QUÉ ES UN TRÍANGULO?
|
|
|
- José Ignacio Plaza Calderón
- hace 8 años
- Vistas:
Transcripción
1 TRIÁNGULOS
2 QUÉ ES UN TRÍANGULO?
3 CLASIFICACIÓN DE LOS TRIÁNGULOS POR SUS LADOS
4 CLASIFICACIÓN DE LOS TRIÁNGULOS POR SUS ÁNGULOS
5 PROPIEDADES DE LOS TRIANGULOS La suma de los tres ángulos internos de un triángulo = 180º A + B + C = 180 o
6 PROPIEDADES DE LOS TRIANGULOS La suma de los tres ángulos exteriores o externos de todo triángulo es igual a 360º
7 PROPIEDADES DE LOS TRIANGULOS En todo triángulo, un lado es menor que la suma de los otros dos y mayor que su diferencia
8 PROPIEDADES DE LOS TRIANGULOS A lados congruentes se oponen ángulos congruentes y viceversa. Estos lados y ángulos se llaman homólogos.
9 PROPIEDADES DE LOS TRIANGULOS En todo triángulo a mayor lado se opone mayor ángulo y viceversa.
10 PROPIEDADES DE LOS TRIANGULOS En todo triángulo, un ángulo exterior es igual a la suma de los dos ángulos interiores no adyacentes
11 PROPIEDADES DE LOS TRIANGULOS Un triángulo es indeformable
12 PROPIEDADES DE LOS TRIANGULOS Un triángulo es indeformable
13 PROPIEDADES DE LOS TRIANGULOS Un triángulo es indeformable
14 PROPIEDADES DE LOS TRIANGULOS Un triángulo es indeformable
15 CONGRUENCIA DE TRIÁNGULOS
16 CONGRUENCIA DE TRIÁNGULOS POSTULADOS DE CONGRUENCIA los triángulos son congruentes. Criterio ALA: Si dos ángulos y el lado entre ellos son respectivamente congruentes con dos ángulos y el lado entre ellos de otro triángulo, entonces los triángulos son congruentes. Criterio LLA: Si el lado más largo del triangulo, junto con otro lado de éste, y el ángulo superior del lado más largo del triángulo socriterio LLL: Si en dos triángulos los tres lados de uno son respectivamente congruentes con los de otro, entonces los triángulos son congruentes. Criterio LAL: Si los lados que forman a un ángulo, y éste, son congruentes con dos lados y el ángulo comprendido por estos de otro triángulo, entonces n congruentes con los del otro triangulo, entonces los triángulos son congruentes.
17 CONGRUENCIA DE TRIÁNGULOS POSTULADOS DE CONGRUENCIA Criterio LLL: Si en dos triángulos los tres lados de uno son respectivamente congruentes con los de otro, entonces los triángulos son congruentes.
18 CONGRUENCIA DE TRIÁNGULOS POSTULADOS DE CONGRUENCIA Criterio LAL: Si los lados que forman a un ángulo, y éste, son congruentes con dos lados y el ángulo comprendido por estos de otro triángulo, entonces los triángulos son congruentes.
19 CONGRUENCIA DE TRIÁNGULOS POSTULADOS DE CONGRUENCIA Criterio ALA: Si dos ángulos y el lado entre ellos son respectivamente congruentes con dos ángulos y el lado entre ellos de otro triángulo, entonces los triángulos son congruentes.
20 CONGRUENCIA DE TRIÁNGULOS POSTULADOS DE CONGRUENCIA Criterio LLA: Si el lado más largo del triangulo, junto con otro lado de éste, y el ángulo superior del lado más largo del triángulo son congruentes con los del otro triangulo, entonces los triángulos son congruentes.
21 SEMEJANZA DE TRIÁNGULOS
22 SEMEJANZA DE TRIÁNGULOS POSTULADOS DE SEMEJANZA Criterio AAA de semejanza. Teorema: Si dos triángulos tienen sus tres ángulos correspondientes congruentes, entonces los triángulos son semejantes. Criterio LAL de semejanza. Teorema: Dos triángulos son semejantes si tienen un ángulo congruente comprendido entre lados proporcionales. Criterio LLL de semejanza. Teorema: "Si los lados correspondientes de dos triángulos son proporcionales, entonces los triángulos son semejantes".
23 SEMEJANZA DE TRIÁNGULOS POSTULADOS DE SEMEJANZA Criterio AAA de semejanza. Teorema: Si dos triángulos tienen sus tres ángulos correspondientes congruentes, entonces los triángulos son semejantes.
24 SEMEJANZA DE TRIÁNGULOS POSTULADOS DE SEMEJANZA Criterio LAL de semejanza. Teorema: Dos triángulos son semejantes si tienen un ángulo congruente comprendido entre lados proporcionales.
25 SEMEJANZA DE TRIÁNGULOS POSTULADOS DE SEMEJANZA Criterio LLL de semejanza. Teorema: "Si los lados correspondientes de dos triángulos son proporcionales, entonces los triángulos son semejantes".
26 SEMEJANZA DE TRIÁNGULOS TEOREMA DE TALES Si tres o más paralelas son cortadas por transversales, la razón entre las medidas de dos segmentos cualesquiera cortados por una transversal será igual a la razón de las medidas de los segmentos correspondientes de la otra, es decir, son proporcionales.
27 SEMEJANZA DE TRIÁNGULOS TEOREMA DE TALES Toda recta paralela a uno de los lados de un triángulo determina un triángulo semejante al triángulo dado.
28 APLICACIÓN DE LA SEMEJANZA DE TRIANGULOS CÁLCULO DE DISTANCIAS INACCESIBLES
29 TEOREMA DE TALES F%2Fvideo.google.com%2Fvideosearch%3Fgbv%3D2&q=TEOREMA +DE+TALES&v=czzj2C4wdxY&sa=X&ie=UTF-8
SEMEJANZA Y PROPORCIONALIDAD
SEMEJANZA Y PROPORCIONALIDAD Teorema de Pitágoras En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos. congruencia ( ) : Dos figuras son congruentes
Congruencia, Semejanza y Proporcionalidad de Triángulos
PreUnAB Congruencia, Semejanza y Proporcionalidad de Triángulos Clase # 16 Septiembre 2013 Congruencia de triángulos Definición Dos triángulos son congruentes si tienen la misma forma y las mismas medidas.
Semejanza de triángulos
Semejanza de triángulos En esta presentación encontrarás : Descripción del concepto de semejanza y ejemplos Definición y ejemplos del concepto de semejanza Criterios de semejanza de triángulos y ejemplos
Teoremas de los ángulos. Los ángulos adyacentes son suplementarios. Los ángulos opuestos por el vértice son congruentes
Resumen de Matemática LiceoProm14.tk Nomenclatura: (Solo para circunferencias) Rectas perpendiculares Rectas paralelas Teoremas de los ángulos Teorema 1: Los ángulos adyacentes son suplementarios. Teorema
TEOREMAS, POSTULADOS Y COROLARIOS DE GEOMETRIA
UNIVERSIDAD PEDAGÓGICA NACIONAL FRANCISCO MORAZÁN CENTRO UNIVERSITARIO REGIONAL DE LA CEIBA COMITÉ NACIONAL DE OLIMPIADAS MATEMÁTICAS DE HONDURAS ACADEMIA TALENTOS MATEMÁTICOS DE ATLÁNTIDA TEOREMAS, POSTULADOS
PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES:
PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: http://espaiescolar.wordpress.com CONCEPTOS PREVIOS PROPORCIONALIDAD Recta: línea continua formada por
Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica
Ángulos. DEFINICIÓN FIGURA OBSERVACIONES Ángulo. Es la abertura formada por dos semirrectas unidas en un solo punto llamado vértice. Donde: α = Ángulo O = Vértice OA = Lado inicial OB = Lado terminal Un
MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas
MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas
MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano
MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia
4.1 Medida de ángulo: sistema sexagesimal. Para medir la amplitud de un ángulo podemos utilizar el sistema sexagesimal. 180º
PÍTULO 4 Tópicos de Geometría Geometría, palara que proviene del griego, geo: tierra; metrein: medir, es una de las ramas mas antiguas de las ciencias, que tal vez ha tenido y tenga mayor incidencia en
Geometría Básica 49 UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL
Geometría Básica 49 UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL GEOMETRÍA 10 Prof. Alfonso Sánchez ENCUENTRO 6 TRIÁNGULOS Y CUADRILÁTEROS A los filósofos
GEOMETRÍA Y TRIGONOMETRÍA
GEOMETRÍA Y TRIGONOMETRÍA 1 Conceptos básicos 1. Una figura geométrica es un conjunto de puntos. 2. Puntos colineales son cualesquiera puntos que están exactamente en una recta. 3. La distancia entre un
Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta.
CONCEPTOS Y TEOREMAS BÁSICOS PARA LA RESOLUCIÓN DE PROBLEMAS DE GEOMETRÍA PLANA 1. CONSIDERACIONES GENERALES El objeto de la Geometría plana es el estudio de las figuras geométricas en el plano desde el
ANGULOS. La unidad de medida es el grado sexagesimal. La "circunferencia completa " mide 360º (grados sexagesimales). Además considere que.
PREUNIVERSITARIO PROGRAMA DE NIVELACIÓN Y REFORZAMIENTO M 04 PRO-OCTAV@ TEXTO Nº 2 GEOMETRÍA ANGULOS SISTEMAS DE UNIDADES DE MEDIDA: SISTEMA SEXAGESIMAL: La unidad de medida es el grado sexagesimal. La
EDUCACIÓN PLÁSTICA Y AUDIOVISUAL 1ºESO. Curso
EDUCACIÓN PLÁSTICA Y AUDIOVISUAL 1ºESO Curso 2016-17 ÍNDICE DE CONTENIDOS 1ª EVALUACIÓN Septiembre, octubre, noviembre 2016 TEMA 1 - DIBUJO TÉNICO: TRAZADOS GEOMÉTRICOS 1.1. ELEMENTOS GEOMÉTRICOS FUNDAMENTALES
Geometría
Geometría Geometría www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 2007-2012 Contenido 1. Geometría 2 1.1. Definiciones....................................... 2 1.2. Postulados........................................
GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.
GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el
Contenidos. Triángulos I. Elementos primarios. Clasificación. Elementos secundarios. Propiedad Intelectual Cpech
ontenidos Triángulos I Elementos primarios lasificación Elementos secundarios Triángulos Es un polígono de tres lados. Posee tres vértices, tres lados, tres ángulos interiores y tres ángulos exteriores.
Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA
Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA ASIGNATURA: Cálculo Diferencial e Integral I PROFESOR: José Alexander Echeverría Ruiz CUATRIMESTRE: Segundo TÍTULO DE LA
Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por:
Un triángulo es un polígono de tres lados. Un triángulo está determinado por: 1. Tres segmentos de recta que se denominan lados. 2. Tres puntos no alineados que se llaman vértices. Los vértices se escriben
Tema 1: La geometría euclídea
Tema 1: La geometría euclídea Geometrías no euclídeas Curso 2009-2010 1. Axiomas de Euclides 1. Euclides de Alejandría vivió hacia el año 300 A.C. 2. Definiciones intuitivas de punto, recta, plano, ángulo,
Tutorial MT-b14. Matemática Tutorial Nivel Básico. Geometría de proporción
134567890134567890 M ate m ática Tutorial MT-b14 Matemática 006 Tutorial Nivel ásico Geometría de proporción Matemática 006 Tutorial Geometría de proporción 1. Teorema de Thales: Thales de Mileto, (64-547
INSTITUCION EDUCATIVA LA PRESENTACION
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: GEOMETRIA DOCENTE: HUGO BEDOYA TIPO DE GUIA: CONCEPTUAL Y EJERCITACION PERIODO GRADO No. FECHA DURACION 3 7 2 FEBRERO
Unidad 1: Ángulos. Ángulos entre rectas paralelas
Ángulos entre rectas paralelas Cuando se presentan dos rectas paralelas distintas quedan delimitadas 3 regiones: Si las dos rectas paralelas son cortadas por otra (llamada transversal o secante), quedan
ÁNGULOS. Definición: Un ángulo convexo es la intersección de dos semiplanos cuyos bordes son rectas secantes.
ÁNGULOS Definición: Un ángulo convexo es la intersección de dos semiplanos cuyos bordes son rectas secantes. Dos rectas secantes determinan en el plano 4 regiones llamadas ángulos convexos 1 Elementos
Los Elementos. Libro I 2 Los fundamentos de la Geometría Teoría de los triángulos, paralelas y el Teorema de Pitágoras.
Los Elementos Está obra está compuesta por trece libros. El Libro I trata congruencia, paralelas y el teorema de Pitágoras, y en el se incluyen las definiciones de los conceptos, nociones comunes y postulados
Semejanza y Proporcionalidad
PreUnAB Clase # 15 Septiembre 2014 Teorema de Thales Definición Si varias paralelas son cortadas por transversales, la razón entre las medidas de dos segmentos cualesquiera, cortados por una transversal,
Subtemas: -Congruencia De Triángulos. -Tipos De Ángulos. -Tipos De Triángulos
Subtemas: -Congruencia De Triángulos -Tipos De Ángulos -Tipos De Triángulos Congruencia de triángulos La congruencia de triángulos estudia los casos en que dos o más triángulos presentan ángulos y lados
Tema 5: Semejanza. 1.- Introducción: Concepto de Escala y Teorema de Pitágoras.
Tema 5: Semejanza. En este tema nos dedicaremos al estudio de los triángulos y polígonos, y dedicaremos un apartado a un famoso teorema, que nos será de utilidad para entender la semejanza entre ellos:
Universidad de Puerto Rico Recinto de Río Piedras Facultad de Educación
Universidad de Puerto Rico Recinto de Río Piedras Facultad de Educación Primer Simposio Latinoamericano para la Integración de la Tecnología en el Aula de Matemáticas y Ciencias Guadalajara, México Jueves,
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #2
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #2 CONGRUENCIA DE TRIÁNGULOS Dos triángulos son congruentes si los tres lados de uno son respectivamente congruentes con los tres
Geometría 1 de Secundaria: I Trimestre. yanapa.com. Rayo. I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano
I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano Rayo Segmento : Rayo de Origen O y que pasa por B : Rayo de Origen O y que pasa por A La Recta : Se lee Segmento AB : Se lee
a) Forma de Escalera:
Chía, Febrero 8 de 2016 Buenos días Señores Estudiantes de los grados 902,903,y 904 a continuación encontrarán el trabajo que deben realizar de forma escrita en el cuaderno y debe ser entregado el día
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es
Introducción. Este trabajo será realizado con los siguientes fines :
Introducción Este trabajo será realizado con los siguientes fines : Aprender mas sobre la geometría analítica. Tener mejores conceptos sobre ella ; los cuales me pueden ayudar con las pruebas ICFES. Otro
Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.
Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo
Guía 3. Semejanzas de triángulos, Teorema de Tales, Teorema de la Bisectriz, Teorema del Seno.
Guía 3. Semejanzas de triángulos, Teorema de Tales, Teorema de la Bisectriz, Teorema del Seno. Sofía Taylor Enero 2011 1 Principios Teóricos 1.1 Semejanza de Triángulos Se dice que un triángulo es semejante
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ANGULOS Y TRIANGULOS
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ANGULOS Y TRIANGULOS CONCEPTOS BÁSICOS Punto, línea recta y plano: son conceptos que no de nimos pero utilizamos su representación grá
GEOMETRIA GRADO 8 PROF. LIC. ESP. BLANCA NIEVES CASTILLO R. CORREO: cel
PENSAMIENTO NUMÉRICO Y PENSAMIENTO VARIACIONAL Triángulos Clasificación de triángulos Construcción de triángulos Líneas notables en el triángulo Utilizo los criterios de congruencias y semejanzas entre
IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones
IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS Nombre: Grado: 9 5 1. Costrucciones 2. las rectas y puntos notables de un triángulo Sabemos que los polígonos son figuras cerradas planas, de lados rectos,
MATEMÁTICAS 2º ESO SEMEJANZA Y TEOREMA DE THALES
MATEMÁTICAS º ESO SEMEJANZA Y TEOREMA DE THALES S1 SEMEJANZA DE FIGURAS. RAZÓN DE SEMEJANZA O ESCALA. Dos figuras son semejantes si tienen la misma forma, aunque quizá distinto tamaño. La razón de semejanza
Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas. Mapa curricular Geometría 10 mo grado
Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas Mapa curricular Geometría 10 mo grado Colegio Beato Carlos Manuel Rodríguez Mapa curricular Geometría 10 mo grado periodo contenido Pregunta
MYP (MIDDLE YEARS PROGRAMME)
MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa
Tema 4: Dos teoremas básicos. Pitágoras y Tales.
Tema 4: Dos teoremas básicos. Pitágoras y Tales. Teorema de Pitágoras. Aplicaciones. Figuras semejantes. Teorema de Tales. Aplicaciones. 1 Distancia. Teorema de Pitágoras. El Teorema de Pitágoras es seguramente
congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida
COLEGIO COLMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS GEOMETRÍA NOVENO GRADO PROFESORES: RAÚL MARTÍNEZ, JAVIER MURILLO Y JESÚS VARGAS CONGRUENCIA Y SEMEJANZA Cuando tenemos dos segmentos escribimos AB CD
Plan de estudios GEOMETRIA EUCLIDEA I
GEOMETRIA EUCLIDEA I Código: MAB301 Nivel: I Ciclo lectivo: II Modalidad: Ciclo Naturaleza: Teórico-práctico Tipo de curso: Regular Área: Álgebra y Geometría Requisito: Lógica y Teoría de Conjuntos Número
CIRCUNFERENCIA INTRODUCCION
CIRCUNFERENCIA INTRODUCCION Definición Sea O punto del plano ( P ) y r un real positivo, entonces se denomina circunferencia de centro O y radio r ( C ( O, r ) ), al conjunto formado por y sólo por los
TRIÁNGULOS: RELACIONES DE DESIGUALDAD ENTRE SEGMENTOS Y ÁNGULOS
TRIÁNGULOS: RELACIONES DE DESIGUALDAD ENTRE SEGMENTOS Y ÁNGULOS Introducción.- Anteriormente, a partir de la congruencia de triángulos, hemos estudiado las condiciones que han de verificarse para que dos
POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos
1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular
CONTENIDOS DIAGNÓSTICO DE ADMISIÓN MATEMÁTICA
5º BÁSICO Números Naturales Leer, escribir y ordenar Descomponer en forma aditiva. Operatoria básica en los naturales (suma resta, multiplicación y división) Resolución de problemas Fracciones y Números
Seminario de problemas. Curso Hoja 5
Seminario de problemas. Curso 2014-15. Hoja 5 29. Encuentra los números naturales N que cumplen las siguientes condiciones: sus únicos divisores primos son 2 y 3, y el número de divisores de N 2 es el
MATEMÁTICA MÓDULO 1 Eje temático: Geometría
MATEMÁTICA MÓDULO 1 Eje temático: Geometría 1. CRITERIOS DE CONGRUENCIA Dos triángulos son congruentes cuando sus lados y ángulos correspondientes son congruentes entre sí. Como los elementos primarios
Un ángulo mide y otro Cuánto mide la suma de estos ángulos?
Los Ángulos Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos
Fundación Uno. 2x La gráfica que se muestra en la figura siguiente corresponde a la función:
ENCUENTRO # 49 TEMA: Ángulos en Geometría Euclidiana. CONTENIDOS: 1. Introducción a Geometría Euclidiana. 2. Ángulos entre rectas paralelas y una transversal. 3. Ángulos en el triángulo y cuadriláteros.
RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS
RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS ESTE TRIANGULO SERA EL MISMO PARA TODA LA EXPLICACIÓN RELACIÓN ENTRE LAS FUNCIONES
Ángulos 1º = 60' = 3600'' 1' = 60''
Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para
Un triangulo oblicuángulo es aquel que tiene tres ángulos agudos, o dos ángulos agudos y un ángulo obtuso.
1 Un triangulo oblicuángulo es aquel que tiene tres ángulos agudos, o dos ángulos agudos y un ángulo obtuso. Cuando se tiene un triángulo oblicuángulo se pueden presentar los siguientes casos: Se conoce
Casos de igualdad de triángulos
Geometría Plana y Trigonometría (aldor) r. G. Urcid Septiembre iciembre 008 INE 6/ asos de igualdad de triángulos apítulo 6. Ejercicios Resueltos (pp. 70 7) () Si < = < y < 3 = < 4, demostrar que =. 3
Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado
Actualizado en febrero del 2013 Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática II Año PAI VII Grado CONTENIDOS OBJETIVOS ESPECÍFICOS HABILIDADES CRITERIOS DE EVALUACIÓN
PRIMER PARCIAL SEGUNDO PARCIAL
PRIMER PARCIAL 10-ene PRESENTACIÓN 11-ene DEFINICION DE ÁNGULOS EN EL PLANO 12-ene MEDICIÓN DE ÁNGULOS 13-ene CLASIFICACIÓN DE ÁNGULOS POR SUS MEDIDAS 14-ene CLASIFICACIÓN DE ÁNGULOS POR SUS MEDIDAS 17-ene
FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.
1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:
Geometría. Parte I. Geometría intuitiva. Medición en educación básica. Nociones geométricas básicas. Isometrías y construcciones.
Geometría Parte I Geometría intuitiva 1 Medición en educación básica 2 Nociones geométricas básicas 3 Isometrías y construcciones 4 Área y perímetro 5 Cuerpos geométricos ÍNDICE PARTE I: GEOMETRÍA INTUITIVA
Geometría: Ejercicios de Semejanza de Triángulos
www.matebrunca.com Prof. Waldo Márquez González Semejanza de Triángulos 1 Geometría: Ejercicios de Semejanza de Triángulos 1. Escribir F si es falso, o V si es verdadero, según corresponda a cada proposición.
Capítulo II GEOMETRÍA EUCLÍDEA
Capítulo II GEOMETRÍA EUCLÍDEA Añadiendo el axioma de las paralelas a la Geometría Absoluta se avanza a la Geometría Euclidea. Recordando del capítulo I que dos rectas son paralelas si están contenidas
Comprende los tipos y las propiedades de los triángulos. Recordemos que... Los ángulos reciben su nombre de acuerdo a su medida, éstos son:
04 Lección Triángulos Propiedades y Postulados Estudio Comprende los tipos y las propiedades de los triángulos. En Presentación de Contenidos se repasa la clasificación de triángulos de acuerdo a sus lados
TALLER No. 17 GEOMETRÍA
TLLER No. 17 GEOMETRÍ ontenidos: Los triángulos Fecha de entrega: Mayo 12 de 2014 1. Investigue sobre las líneas y puntos notables en un triángulo. 2. Responda las siguientes preguntas: a. Qué es un polígono?
CAP ÍTULO XI 69 INTRODUCCIÓN A LA TRIGONOMETRÍA ESFÉ RICA
CAP ÍTULO XI 69 INTRODUCCIÓN A LA TRIGONOMETRÍA ESFÉ RICA Conocimientos previos Suponemos conocido que: a) Un plano divide al espacio en 2 regiones llamadas semiespacios. El segmento que une dos puntos,
Matemática 3 Colegio N 11 B. Juárez
Unidad 4: RAZONES Y PROPORCIONES Definición de RAZÓN: Se denomina razón entre dos números racionales a y b, al cociente (división) entre ambos, siendo b distinto de 0. a se denomina antecedente Ejemplo
Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180
CLASIFICACIÓN DE ÁNGULOS Nombre Definición Figura Ángulo recto Mide 90 Ángulo agudo Mide menos de 90 Ángulo obtuso Mide más de 90 Ángulo extendido Mide 180 Ángulo completo Mide 360 ÁNGULOS COMPARATIVOS
Congruencia, semejanza y transformaciones isométricas
Congruencia, semejanza y transformaciones isométricas Congruencia de triángulos Definición Dos triángulos son congruentes si y sólo si existe una correspondencia entre sus vértices, de modo que cada par
GEOMETRÍA POLIEDROS. Los ángulos diedros y los ángulos poliedros determinados por las caras son los ángulos diedros y ángulos poliedros del poliedro.
GEOMETRÍA POLIEDROS Poliedro. Un poliedro es la unión de cuatro o más regiones poligonales tales que cada uno de sus lados pertenecen precisamente a dos regiones adyacentes no coplanares. Las regiones
UNIDAD 4. Semejanza. Teorema de Tales
Matemática UNIDD 4. Semejanza. Teorema de Tales 2 Medio GUÍ N 1 PLNOS Y DIUJOS ESL Sabes lo que es un dibujo a escala? Un dibujo está en la escala 1:k, si cada centímetro en el dibujo representa k centímetros
TIPS SOBRE ANGULOS. Dos puntos diferentes determinan una y solo una recta que pasa por ellos.
TIPS SOBRE ANGULOS Simbólicamente vamos a representar la gráfica de la recta así: y se puede nombrar por dos de sus puntos sobre ella, por ejemplo: recta AB, o con el símbolo encima así ó una letra minúscula;
CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO
CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO Números Naturales Leer, escribir y ordenar Descomponer en forma aditiva. Operatoria básica en los naturales (suma resta, multiplicación y división) Resolución
Olimpiada Costarricense de Matemáticas. II Eliminatoria Curso preparatorio Nivel A. Elaborado por: Christopher Trejos Castillo GEOMETRÍA
Olimpiada Costarricense de Matemáticas II Eliminatoria 011 Curso preparatorio Nivel A Elaborado por: Christopher Trejos Castillo GEOMETRÍA La notación que utilizaremos en este trabajo es la siguiente:
Thales con Descartes y GeoGebra
Capacitación Conectar Igualdad (Egresados) Thales con Descartes y GeoGebra Leer y analizar las Actividades 1-1.a y 1.b de la secuencia didáctica Teorema de Thales y explicar el razonamiento que llevó a
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo
DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS
DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS 1.1.1 1.1.2 Las figuras geométricas, como los polígonos, aparecen en muchos lugares. En estas lecciones, los alumnos estudiarán más atentamente los polígonos y
CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc.
CUERPOS Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede calcular el volumen del mismo
Figuras Congruentes y Semejantes
Gabriel Uribe-Cesar Barreto Residensial de Matemáticas Proyecto AFAMaC-Matemáticas Aguadilla-Puerto Rico 5 de septiembre 2010 Figuras Congruentes Dos Figuras son Congruentes si son iguales en forma y en
ENSEÑANZA BASICA COLEGIO JUAN IGNACIO MOLINA POSTULANTES A 7º BÁSICO
ENSEÑANZA BASICA POSTULANTES A 7º BÁSICO - Género literario (Comprensión Lectora) - Texto argumentativo - Vocabulario - Medios de comunicación masiva - Factores y múltiplos. - Números primos y compuestos,
INSTITUTO SALAMANCA Matematicas III Julio-Agosto 2009 APLI CACIONES DE LOS ÁNGULOS
APLI CACIONES DE LOS ÁNGULOS Ángulo: es la unión de dos rayos que tienen un punto en común llamado vértice Elementos de un ángulo : -lados -Vértice y -bisectriz Un ángulo divide al plano en dos subconjuntos
UNIDAD II. FUNCIONES TRIGONOMÉTRICAS. Tema. Funciones trigonométricas
UNIDAD II. FUNCIONES TRIGONOMÉTRICAS Tema. Funciones trigonométricas FUNCIONES TRIGONOMÉTRICAS Introducción: Las funciones trigonométricas surgen de una forma natural al estudiar el triángulo rectángulo
Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:
3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-
CONTENIDOS EXÁMEN DE ADMISIÓN MATEMÁTICA SEGUNDO BÁSICO 2017
SEGUNDO BÁSICO 2017 DEPARTAMENTO ÁMBITO NUMÉRICO 0-50 - Escritura al dictado - Antecesor y sucesor - Orden (menor a mayor y viceversa) - Patrones de conteo ascendente (2 en 2, 5 en 5, 10 en 10) - Comparación
CURSO DE GEOMETRÍA 2º EMT
CURSO DE GEOMETRÍA 2º EMT UNIDAD 0 REPASO 1º CIRCUNFERENCIA Y ANGULOS INSCRIPTOS Ángulos en la circunferencia 1. La circunferencia. 1.1. Elementos de una circunferencia Definición 1. Se llama circunferencia
UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA. Tema. Triángulos
UNIDAD I. ÁNGULOS, TRIÁNGILOS, POLÍGONOS Y CIRCUNFERENCIA Tema. Triángulos TRIÁNGULOS Así como nuestro alrededor está lleno de objetos que nos ejemplifican claramente el concepto de ángulo, también existen
LINEAS PARALELAS Y PERPENDICULARES. Sra. Everis Aixa Sánchez
LINEAS PARALELAS Y PERPENDICULARES Sra. Everis Aixa Sánchez Estándar Geometría 9.G.9.1 Realiza construcciones geométricas formales con una variedad de herramientas y métodos (ejemplo: compás, regla no
PRIMER ENSAYO EXAMEN DE GEOMETRIA Las diagonales de un rombo miden 10 cm y24cm. Entonces el perímetro del rombo es:
EJÉRITO E HILE OMNO E INSTITUTOS MILITRES cademia Politécnica Militar PRIMER ENSYO EXMEN E GEOMETRI 2005 1. Las diagonales de un rombo miden 10 cm y24cm. Entonces el perímetro del rombo es: a) 68cm b)
Puntos y rectas en el triángulo
Puntos y rectas en el triángulo En los triángulos hay un conjunto de rectas y puntos importantes. Las rectas son las bisectrices, las mediatrices, las alturas, las medianas y las bisectrices exteriores.
a1 3 siendo a 1 y a 2 las aristas. 2 a a1
Semejanza y Trigonometria. 77 Ejercicios para practicar con soluciones Dos rectángulos tienen sus lados proporcionales. Los lados del primero miden 6 y 8 cm respectivamente. Si el perímetro del segundo
CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS
CUERPOS GEOMÉTRICOS. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO 2º E.S.O. DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de puntos: DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de una recta:
TRIÁNGULOS OBLICUÁNGULOS
PR SER TRJDO EL 09 y 16 DE GOSTO 2011 RZONMIENTO Y DEMOSTRIÓN Selecciona los procedimientos a seguir en la resolución de triángulos rectángulos y oblicuángulos. RESOLUIÓN DE PROLEMS Resuelve problemas
Casos especiales Plan de clase (1/4) Escuela: Fecha: Profesor (a):
Casos especiales Plan de clase (1/4) Escuela: Fecha: Profesor (a): Curso: Matemáticas 3 Secundaria Eje temático: FEyM Contenido: 9.1.2 Construcción de figuras congruentes o semejantes (triángulos, cuadrados
Seminario de problemas. Curso Hoja 10
Seminario de problemas. Curso 015-16. Hoja 10 55. A un fabricante de tres productos cuyos precios por unidad son de 50, 70 y 65 euros, le pide un detallista 100 unidades, remitiéndole en pago de las mismas
EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA
1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.
1. En cuál(es) de las siguientes figuras el triángulo F es siempre semejante con el triángulo G? 63º 31º
PROGRM GRSOS Guía: Semejanza de triángulos jercicios PSU 1. n cuál(es) de las siguientes figuras el triángulo es siempre semejante con el triángulo G? I) G 2º 2º II) 31º 86º G 31º 63º III) G Matemática
Estándar Anual. Matemática. Ejercicios PSU. Guía práctica Generalidades de los triángulos GUICES022MT22-A16V1. Programa
rograma Estándar nual Nº Guía práctica Generalidades de los triángulos Ejercicios U 1. Los ángulos interiores de un triángulo están en la razón 5 : 6 : 7, entonces el ángulo exterior adyacente al menor
