2,7 0,080 4,0 0,090 4,3 OPD 3 Nivel sonoro medio en función de la masa añadida Sonido (unidad) Ajuste lineal para: Conjunto de datos Sonido S = mm+b m (Pendiente): 47,44 unidad/kg b (Intersección Y): -0,03691 unidad Correlación: 0,9844 Error cuadrático medio: 0,2725 0,00 0,05 0,10 Masa (kg) El gradiente del gráfico es de 47,44 unidades por kilogramo. El gráfico es lineal y proporcional y todos los puntos se encuentran sobre la línea de mejor ajuste (tal como la trazó el computador). 5

6 A continuación, calculo la incertidumbre de los datos de la gráfica. OPD 3 Gradientes máximo y mínimo Sonido (unidad) Máx Mín Ajuste lineal para: Conjunto de datos Máx y = mm+b m (Pendiente): 58,89 b (Intersección Y): -0,5000 Correlación: 1,000 Error cuadrático medio: 0 Ajuste lineal para: Conjunto de datos Mín y = mm+b m (Pendiente): 36,67 b (Intersección Y): 0,5000 Correlación: 1,000 Error cuadrático medio: 0 (-0,0013, 5,88) 0,00 0,05 0,10 Masa (kg) OPD 2 El gradiente máximo es 58,89 y el mínimo 36,67. El gradiente de la línea de mejor ajuste es 47,44. La incertidumbre por encima de la recta de mejor ajuste es 58,89 47,44 = + 11,45 La incertidumbre por debajo de la recta de mejor ajuste es 36,67 47,44 = 10,77 El gradiente y su incertidumbre resultan así 44,77 (+11,45)/( 10,77) o aproximadamente 45±11 hasta 2 cifras significativas.

7 Conclusión CE 1 El gradiente y su incertidumbre significan que el sonido aumenta cuando la masa aumenta con un factor de proporcionalidad de unas 45 unidades de sonido por kilogramo de masa, con una incertidumbre de ±11 unidades de sonido por kilogramo. Como muestra mi gráfica, existe una relación proporcional y lineal entre la masa y el sonido producido en un choque, y ka pregunta de investigación inicial se ha respondido con un grado de certeza razonable. La teoría inicial sobre sonido y energía cinética parece justificar mis resultados. Evaluación CE 2 Aún cuando la relación es lineal, está claro que los errores son significativos. El gradiente varía alrededor del 24%, que es mucho. Principalmente, el error es debido a la precisión con que se registra el pico de sonido. De hecho, el pico de sonido registrado en el osciloscopio se grabó con una cámara, y resultó muy difícil ver lo registrado en la fracción de segundo en que el sonido alcanzaba su máximo valor. En el pico, la línea verde era fina y poco nítida. Hubo otros errores porque el carrito no iba en línea recta sino que tendía a desviarse a la izquierda o a la derecha, lo cual significaba que el choque se producía en ángulo y no en perpendicular. Otros pequeños errores fueron causados por los sonidos externos. Mejoras CE 3 Una mejora que haría sería utilizar un osciloscopio que pudiera registrar el pico más alto como un valor real y lo mostrara. Quizás un ordenador basado en un ORC donde los datos se organizaran y donde las mediciones tuvieran un alto grado de precisión. El ORC utilizado en este experimento era muy impreciso. Otra mejora que podría hacerse sería utilizar una rampa que tuviera igual anchura que el carrito de modo que éste se moviera sólo en línea recta y no a izquierda o derecha. Sin embargo, esto supondría otro problema porque habría más rozamiento entre los lados de la rampa y el carrito, pero no importa porque sería el mismo en todo el experimento. Finalmente, se podrían evitar otros errores si se llevara a cabo el experimento en una habitación aislada de sonidos externos que afecten el desarrollo del experimento; si no podría utilizarse un micrófono menos sensible. 7

Semivida de una pelota

Semivida de una pelota Semivida de una pelota INTRODUCCIÓN Esta investigación plantea la pregunta de si la altura de los rebotes de una pelota presenta una disminución exponencial y, si es así, cuál es la semivida de la altura?

Más detalles

DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES

DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES DETERMINACIÓN DE LA CONSTANTE UNIERSAL DE LOS GASES La ley general de los gases relaciona la presión P, el volumen, la temperatura T, el número de moles n, y la constante universal de los gases R, como

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Boletín de problemas 3

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Boletín de problemas 3 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Boletín de problemas 3 Problema 1 Las dos masas a la derecha del dibujo están ligeramente separadas e inicialmente en reposo. La masa de la izquierda

Más detalles

Investigación sobre el cambio en la aceleración de un carrito que rueda hacia abajo sobre un plano inclinado

Investigación sobre el cambio en la aceleración de un carrito que rueda hacia abajo sobre un plano inclinado Investigación sobre el cambio en la aceleración de un carrito que rueda hacia abajo sobre un plano inclinado La investigación Pregunta de investigación: Es constante la aceleración de un carrito que cae

Más detalles

Cálculo del coeficiente de rozamiento dinámico

Cálculo del coeficiente de rozamiento dinámico Prácticas de Física Cálculo del coeficiente de rozamiento dinámico 1. Introducción. Fundamentos teóricos En esta práctica estudiaremos cómo la fricción afecta el movimiento uniformemente acelerado en un

Más detalles

Olimpíada Argentina de Física

Olimpíada Argentina de Física Pruebas Preparatorias Primera Prueba: Cinemática - Dinámica Nombre:... D.N.I.:... Escuela:... - Antes de comenzar a resolver la prueba lea cuidadosamente TODO el enunciado de la misma. - Escriba su nombre

Más detalles

TERCERA EVALUACIÓN. Física del Nivel Cero A Abril 20 del 2012

TERCERA EVALUACIÓN. Física del Nivel Cero A Abril 20 del 2012 TERCERA EVALUACIÓN DE Física del Nivel Cero A Abril 20 del 2012 VERSION CERO (0) NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 25 preguntas de opción múltiple

Más detalles

LABORATORIO 1: MEDICIONES BASICAS

LABORATORIO 1: MEDICIONES BASICAS UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BASICA LABORATORIO DE FISICA ASIGNATURA: FISICA TECNICA I. OBJETIVO GENERAL LABORATORIO : MEDICIONES BASICAS Realizar mediciones de objetos utilizando diferentes

Más detalles

Universidad Nacional Autónoma de Honduras Departamento de Fisica Laboratorio de FS100. PRE-Lectura de Laboratorio ( )

Universidad Nacional Autónoma de Honduras Departamento de Fisica Laboratorio de FS100. PRE-Lectura de Laboratorio ( ) Conservación de la energía PRE-Lectura de Laboratorio Si consideramos una partícula que se mueve a lo largo de una línea, bajo la influencia de una fuerza que se da en función de su posición tenemos entonces

Más detalles

Unidad VII: Trabajo y Energía

Unidad VII: Trabajo y Energía 1. Se muestra un bloque de masa igual a 30 Kg ubicado en un plano de 30º, se desea levantarlo hasta la altura de 2,5 m, ejerciéndole una fuerza de 600 N, si el coeficiente de fricción cinética es de 0,1.

Más detalles

Ecuaciones Claves. Conservación de la Energía

Ecuaciones Claves. Conservación de la Energía Ecuaciones Claves Conservación de la Energía La ley de conservación de la energía establece que dentro de un sistema cerrado, la energía puede cambiar de forma, pero la cantidad total de energía es constante.

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento

Más detalles

La conservación de la energía en el péndulo simple

La conservación de la energía en el péndulo simple La conservación de la energía en el péndulo simple Silvia Muller y Silvia Capará EGB 39, Pintos y Newton Burzaco, Almirante Brown, Buenos Aire Para estudiar la conservación de la energía en un sistema

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Interacción gravitatoria

FÍSICA 2º Bachillerato Ejercicios: Interacción gravitatoria 1(9) Ejercicio 1 Un bloque de 50 Kg de masa asciende una distancia de 6 m por un plano inclinado 37 º y que presenta un coeficiente de rozamiento de 0 2, aplicándole una fuerza constante de 490 N paralela

Más detalles

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los

Más detalles

Área de Ciencias Naturales LABORATORIO DE FÍSICA. Física I. Actividad experimental No. 5. Fuerzas de rozamiento: Estática y Dinámica

Área de Ciencias Naturales LABORATORIO DE FÍSICA. Física I. Actividad experimental No. 5. Fuerzas de rozamiento: Estática y Dinámica Área de Ciencias Naturales LABORATORIO DE FÍSICA Física I ALUMNO(A): GRUPO: EQUIPO: PROFESOR(A): FECHA: CALIFICACION: Actividad experimental No. 5 Fuerzas de rozamiento: Estática y Dinámica EXPERIMENTO

Más detalles

Realización de la práctica

Realización de la práctica OBJETIVOS DE APRENDIZAJE CAIDA LIBRE Demostrar que un cuerpo en caída libre describe un movimiento uniformemente variado. Obtener experimentalmente la relación matemática entre la distancia recorrida y

Más detalles

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO

COLEGIO DE LA SAGRADA FAMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE FÍSICA II PERIODO ACADEMICO 1 COLEGIO DE LA SAGRADA AMILIA AREA DE CIENCIAS NATURALES Y EDUCACION AMBIENTAL TALLER DE ÍSICA II PERIODO ACADEMICO MECANICA CLASICA DINAMICA: UERZA LAS LEYES DE NEWTON Y CONSECUENCIAS DE LAS LEYES DE

Más detalles

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES OBJETIVOS CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES Reportar correctamente resultados, a partir del procesamiento de datos obtenidos a través de mediciones directas. INTRODUCCION En el capítulo de medición

Más detalles

y d dos vectores de igual módulo, dirección y sentido contrario.

y d dos vectores de igual módulo, dirección y sentido contrario. MINI ENSAYO DE FÍSICA Nº 1 1. Sean c r r y d dos vectores de igual módulo, dirección y sentido contrario. r El vector resultante c - d r tiene A) dirección y sentido igual a c r y el cuádruplo del módulo

Más detalles

FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile.

FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile. FISICA FUNDAMENTAL I TALLER 4 Problemas tomados del Hipertexto de Juan C. Inzuza, Universidad de Concepción, Chile. 1. De acuerdo con la leyenda, un caballo aprendió las leyes de Newton. Cuando se le pidió

Más detalles

EJERCICIOS DEL CAPÍTULO 5 - CAMPOS ESCALARES Y VECTORIALES. C5. 1 Hallar el momento del vector v respecto al punto M (2, 1, 1), siendo v = - grad φ en

EJERCICIOS DEL CAPÍTULO 5 - CAMPOS ESCALARES Y VECTORIALES. C5. 1 Hallar el momento del vector v respecto al punto M (2, 1, 1), siendo v = - grad φ en EJERCICIOS DEL CAPÍTULO 5 - CAMPOS ESCALARES Y VECTORIALES C5. 1 Hallar el momento del vector v respecto al punto M (2, 1, 1), siendo v = - grad φ en el punto P (1, 3, 0) y siendo φ=. C5. 2 Dado un campo

Más detalles

Métodos experimentales han demostrado las siguientes propiedades de la fricción:

Métodos experimentales han demostrado las siguientes propiedades de la fricción: UNIVERSIDAD COOPERATIVA DE COLOMBIA CURSO FISICA MECANICA PRACTICA DE LABORATORIO PRACTICA No. 9: FUERZA DE FRICCION Y MEDIDAS DE COEFICIENTES 1. INTRODUCCION. Si se le imprime una velocidad inicial a

Más detalles

UNIDAD II Ecuaciones diferenciales con variables separables

UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial

Más detalles

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN

EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN EJERCICIOS DE FÍSICA 3ER CORTE DEBE REALIZAR AL MENOS 10 RECUERDE QUE UNO DE ESTOS EJERCICIOS SE INCLUIRÁ EN EL EXAMEN 1 Considere los tres bloques conectados que se muestran en el diagrama. Si el plano

Más detalles

MOVIMIENTO ARMONICO SIMPLE MASA ATADA A UN RESORTE VERTICAL (SENSOR DE FUERZA, SENSOR DE MOVIMIENTO)

MOVIMIENTO ARMONICO SIMPLE MASA ATADA A UN RESORTE VERTICAL (SENSOR DE FUERZA, SENSOR DE MOVIMIENTO) MOVIMIENTO ARMONICO SIMPLE MASA ATADA A UN RESORTE VERTICAL (SENSOR DE FUERZA, SENSOR DE MOVIMIENTO) Traducción del Physics Labs with Computers. PASCO. Actividad Práctica 14. Teacher s Guide Volumen 1.

Más detalles

EVERYDAY ENGINEERING EXAMPLES FOR SIMPLE CONCEPTS

EVERYDAY ENGINEERING EXAMPLES FOR SIMPLE CONCEPTS EVERYDAY ENGINEERING EXAMPLES FOR SIMPLE CONCEPTS La Montaña Rusa PHYS 3311 Física para Ingenieros I Dr. Dorcas I. Torres Padilla Copyright 2015 MSEIP Engineering Everyday Engineering Examples Una forma

Más detalles

Laboratorio de Física con Ordenador Experiencia P14: Movimiento armónico simple C PARTE I: CONFIGURACIÓN DEL ORDENADOR FUERZA

Laboratorio de Física con Ordenador Experiencia P14: Movimiento armónico simple C PARTE I: CONFIGURACIÓN DEL ORDENADOR FUERZA Experiencia P14: Movimiento armónico simple Sensor de fuerza, Sensor de movimiento Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Movimiento armónico P14 SHM.DS P19 SHM Mass on a Spring P19_MASS.SWS

Más detalles

Departamento de Física Aplicada I. Escuela Politécnica Superior. Universidad de Sevilla. Física II

Departamento de Física Aplicada I. Escuela Politécnica Superior. Universidad de Sevilla. Física II Física II Osciloscopio y Generador de señales Objetivos: Familiarizar al estudiante con el manejo del osciloscopio y del generador de señales. Medir las características de una señal eléctrica alterna (periodo

Más detalles

GASTO ESPECÍFICO DEL ABSORBENTE. LINEA DE TRABAJO DEL PROCESO DE TRANSFERENCIA DE MASA.

GASTO ESPECÍFICO DEL ABSORBENTE. LINEA DE TRABAJO DEL PROCESO DE TRANSFERENCIA DE MASA. GASTO ESPECÍFICO DEL ABSORBENTE. LINEA DE TRABAJO DEL PROCESO DE TRANSFERENCIA DE MASA. La relación entre las cantidades de portadores de ambas fases será: L kg de portador L La relación entre portadores

Más detalles

Confirmare las leyes del rozamiento y determinar los coeficientes de fricción estático y cinético

Confirmare las leyes del rozamiento y determinar los coeficientes de fricción estático y cinético UIVERSIDAD DO BOSCO DEPARTAMETO DE CIECIAS BASICA LABORATORIO DE FISICA ASIGATURA: FISICA TECICA I. OBJETIVO GEERAL LABORATORIO : COEFICIETE DE FRICCIO Confirmare las leyes del rozamiento y determinar

Más detalles

Trabajo y Energía 30º. Viento

Trabajo y Energía 30º. Viento Física y Química TEM 7 º de achillerato Trabajo y Energía.- Un barco y su tripulación se desplazan de una isla hasta otra que dista Km en línea recta. Sabiendo que la fuerza del viento sobre las velas

Más detalles

La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota

La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota INTRODUCCIÓN En este experimento voy a relacionar el tiempo que tarda una pelota en rebotar 6 veces desde distintas

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-B

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-B ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-B (Septiembre 3 del 2010) NO ABRIR esta prueba hasta que los profesores den la autorización.

Más detalles

GUÍA N 10 CÁLCULO I. 1. Hallar una ecuación para la recta tangente, en el punto ( f ( )) = 3. x 1 x 2 1.

GUÍA N 10 CÁLCULO I. 1. Hallar una ecuación para la recta tangente, en el punto ( f ( )) = 3. x 1 x 2 1. UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N CÁLCULO I Profesor: Carlos Ruz Leiva APLICACIONES DE LA DERIVADAS Problemas sobre la tangente Ejemplos:

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

Primer Parcial Física 1 (FI01) 7 de mayo de 2016

Primer Parcial Física 1 (FI01) 7 de mayo de 2016 Ejercicio 1 Usted decide empezar a bucear, y necesita comprar un tanque de aire apropiado. En la tienda ofrecen tanques de aire puro comprimido ( =255kg/m 3, 78% N 2, 21% O 2, 1% otros) de 8L, 12L, 17L

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una

Más detalles

LEY DE RADIACIÓN DE STEFAN-BOLTZMANN OBJETIVO Comprobación de la ley de radiación de Stefan-Boltzmann. MATERIAL Termómetro, 2 polímetros, amperímetro, termopila, bombilla con filamento de tungsteno, generador

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo 1(7) Ejercicio nº 1 Calcula la altura a la que debe encontrarse una persona de 60 kg para que su energía potencial sea la misma que la de un ratón de 100 g que se encuentra a 75 m del suelo. Ejercicio

Más detalles

SISTEMA MASA-RESORTE

SISTEMA MASA-RESORTE SISTEMA MASA-RESORTE OBJETIVOS. Determinar la fuerza en función del alargamiento de un resorte.. Obtener la constante de rigidez del resorte.. Determinar el periodo en función de la masa m.. Determinar

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

Tema 1 Magnitudes físicas y actividad científica

Tema 1 Magnitudes físicas y actividad científica Tema 1 Magnitudes físicas y actividad científica Guía de Actividades Cada tema tendrá una serie de actividades que representan los distintos tipos de actividades que podrás encontrar en los exámenes. Estas

Más detalles

MAESTRÍA EN ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD NACIONAL DE COLOMBIA- SEDE MEDELLÍN

MAESTRÍA EN ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD NACIONAL DE COLOMBIA- SEDE MEDELLÍN MAESTRÍA EN ENSEÑANZA DE LAS CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD NACIONAL DE COLOMBIA- SEDE MEDELLÍN TALLER DE EXCEL E INTRODUCCIÓN AL MANEJO DEL PAQUETE PHYSICSSENSOR Realizado por: Tatiana Cristina

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico NOMBRE: LEY DE COULOMB k= 9 x 10 9 N/mc² m e = 9,31 x 10-31 Kg q e = 1,6 x 10-19 C g= 10 m/s² F = 1 q 1 q 2 r 4 π ε o r 2 E= F q o 1. Dos cargas puntuales Q 1 = 4 x 10-6 [C] y Q 2 = -8 x10-6 [C], están

Más detalles

Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva

Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva Problemas propuestos y resueltos Leyes de Newton Elaborado por: profesora Pilar Cristina Barrera Silva 5.46 Un bloque de masa 3 kg es empujado hacia arriba contra una pared por una pared con una fuerza

Más detalles

Carril de aire. Colisiones

Carril de aire. Colisiones Laboratori de Física I Carril de aire. Colisiones Objetivo Analizar la conservación de la cantidad de movimiento y estudiar las colisiones entre dos cuerpos. Material Carril de aire, soplador, dos puertas

Más detalles

LANZAMIENTO DE PROYECTILES (FOTOCOMPUERTAS).

LANZAMIENTO DE PROYECTILES (FOTOCOMPUERTAS). LANZAMIENTO DE PROYECTILES (FOTOCOMPUERTAS). Physics Labs with Computers. PASCO. Actividad Práctica 37. Teacher s Guide Volumen 2. Pág. 9. Student Workbook Volumen 2. Pág. 7. EQUIPOS REQUERIDOS. Fotocompuerta

Más detalles

E1.3: Energía mecánica

E1.3: Energía mecánica I.E.S. ARQUITECTO PEDRO GUMIEL Física y Química BA1 E1.3: Energía mecánica 1. Se deja caer verticalmente una piedra de kg desde 50 m de altura. Calcula: a) Su energía mecánica en el punto inicial. En el

Más detalles

Síntesis Examen Final

Síntesis Examen Final Síntesis Examen Final Presentación El siguiente material permitirá repasar los contenidos que se evaluarán en el Examen Final de la Asignatura que estudiamos durante el primer semestre y/o revisamos en

Más detalles

Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h?

Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h? UNIDAD 5. DINÁMICA 4º ESO - CUADERNO DE TRABAJO - FÍSICA QUÍMICA Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h?

Más detalles

PROBLEMAS COMPLEMENTARIOS

PROBLEMAS COMPLEMENTARIOS Problema nº1 Indica si dos protones separados por 10-18 m tenderán a acercarse por efecto de la gravedad o a repelerse por efecto electrostático. Datos: G = 6,6 10-11 N m 2 / 2, m p = 1,6 10-27, q p =

Más detalles

Tema 5: La energía mecánica

Tema 5: La energía mecánica Tema 5: La energía mecánica Introducción En este apartado vamos a recordar la Energía mecánica que vimos al principio del Bloque. 1. Energía Potencial gravitatoria 2. Energía Cinética 3. Principio de conservación

Más detalles

Examen de Ubicación. Física del Nivel Cero Enero / 2009

Examen de Ubicación. Física del Nivel Cero Enero / 2009 Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 VERSIÓN 0 NOMBRE: Este examen consta de 25 preguntas,

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0-A (Abril 14 del 2010) NO ABRIR esta prueba hasta que los profesores den la autorización. En esta

Más detalles

FRICCIÓN ENTRE SÓLIDOS

FRICCIÓN ENTRE SÓLIDOS PRÁCTICA DE LABORATORIO I-07 FRICCIÓN ENTRE SÓLIDOS OBJETIVO Estudiar el coeficiente de fricción estática para objetos de diferentes materiales y entre cuerpos del mismo material pero con diferentes pesos

Más detalles

CONSERVACION DE LA ENERGIA MECANICA

CONSERVACION DE LA ENERGIA MECANICA CONSERVACION DE LA ENERGIA MECANICA EQUIPOS REQUERIDOS. Pista de Montaña Rusa (Roller Coaster) Carro Masas Fotocompuertas Metro Balanza OBJETIVOS. Al finalizar la práctica, el estudiante debe estar en

Más detalles

ACELERACION DE LA GRAVEDAD. CAIDA LIBRE. (SENSOR DE FOTOPUERTA Y LÁMINA OBTURADORA).

ACELERACION DE LA GRAVEDAD. CAIDA LIBRE. (SENSOR DE FOTOPUERTA Y LÁMINA OBTURADORA). ACELERACION DE LA GRAVEDAD. CAIDA LIBRE. (SENSOR DE FOTOPUERTA Y LÁMINA OBTURADORA). Traducción del Physics Labs with Computers. PASCO. Actividad Práctica 5. Teacher s Guide Volumen 1. Pág. 53. Student

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #4: El rodamiento y el Teorema de trabajo-energía I. Objetivos. Determinar el trabajo

Más detalles

Experimento 1. Líneas de fuerza y líneas equipotenciales. Objetivos. Teoría

Experimento 1. Líneas de fuerza y líneas equipotenciales. Objetivos. Teoría Experimento 1. Líneas de fuerza y líneas equipotenciales Objetivos 1. Describir el concepto de campo, 2. Describir el concepto de líneas de fuerza, 3. Describir el concepto de líneas equipotenciales, 4.

Más detalles

Tema 0 Magnitudes y Unidades

Tema 0 Magnitudes y Unidades Tema 0 Magnitudes y Unidades IES Padre Manjón Prof: Eduardo Eisman FYQ 4º ESO Tema 0 Magnitudes y Unidades Curso 2016/17 1 Índice 1. La investigación científica 2. Las magnitudes físicas Escalares y vectoriales

Más detalles

FÍSICA GENERAL. M C Beatriz Gpe. Zaragoza Palacios Departamento de Física Universidad de Sonora

FÍSICA GENERAL. M C Beatriz Gpe. Zaragoza Palacios Departamento de Física Universidad de Sonora FÍSICA GENERAL M C Beatriz Gpe. Zaragoza Palacios Departamento de Física Universidad de Sonora TEMARIO 0. Presentación 1. Mediciones y vectores 2. Equilibrio traslacional 3. Movimiento 4. Trabajo, energía

Más detalles

BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA

BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA Curso 2011-2012 BOLETÍN EJERCICIOS TEMA 4 TRABAJO Y ENERGÍA 1. Halla la energía potencial gravitatoria de un libro de 500 gramos que se sitúa a 80 cm de altura sobre una mesa. Calcula la energía cinética

Más detalles

FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA

FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA FQ1B. FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS. CONSERVACIÓN DE LA ENERGÍA Fuerzas conservativas El trabajo realizado por las fuerzas conservativas solo depende de la posición inicial y final del cuerpo

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

FÍSICA II TRABAJO GRUPAL APLICACIÓN TEOREMA DEL TRABAJO Y ENERGÍA

FÍSICA II TRABAJO GRUPAL APLICACIÓN TEOREMA DEL TRABAJO Y ENERGÍA FÍSICA II TRABAJO GRUPAL TEMA: APLICACIÓN TEOREMA DEL TRABAJO Y ENERGÍA CINÉTICA INTEGRANTES CÓDIGOS Marcelo Altafuya 418 Lenin Morocho 406 Oscar Inga 405 Alexis Tamayo 394 Liliana Roque 385 Lizbeth Paguay

Más detalles

RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO

RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO 1. Supongamos conocido el período y el radio de la órbita de un satélite que gira alrededor de la Tierra. Con esta información y la ayuda de las leyes

Más detalles

5ta OLIMPIADA CIENTÍFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA FÍSICA 2da Etapa ( Exámen Simultaneo ) 6to de Primaria

5ta OLIMPIADA CIENTÍFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA FÍSICA 2da Etapa ( Exámen Simultaneo ) 6to de Primaria 6to de Primaria cálculos auxiliares al reverso de la página. Tiempo 2 horas. 1. (10%) Encierra en un círculo los incisos que corresponden a estados de la materia. a) líquido b) transparente c) gaseoso

Más detalles

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES Al finalizar esta unidad: - Describirás verbalmente en que consiste el cambio y cuáles son los aspectos involucrados en él. - Identificarás

Más detalles

Ecuación de la recta. Ing. Jonathan Alejandro Cortés Montes de Oca. Calculo Vectorial INSTITUTO POLITÉCNICO NACIONAL.

Ecuación de la recta. Ing. Jonathan Alejandro Cortés Montes de Oca. Calculo Vectorial INSTITUTO POLITÉCNICO NACIONAL. INSTITUTO POLITÉCNICO NACIONAL. ESCUELA SUPERIOR DE INGENIERIA MECÁNICA Y ELÉCTRICA. UNIDAD CULHUACÁN. Ecuación de la recta Calculo Vectorial Ing. Jonathan Alejandro Cortés Montes de Oca Antes de iniciar

Más detalles

Momento Lineal y Choques. Repaso. Problemas.

Momento Lineal y Choques. Repaso. Problemas. Momento Lineal y Choques. Repaso. Problemas. Resumen: Momentum lineal.. El momentum lineal p de una partícula da masa m que se mueve con una velocidad v.unidad de momentum en el sistema SI: kg m/s. Momentum

Más detalles

DIBUJO TÉCNICO: ACOTACIÓN

DIBUJO TÉCNICO: ACOTACIÓN DIBUJO TÉCNICO: ACOTACIÓN Acotación en Dibujo Técnico Como sabemos, el dibujo técnico tiene como fin llevar una pieza, forma o proyecto dibujado a la realidad. Para que eso sea posible, la teoría del dibujo

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

Olimpiadas de Física Córdoba 2010

Olimpiadas de Física Córdoba 2010 E n el interior encontrarás las pruebas que componen esta fase local de las olimpiadas de Física 2012. Están separadas en tres bloques. Uno relativo a dinámica y campo gravitatorio (obligatorio) y otros

Más detalles

2.3. ASPECTOS ENERGÉTICOS

2.3. ASPECTOS ENERGÉTICOS .3. ASPECTOS ENERGÉTICOS.3.1. Sobre un cuerpo actúa una fuerza representada en la gráfica de la figura. Podemos decir que el trabajo realizado por la fuerza es: a) (8/+16+16/) J b)(4+3+3) J c) (4+16+4)

Más detalles

Espectro electromagnético

Espectro electromagnético RADIOCOMUNICACIONES 11-03-2015 Espectro electromagnético La naturaleza de la luz ha sido estudiada desde hace muchos años por científicos tan notables como Newton y Max Plank. Para los astrónomos conocer

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA TERCERA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 17 DE 2014 SOLUCIÓN Pregunta 1 (8 puntos) P y R señalan

Más detalles

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV Profesor: Cristian Castillo Bachilleres: Yessica Flores María Palma Roselvis Flores Ciudad Bolívar; Marzo de 2010 Movimiento

Más detalles

FUNCIONES Y GRÁFICAS

FUNCIONES Y GRÁFICAS FUNCIONES Y GRÁFICAS Material de clase INTRODUCCIÓN: EJEMPLOS Una función es una correspondencia (relación) entre dos conjuntos (magnitudes ), de forma que a cada elemento (objeto) del primer conjunto

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

6 Energía, trabajo y potencia

6 Energía, trabajo y potencia 6 Energía, trabajo y potencia ACTIVIDADES Actividades DELdel INTERIOR interior DE LAde UNIDAD la unidad. Se arrastra una mesa de 0 kg por el suelo a lo largo de 5 m. Qué trabajo realiza el peso? El trabajo

Más detalles

ÁNGULOS Halla la medida de los ángulos a, b, y/o c de cada figura a continuación. Justifica tus respuestas.

ÁNGULOS Halla la medida de los ángulos a, b, y/o c de cada figura a continuación. Justifica tus respuestas. ÁNGULOS.... La aplicación de la geometría en situaciones cotidianas suele involucrar la medición de distintos ángulos. En este capítulo, comenzamos a estudiar las medidas de los ángulos. Después de describir

Más detalles

I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos Preliminares y Tema 1 Departamento de Física

I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos Preliminares y Tema 1 Departamento de Física I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos 2009-10-reliminares y Tema 1 Departamento de Física 1) Dado el campo escalar V ( r) = 2zx y 2, a) determine el vector

Más detalles

TEMA 2. Dinámica, Trabajo, Energía y Presión

TEMA 2. Dinámica, Trabajo, Energía y Presión TEMA 2. Dinámica, Trabajo, Energía y Presión 1. Objeto de la dinámica Dinámica es la parte de la mecánica que estudia el movimiento atendiendo a las causas que lo producen. Estas causas son las fuerzas.

Más detalles

Problemas de Física 1º Bachillerato 2011

Problemas de Física 1º Bachillerato 2011 Un móvil describe un movimiento rectilíneo. En la figura, se representa su velocidad en función del tiempo. Sabiendo que en el instante, parte del origen a. Dibuja una gráfica de la aceleración en función

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice

Más detalles

Estática. Principios Generales

Estática. Principios Generales Estática 1 Principios Generales Objetivos Cantidades básicas e idealizaciones de la mecánica Leyes de Newton de movimiento y gravitación SI sistema de unidades y uso de prefijos Cálculo numérico Consejos

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s 1- Un electrón es lanzado con una velocidad de 2.10 6 m/s paralelamente a las líneas de un campo eléctrico uniforme de 5000 V/m. Determinar: a) La distancia que ha recorrido el electrón cuando su velocidad

Más detalles

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera.

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera. CUESTIONES SOBRE CAMPO ELECTROSTÁTICO 1.- En un campo electrostático, el corte de dos superficies equiescalares con forma de elipsoide, con sus centros separados y un mismo eje mayor: No existe. B. Es

Más detalles

Profesora: Rocío Fuenzalida Díaz CURSO: 7 Básico FECHA PRUEBA: 22 /06/ NOMBRE APELLIDO PATERNO APELLIDO MATERNO

Profesora: Rocío Fuenzalida Díaz CURSO: 7 Básico FECHA PRUEBA: 22 /06/ NOMBRE APELLIDO PATERNO APELLIDO MATERNO TEMARIO-GUÍA SEMESTRAL FISICA N L: Profesora: Rocío Fuenzalida Díaz CURSO: 7 Básico FECHA PRUEBA: 22 /06/ 2016. NOMBRE APELLIDO PATERNO APELLIDO MATERNO A.- TEMARIO Fecha asignatura Contenido 22/06 Física

Más detalles

CINETICA QUIMICA. ó M s s

CINETICA QUIMICA. ó M s s CINETICA QUIMICA La Cinética Química se encarga de estudiar las características de una reacción química, con respecto a su velocidad y a sus posibles mecanismos de explicación. La velocidad de una reacción

Más detalles

TAREA FUNCIONES LINEALES

TAREA FUNCIONES LINEALES TAREA FUNCIONES LINEALES 1. Representar gráficamente las siguientes funciones y = -2x + 2 y = 4x - 5 y = 1/2x - 1 y = -3/2x + 3 Escribe la pendiente y la ordenada en el origen de cada una de las funciones

Más detalles