Tutorial MT-b14. Matemática Tutorial Nivel Básico. Geometría de proporción

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tutorial MT-b14. Matemática Tutorial Nivel Básico. Geometría de proporción"

Transcripción

1 M ate m ática Tutorial MT-b14 Matemática 006 Tutorial Nivel ásico Geometría de proporción

2 Matemática 006 Tutorial Geometría de proporción 1. Teorema de Thales: Thales de Mileto, ( a..) fue el primer y auténtico filósofo del mundo antiguo, vivió en Mileto, sobre la costa de sia Menor hacia el año 600 a.. studió el firmamento y enseño a los marinos a navegar guiándose por las estrellas; predijo un eclipse; enseño a los egipcios a medir la altura de las pirámides utilizando la sombra que proporcionaban las mismas a determinada hora del día. Se distinguió también como geómetra y formuló el teorema que lleva su nombre. l cuál detallamos a continuación: uando dos o más rectas paralelas cortan a dos rectas secantes, determinan en éstas segmentos proporcionales. e la forma: L 3 L 1 L L 4 L 1 L son paralelas L 3 L 4 son paralelas = =. Sección Áurea o divina ado un segmento de longitud se dice que un punto M lo divide en media y etrema razón si se verifica la siguiente relación: M = M M PH Preuniversitario, dición 005

3 observar que: M > M M l Trazo M se lo denomina Sección Áurea del segmento dado. l calcular el cuociente de los trazos de un segmento dividido en sección Áurea este es aproimadamente igual a: ,618 valor que es conocido como número de oro o Ø (letra griega Phi). ste importante número posee aplicaciones matemáticas, artísticas y arquitectónicas entre otras. Por ejemplo, muchas construcciones griegas y muchas obras del genio Leonardo da Vinci están construidas en base al número de oro. Matemática Teorema de las bisectrices (o teorema de polonio): Si en un triángulo consideramos el punto de intersección P de la bisectriz interior del ángulo con el lado opuesto se cumple: = P P P P isectriz de ángulo 4.Semejanza(~): son figuras que tienen igual forma. Llamamos homólogos, los vértices de ángulos iguales y diremos que lados homólogos son aquellos que tienen por etremo un par de vértices homólogos. os triángulos que tienen sus ángulos iguales, tienen sus lados homólogos proporcionales. 4.1 riterios de semejanzas de triángulos. Primer criterio: os triángulos son semejantes si tienen sus tres ángulos internos iguales. Segundo criterio: os triángulos son semejantes si tienen un ángulo igual y los lados que lo conforman, proporcionales. Tercer criterio: os triángulos son semejantes si sus lados son proporcionales. PH Preuniversitario, dición 005 3

4 Matemática 006 Tutorial 5. ongruencia( ): omo un caso particular de semejanza de figuras tenemos el caso de congruencia. os figuras son congruentes cuando son eactamente iguales. uando hablamos de congruencia de triángulos, entendemos que sus lados son respectivamente iguales y también lo son sus ángulos. 5.1 riterios para la congruencia de triángulos. Primer criterio: os triángulos son congruentes cuando sus lados homólogos son iguales. Segundo criterio: os triángulos son congruentes cuando tienen un ángulo igual comprendido entre lados homólogos respectivamente iguales. Tercer criterio: os triángulos son congruentes si tienen un lado igual y los ángulos homólogos adyacentes a él, respectivamente iguales. 6. quivalencia: Se llaman figuras equivalentes a aquellas que poseen igual área jercicios: 1. os triángulos son equivalentes si ) tienen sus tres ángulos internos iguales ) tienen dos de sus ángulos iguales ) poseen dos lados homólogos ) poseen igual perímetro ) poseen la misma superficie. Las siguientes figuras son entre sí: I. ongruentes II. Semejantes III. quivalentes ) Sólo I ) Sólo II ) Sólo III ) Sólo II y III ) Ninguna de las anteriores 4 h = 4 8 h = 4 PH Preuniversitario, dición 005

5 3. Si los triángulos y F son semejantes. uál es el valor de? ) 3,3 ) 5 ) 7,5 ) 15 ) º 100º 0 F 60º º Matemática uánto mide? ) 1 ) 35 ) 4 ) 84 ) Se requiere información adicional 10 60º º 40º 5. n el dibujo L 1 y L son paralelas, uánto mide? ) 16 ) 3 ) 40 ) 48 ) 69 L L 1 6. n la figura = 3, = 5, O = 4, entonces O = ) 3 0 ) 0 3 L 1 59º ) 4 O ) 0 L 59º ) Se requiere información adicional PH Preuniversitario, dición 005 5

6 Matemática 006 Tutorial 7. Si y son paralelos, entonces = ) 130 ) 114 ) 105 ) 76 ) º º 40º 9 8. Si es rectángulo de área 80 cm y G también es un rectángulo, FG = ) 1 cm ) cm ) 3 cm ) 4 cm ) 5 cm 0 cm F G 5 cm 9. ncontrar la sección áurea de un trazo de 144 cm (considere Phi = ,618) ) cm ) 88,99 cm ) 95 cm ) 99,88 cm ) 144 cm 6 PH Preuniversitario, dición 005

7 10. alcular el área de la figura, sabiendo que F, F, F y F son triángulos congruentes entre sí, en donde = 5cm y F = 13 cm ) 1 cm ) 30 cm ) 60 cm ) 10 cm ) 40 cm 5 cm α α α F 13 cm Matemática Si la razón de los trazos y está en sección áurea y 8 > X, entonces X mide: (considere Phi = ,618) ) 1,618 cm ) 3,1415 cm X ) 4 ( 5-1) cm ) -4 cm ) 16 cm 8 cm 1. uánto mide? ) 10 cm ) 8 cm ) 5 cm ) 1 cm ) Se requiere información adicional 5 cm 57º 57º 3 PH Preuniversitario, dición 005 7

8 Matemática 006 Tutorial 13. n cuál(es) de las siguiente(s) figura(s) puede(n) encontrarse el valor de? I. II. III M N 6 5 MN es mediana del triángulo ) Sólo I ) Sólo II ) Sólo III ) Sólo I y III ) I, II y III 14. uanto mide la diagonal de un cuadrado equivalente a la suma de dos circunferencias de radio 3 cm cada una (considere π = 3) ) 7 cm ) 54 cm ) 108 cm ) 6 3 cm ) 54 cm 15. l triángulo es congruente con el triángulo F y semejante con FG, uánto mide el trazo G? ) 4,5 ) 6 ) 6,5 ) 8 ) 9 6 cm 10 cm α α F α G 8 PH Preuniversitario, dición 005

9 Respuestas Preg. lternativa Matemática 006 PH Preuniversitario, dición 005 9

10 Matemática 006 Solucionario Solucionario 1. lternativa correcta letra ) os triángulos son equivalentes si: ) Falso, en este caso son semejantes, pero pueden tener distinta área ) Falso, no se menciona si son ángulos internos o eternos, además si fuesen internos, en ese caso serian semejantes, pero pueden tener distinta área ) Falso, por lo señalado en y ) Falso, dos triángulos pueden tener eactamente el mismo perímetro y poseer distintas áreas ) Verdadera, dos triángulos son equivalentes si poseen la misma superficie o área. lternativa correcta letra ) Faltan elementos para determinar semejanza o congruencia sin embargo el primer triángulo posee área 8 cm y el segundo triángulo también posee área 8 cm, por lo tanto son triángulos equivalentes, sin embargo no poseen eactamente la misma forma, con lo cuál descartamos que sean semejantes o congruentes. Por lo tanto sólo el ítem III es verdadero. 3. lternativa correcta letra ) esarrollando los ángulos internos de los triángulos 100º 60º º 60º 0º 100º 0 F 10 demás como dos triángulos que tienen sus ángulos iguales, tienen sus lados homólogos proporcionales. Podemos concluir que: = F (Reemplazado los valores) 15 5 = 10 (espejando ) = PH Preuniversitario, dición 005

11 4. lternativa correcta letra ) l desarrollar los ángulos internos: 10 40º 40º 60º º 100º 40º Matemática 006 on lo cuál el trazo es bisectriz y podemos utilizar teorema de polonio, con lo cuál = (Reemplazando) = 1 Trazo = 4 (espejando) 5. lternativa correcta letra ) ado que L 1 y L son paralelas, podemos utilizar teorema de Thales, de donde se desprende que: 7 1 = 3 = (Reemplazando) (espejando) Trazo = lternativa correcta letra ) Ya que los ángulos sobre las rectas poseen la misma medida, por correspondencia deducimos que L 1 y L son paralelas, con lo cuál podemos utilizar teorema de Thales, dado lo cual: O = O (Reemplazando) PH Preuniversitario, dición

12 Matemática 006 Solucionario 3 4 = 5 O Trazo O = lternativa correcta letra ) ompletando los ángulos internos (espejando) 0 40º 40º 60º º 100º 40º 9 on lo cuál el trazo es bisectriz y podemos utilizar teorema de polonio, en donde: = 0 40 = 18 Trazo = 36 (Reemplazando) (espejando) Luego el trazo es igual a + = = 76, además como y son paralelos podemos utilizar teorema de Thales de donde: = 7 (espejando) trazo = lternativa correcta letra ) Si es rectángulo de área 80 cm entonces su ancho es 4 cm ya que 4 por 0 son 80, además como y G son rectángulos, los trazos y G son paralelas y por 1 PH Preuniversitario, dición 005

13 correspondencia los ángulos y GF son iguales con lo cual los triángulos y GF son semejantes, gráficamente tenemos que: 0 cm 4 cm 4 cm 0 cm 5 cm F 5 cm G Matemática 006 omo los triángulos y GF son semejantes, tenemos que: 0 4 = 5 FG = G FG Trazo FG = 1 cm (Reemplazando) (espejando) 9. lternativa correcta letra ) l valor de es equivalente al número de oro, o sea, a aproimadamente. Utilizando la ecuación X = a, en donde: X = Segmento ntero a = Segmento Áureo =1,618 on X = = a 144 (espejando a) = a (Reemplazando 144 1,618 = a (ividiendo) 88,99 = a por 1,618) PH Preuniversitario, dición

14 Matemática 006 Solucionario 10. lternativa correcta letra ) Ya que F es congruente con F los trazos F y F miden lo mismo, con lo cuál aplicando Pitágoras, nos percatamos que el triángulo F corresponde al trío pitagórico 5, 1, 13,su área corresponde entonces a 30 cm, luego como los 4 triángulos son congruentes el área de la figura corresponde a 4 30 = 10 cm 11. lternativa correcta letra ) ado que 8 > X entonces 8 es el segmento Áureo y por lo tanto 8 = Ø y dado que Phi (Ø) equivale a, entonces 8 =, de donde despejando obtenemos: X = 16 (Finalmente racionalizando) X = 4( 5-1) 1. lternativa correcta letra ) Ya que los ángulos sobre los trazos y poseen la misma medida, por correspondencia deducimos que L 1 y L son paralelas, con lo cuál podemos utilizar teorema de Thales, dado lo cual: 5 = = = trazo = 10 (Multiplicando cruzado) (espejando) (ividiendo por, ambos lados de la ecuación) 13. lternativa correcta letra ) n cuál(es) de las siguiente(s) figura(s) puede(n) encontrarse el valor de? I II. M 4 6 N III. 1 5 MN es mediana del triángulo 14 PH Preuniversitario, dición 005

15 n I no tenemos información para asegurar que las rectas sean o no paralelas, por lo cual no podemos utilizar Thales y no podemos encontrar el valor de. n II como toda mediana es paralela a su lado opuesto, podemos utilizar teorema de Thales y por lo tanto descubrir el valor de. n III podría pensarse que se trata del trío pitagórico 5, 1, 13,pero el triángulo en cuestión no es rectángulo, y para utilizar trigonometría necesitamos poseer por los menos un ángulo, por lo tanto no podemos conocer el valor de. Matemática 006 ado esto solo podemos conocer el valor de en II. 14. lternativa correcta letra ) uanto mide la diagonal de un cuadrado equivalente a la suma de dos circunferencias de radio 3 cm cada una (considere π = 3) Ya que dos figuras son equivalentes cuando sus respectivas áreas son iguales y dado que el área de una circunferencia es el radio al cuadrado por π (3 en este caso), tenemos que el área de una circunferencia de radio 3 es igual a: 3 3 = 7 cm, por lo tanto el área de dos circunferencias de radio 3 será de 7 = 54 cm,luego estamos buscando la diagonal de un cuadrado de superficie 54 cm. Para esto debemos sacar la raíz cuadrada al área y así encontrar su lado, siendo el lado del cuadrado = 54 cm, finalmente calculamos la diagonal del cuadrado, multiplicando el lado por raíz cuadrada de. iagonal = 54 = 108 (escomponiendo) 36 3 = 6 3 cm 15. lternativa correcta letra ) Si desarrollamos Pitágoras, descubrimos que corresponde al trío pitagórico 6, 8, 10, además Si es congruente con el triángulo F, entonces F también corresponde al trío pitagórico 6, 8, 10 F α 10 6 α 8 G demás como el triángulo es semejante con FG, se asume que F es también semejante con FG,entonces sus lados son proporcionales y podemos decir que: PH Preuniversitario, dición

16 Matemática 006 Solucionario F 8 6 = 6 G = F G Trazo G = 36 8 Trazo G = 4,5 (Reemplazando los trazos conocidos) (espejando (ividiendo) 16 PH Preuniversitario, dición 005

Tutorial MT-a4. Matemática Tutorial Nivel Avanzado. Figuras inscritas y circunscritas

Tutorial MT-a4. Matemática Tutorial Nivel Avanzado. Figuras inscritas y circunscritas 134567890134567890 M ate m ática Tutorial MT-a4 Matemática 006 Tutorial Nivel vanzado Figuras inscritas y circunscritas Matemática 006 Tutorial Figuras inscritas y circunscritas 1. Figuras inscritas: Se

Más detalles

Tutorial MT-b5. Matemática Tutorial Nivel Básico. Triángulos I

Tutorial MT-b5. Matemática Tutorial Nivel Básico. Triángulos I 134567890134567890 M ate m ática Tutorial MT-b5 Matemática 006 Tutorial Nivel ásico Triángulos I Matemática 006 Tutorial Triángulos 1 Marco Teórico 1. efinición: polígono de 3 lados.. lementos primarios:

Más detalles

Tutorial MT-b13. Matemática Tutorial Nivel Básico. Circunferencia y círculo

Tutorial MT-b13. Matemática Tutorial Nivel Básico. Circunferencia y círculo 134567890134567890 M ate m ática Tutorial MT-b13 Matemática 006 Tutorial Nivel ásico ircunferencia y círculo Matemática 006 Tutorial ircunferencia y írculo Marco Teórico 1. Elementos de la circunferencia

Más detalles

4.1 Medida de ángulo: sistema sexagesimal. Para medir la amplitud de un ángulo podemos utilizar el sistema sexagesimal. 180º

4.1 Medida de ángulo: sistema sexagesimal. Para medir la amplitud de un ángulo podemos utilizar el sistema sexagesimal. 180º PÍTULO 4 Tópicos de Geometría Geometría, palara que proviene del griego, geo: tierra; metrein: medir, es una de las ramas mas antiguas de las ciencias, que tal vez ha tenido y tenga mayor incidencia en

Más detalles

Contenidos. Triángulos I. Elementos primarios. Clasificación. Elementos secundarios. Propiedad Intelectual Cpech

Contenidos. Triángulos I. Elementos primarios. Clasificación. Elementos secundarios. Propiedad Intelectual Cpech ontenidos Triángulos I Elementos primarios lasificación Elementos secundarios Triángulos Es un polígono de tres lados. Posee tres vértices, tres lados, tres ángulos interiores y tres ángulos exteriores.

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,

Más detalles

Tema 5: Semejanza. 1.- Introducción: Concepto de Escala y Teorema de Pitágoras.

Tema 5: Semejanza. 1.- Introducción: Concepto de Escala y Teorema de Pitágoras. Tema 5: Semejanza. En este tema nos dedicaremos al estudio de los triángulos y polígonos, y dedicaremos un apartado a un famoso teorema, que nos será de utilidad para entender la semejanza entre ellos:

Más detalles

Tutorial MT-b9. Matemática Tutorial Nivel Básico. Trigonometría en triángulo rectángulo

Tutorial MT-b9. Matemática Tutorial Nivel Básico. Trigonometría en triángulo rectángulo 45678904567890 M ate m ática Tutorial MT-b9 Matemática 006 Tutorial Nivel Básico Trigonometría en triángulo rectángulo Matemática 006 Tutorial Trigonometría en triangulo rectángulo.un poco de historia:

Más detalles

SGUICES029MT22-A16V1. SOLUCIONARIO Teorema de Thales y división de segmentos

SGUICES029MT22-A16V1. SOLUCIONARIO Teorema de Thales y división de segmentos SGUIS09MT-1V1 SOLUIONRIO Teorema de Thales y división de segmentos 1 TL ORRIÓN GUÍ PRÁTI TORM THLS Y IVISIÓN SGMNTOS Ítem lternativa 1 omprensión 5 7 8 9 10 11 1 1 1 S 15 1 S 17 18 S 19 0 S 1 S S 5 S 1.

Más detalles

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo: 3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-

Más detalles

Estándar Anual. Matemática. Ejercicios PSU. Guía práctica Generalidades de los triángulos GUICES022MT22-A16V1. Programa

Estándar Anual. Matemática. Ejercicios PSU. Guía práctica Generalidades de los triángulos GUICES022MT22-A16V1. Programa rograma Estándar nual Nº Guía práctica Generalidades de los triángulos Ejercicios U 1. Los ángulos interiores de un triángulo están en la razón 5 : 6 : 7, entonces el ángulo exterior adyacente al menor

Más detalles

a) Forma de Escalera:

a) Forma de Escalera: Chía, Febrero 8 de 2016 Buenos días Señores Estudiantes de los grados 902,903,y 904 a continuación encontrarán el trabajo que deben realizar de forma escrita en el cuaderno y debe ser entregado el día

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado... Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo

Más detalles

PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES:

PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: http://espaiescolar.wordpress.com CONCEPTOS PREVIOS PROPORCIONALIDAD Recta: línea continua formada por

Más detalles

EGRESADOS. Matemática PROGRAMA. Guía: Generalidades de ángulos, polígonos y cuadriláteros. Ejercicios PSU // L 2. 1.

EGRESADOS. Matemática PROGRAMA. Guía: Generalidades de ángulos, polígonos y cuadriláteros. Ejercicios PSU // L 2. 1. PROGRM GRSOS Guía: Generalidades de ángulos, polígonos y cuadriláteros jercicios PSU 1. n la figura, L 1 // L 2 // L 3, entonces α mide ) 82º ) 90º ) 122º ) 168º ) 238º L 1 L 2 110º a L 3 12º Matemática

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

SEMEJANZA Y PROPORCIONALIDAD

SEMEJANZA Y PROPORCIONALIDAD SEMEJANZA Y PROPORCIONALIDAD Teorema de Pitágoras En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos. congruencia ( ) : Dos figuras son congruentes

Más detalles

RAZONAMIENTO GEOMÉTRICO

RAZONAMIENTO GEOMÉTRICO RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros

Más detalles

Puntos y rectas en el triángulo

Puntos y rectas en el triángulo Puntos y rectas en el triángulo En los triángulos hay un conjunto de rectas y puntos importantes. Las rectas son las bisectrices, las mediatrices, las alturas, las medianas y las bisectrices exteriores.

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica

Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica Ángulos. DEFINICIÓN FIGURA OBSERVACIONES Ángulo. Es la abertura formada por dos semirrectas unidas en un solo punto llamado vértice. Donde: α = Ángulo O = Vértice OA = Lado inicial OB = Lado terminal Un

Más detalles

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es

Más detalles

Tutorial MT-b4. Matemática Tutorial Nivel Básico. Ángulos y Polígonos

Tutorial MT-b4. Matemática Tutorial Nivel Básico. Ángulos y Polígonos 12345678901234567890 M ate m ática Tutorial MT-b4 Matemática 2006 Tutorial Nivel Básico Ángulos y Polígonos Matemática 2006 Tutorial Angulos y polígonos Marco Teórico 1. Sistemas de medición angular: Utilizamos

Más detalles

1. En cuál(es) de las siguientes figuras el triángulo F es siempre semejante con el triángulo G? 63º 31º

1. En cuál(es) de las siguientes figuras el triángulo F es siempre semejante con el triángulo G? 63º 31º PROGRM GRSOS Guía: Semejanza de triángulos jercicios PSU 1. n cuál(es) de las siguientes figuras el triángulo es siempre semejante con el triángulo G? I) G 2º 2º II) 31º 86º G 31º 63º III) G Matemática

Más detalles

Congruencia, Semejanza y Proporcionalidad de Triángulos

Congruencia, Semejanza y Proporcionalidad de Triángulos PreUnAB Congruencia, Semejanza y Proporcionalidad de Triángulos Clase # 16 Septiembre 2013 Congruencia de triángulos Definición Dos triángulos son congruentes si tienen la misma forma y las mismas medidas.

Más detalles

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008 TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

PSU Matemática NM-4 Guía 21: Semejanza de Triángulos

PSU Matemática NM-4 Guía 21: Semejanza de Triángulos 1 entro ducacional San arlos de ragón. pto. Matemática. Nivel NM 4 Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 1: Semejanza de Triángulos Nombre: urso: Fecha: - ontenido: trazos proporcionales. prendizaje

Más detalles

Ángulos 1º = 60' = 3600'' 1' = 60''

Ángulos 1º = 60' = 3600'' 1' = 60'' Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para

Más detalles

Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA

Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA ASIGNATURA: Cálculo Diferencial e Integral I PROFESOR: José Alexander Echeverría Ruiz CUATRIMESTRE: Segundo TÍTULO DE LA

Más detalles

1. Teoremas válidos para triángulos rectángulos

1. Teoremas válidos para triángulos rectángulos 1. Teoremas válidos para triángulos rectángulos Sea ABC triángulo rectángulo en C, entonces: El lado opuesto al ángulo recto, AB, es llamado HIPOTENUSA, y los lados AC y BC, CATETOS. cateto hipotenusa

Más detalles

MATEMÁTICAS 2º ESO SEMEJANZA Y TEOREMA DE THALES

MATEMÁTICAS 2º ESO SEMEJANZA Y TEOREMA DE THALES MATEMÁTICAS º ESO SEMEJANZA Y TEOREMA DE THALES S1 SEMEJANZA DE FIGURAS. RAZÓN DE SEMEJANZA O ESCALA. Dos figuras son semejantes si tienen la misma forma, aunque quizá distinto tamaño. La razón de semejanza

Más detalles

Teoremas de los ángulos. Los ángulos adyacentes son suplementarios. Los ángulos opuestos por el vértice son congruentes

Teoremas de los ángulos. Los ángulos adyacentes son suplementarios. Los ángulos opuestos por el vértice son congruentes Resumen de Matemática LiceoProm14.tk Nomenclatura: (Solo para circunferencias) Rectas perpendiculares Rectas paralelas Teoremas de los ángulos Teorema 1: Los ángulos adyacentes son suplementarios. Teorema

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante?

Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante? Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante? Cuántas veces nos hemos parado a pensar, esas dos personas mira que se parecen, casi son igualitas! De igual manera, cuando

Más detalles

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas

Más detalles

NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo?

NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo? FICHA REFUERZO TEMA 8: TEOREMA DE PITAGORAS. SEMEJANZA. CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Los dos lados menores de un triángulo miden 8 cm y 15 cm. Cuánto debe medir el tercero para que

Más detalles

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II Unidad 1: Percibimos y representamos los objetos 1.- Descripción de las figuras geométricas en el plano. Clasificación de triángulos y cuadriláteros.

Más detalles

EGRESADOS. Matemática PROGRAMA. Guía: Teoremas de proporcionalidad en la circunferencia. Ejercicios PSU

EGRESADOS. Matemática PROGRAMA. Guía: Teoremas de proporcionalidad en la circunferencia. Ejercicios PSU OGM EGESOS Guía: Teoremas de proporcionalidad en la circunferencia Ejercicios SU 1. En la figura, y son cuerdas, E =, E = 0 y E = 5. uál es el valor de? ) 9 ) 5 ) 1 ) 1 E) Ninguno de los valores anteriores.

Más detalles

2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos?

2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 1. Qué relaciones ligan las razones trigonométricas de (45º-a) y (45º+a) 2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 3. Demostrar la fórmula: 4. Expresar

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1 SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT-A16V1 1 TABLA DE CORRECCIÓN Ítem Alternativa 1 B E Comprensión 3 B 4 B 5 D 6 C 7 E 8 A 9 A 10 B 11 C 1 C 13 B 14 E 15 A 16 D 17 B 18 D Comprensión

Más detalles

TEOREMA DE PITÁGORAS

TEOREMA DE PITÁGORAS TEOREMA DE PITÁGORAS 1. Triángulos rectángulos. Teorema de Pitágoras.. Demostraciones visuales del Teorema de Pitágoras. 3. Ternas pitagóricas. 4. Aplicaciones del teorema de Pitágoras. 4.1.Conocidos los

Más detalles

TALLER No. 17 GEOMETRÍA

TALLER No. 17 GEOMETRÍA TLLER No. 17 GEOMETRÍ ontenidos: Los triángulos Fecha de entrega: Mayo 12 de 2014 1. Investigue sobre las líneas y puntos notables en un triángulo. 2. Responda las siguientes preguntas: a. Qué es un polígono?

Más detalles

5.5 LÍNEAS TRIGONOMÉTRICAS

5.5 LÍNEAS TRIGONOMÉTRICAS 5.5 LÍNES TRIGONOMÉTRIS Sea (O, ) una circunferencia con centro en el origen de coordenadas O(0, 0) radio la unidad. Si se construe un ángulo con vértice en el origen sentido positivo podemos obtener las

Más detalles

Ángulos correspondientes iguales. Calcular el perímetro ABCD y A B C D, en qué razón se encuentran?

Ángulos correspondientes iguales. Calcular el perímetro ABCD y A B C D, en qué razón se encuentran? Instituto Nacional Dpto. Matemáticas N. Henríquez. [email protected] GUÍ DE EJERIIOS SEMEJNZ Propósitos: I. Reconocer figuras semejantes. II. Demostrar aplicando criterios de semejanza

Más detalles

Los triángulos. El lado AB es opuesto al vértice C y al ángulo C.

Los triángulos. El lado AB es opuesto al vértice C y al ángulo C. Los triángulos Los triángulos ' Se denomina con la secuencia de vértices:. es un ángulo interior, denominado sencillamente ángulo del triángulo. ' es un ángulo exterior. El lado es opuesto al vértice y

Más detalles

6 Figuras semejantes. Teorema de Tales

6 Figuras semejantes. Teorema de Tales TIVIS MPLIIÓN 6 Figuras semejantes. Teorema de Tales 1. La base y la altura de un rectángulo miden, respectivamente, 1 y 8 cm. Sabemos que otro rectángulo semejante al dado tiene un área de 54 cm. uánto

Más detalles

Líneas paralelas. Se llaman líneas paralelas las que se hallan en un mismo plano y no se intersectan por mas que se prolonguen.

Líneas paralelas. Se llaman líneas paralelas las que se hallan en un mismo plano y no se intersectan por mas que se prolonguen. 1.1 ngulos entre paralelas. apítulo 1. onceptos ásicos de Geometría Líneas paralelas. Se llaman líneas paralelas las que se hallan en un mismo plano y no se intersectan por mas que se prolonguen. Si una

Más detalles

a1 3 siendo a 1 y a 2 las aristas. 2 a a1

a1 3 siendo a 1 y a 2 las aristas. 2 a a1 Semejanza y Trigonometria. 77 Ejercicios para practicar con soluciones Dos rectángulos tienen sus lados proporcionales. Los lados del primero miden 6 y 8 cm respectivamente. Si el perímetro del segundo

Más detalles

Criterios de semejanza de triángulos. Criterios de semejanza de triángulos rectángulos. Criterios de semejanza de polígonos.

Criterios de semejanza de triángulos. Criterios de semejanza de triángulos rectángulos. Criterios de semejanza de polígonos. Semejanza INTRODUCCIÓN El primer objetivo de esta unidad es repasar el teorema de Tales usarlo para dividir un segmento en partes iguales. Como aplicación de dicho teorema, tratamos los criterios de semejanza

Más detalles

Parte II. Geometría.

Parte II. Geometría. Parte II Geometría. 71 Capítulo 6 El Tangram. 6.1 Tipos y reglas de uso. Un antiguo pasatiempo chino conocido también como La Tabla de las Siete Sabidurías o Siete Vivezas. Rompecabezas cuyo carácter

Más detalles

GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS

GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS Para el estudio de la Trigonometría es importante tomar en cuenta conocimientos básicos sobre: concepto de triángulo, su clasificación, conceptos de ángulos

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

1 Ángulos en las figuras planas

1 Ángulos en las figuras planas Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis

Más detalles

Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360

Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360 Triángulos Es un polígono formado por tres segmentos cuyos tres puntos de intersección no están en línea recta. Triángulo ABC A,B y C son vértices del triángulo α, β, γ s interiores. a, b y c, longitud

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Página 160 PRCTIC Ángulos 1 Calcula la medida de X en cada figura: a) 180 139 40' b) 180 17 a) b) ^ 40 0' X^ ^ ^ X^ ^ 53 Calcula la medida de X en cada caso: a) ^ ^ 140 ^ 150 b) ^ X^ ^ c) ^ 33 ^

Más detalles

TRIÁNGULOS Y CUADRILÁTEROS.

TRIÁNGULOS Y CUADRILÁTEROS. TRIÁNGULOS Y CUADRILÁTEROS. 1. Triángulos. Al polígono de tres lados se le llama triángulo. Clasificación: Según sus lados, un triángulo puede ser Equilátero, si tiene los tres lados iguales Isósceles,

Más detalles

G - 8. Guía Cursos Anuales. Matemática. Cuadriláteros 1 y 2

G - 8. Guía Cursos Anuales. Matemática. Cuadriláteros 1 y 2 G - 8 Guía ursos nuales Matemática 2008 uadriláteros 1 y 2 Guía ursos nuales Introducción La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

Profr. Efraín Soto Apolinar. Polígonos

Profr. Efraín Soto Apolinar. Polígonos Polígonos En esta sección vamos a utlizar las fórmulas que a conocemos para calcular perímetros áreas de polígonos. Para esto es una buena idea recordar las fórmulas de áreas de los polígonos. alcula el

Más detalles

Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales.

Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales. TEMA 8: PROBLEMAS MÉTRICOS EN EL PLANO ÁNGULOS EN LA CIRCUNFERENCIA Ángulo central es aquel cuyo vértice está en el centro de la circunferencia. Ángulo inscrito es aquel cuyo vértice está en la circunferencia.

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ANGULOS Y TRIANGULOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ANGULOS Y TRIANGULOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ANGULOS Y TRIANGULOS CONCEPTOS BÁSICOS Punto, línea recta y plano: son conceptos que no de nimos pero utilizamos su representación grá

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

UNIDAD 4. Semejanza. Teorema de Tales

UNIDAD 4. Semejanza. Teorema de Tales Matemática UNIDD 4. Semejanza. Teorema de Tales 2 Medio GUÍ N 1 PLNOS Y DIUJOS ESL Sabes lo que es un dibujo a escala? Un dibujo está en la escala 1:k, si cada centímetro en el dibujo representa k centímetros

Más detalles

La Geometría del triángulo TEMA 4

La Geometría del triángulo TEMA 4 La Geometría del triángulo TEMA 4 Teoremas de Triángulos Rectángulos Diana Barredo Blanco Profesora de Matemáticas I.E.S. Luis de Camoens (CEUTA) En este tema vamos a estudiar los teoremas o resultados

Más detalles

4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS

4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS 4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS POLÍGONOS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 4.3.1. Dos nuevas demostraciones del teorema de Pitágoras. 4.3.1. Dos nuevas

Más detalles

La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es:

La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es: TEMA 7: SEMEJANZA FIGURAS SEMEJANTES Dos figuras son semejantes si sus segmentos correspondientes, u homólogos, son proporcionales y sus ángulos iguales. Es decir; o son iguales, o tienen "la misma forma"

Más detalles

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano Soluciones a las actividades de cada epígrafe PÁGINA 88 1 En los siguientes triángulos rectángulos, se dan dos catetos y se pide la hipotenusa (si su medida no es eacta, dala con una cifra decimal): a)

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: GEOMETRIA DOCENTE: HUGO BEDOYA TIPO DE GUIA: CONCEPTUAL Y EJERCITACION PERIODO GRADO No. FECHA DURACION 3 7 2 FEBRERO

Más detalles

Guía 3. Semejanzas de triángulos, Teorema de Tales, Teorema de la Bisectriz, Teorema del Seno.

Guía 3. Semejanzas de triángulos, Teorema de Tales, Teorema de la Bisectriz, Teorema del Seno. Guía 3. Semejanzas de triángulos, Teorema de Tales, Teorema de la Bisectriz, Teorema del Seno. Sofía Taylor Enero 2011 1 Principios Teóricos 1.1 Semejanza de Triángulos Se dice que un triángulo es semejante

Más detalles

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS IES IGNACIO ALDECOA 19 TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS 4.1 Medida de ángulos. Equivalencias. Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas

Más detalles

G - 7. Guía Cursos Anuales. Matemática. Cuadriláteros II

G - 7. Guía Cursos Anuales. Matemática. Cuadriláteros II G - 7 Guía ursos nuales Matemática 2008 uadriláteros II Guía ursos nuales Introducción La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso de

Más detalles

3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad:

3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad: III. UNIDAD: GEOMETRIA ANALITICA LANA. La Geometría Analítica permite usar los métodos algebraicos en la solución de problemas geométricos, recíprocamente, los métodos de la geometría analítica pueden

Más detalles

4, halla sen x y tg x. 5

4, halla sen x y tg x. 5 TRIGONOMETRÍA 1º.- Sabiendo que 90 º < x < 70 º y que 4, halla sen x y tg x. 5 a) sen x? ; de la fórmula fundamental sen x + cos x 1 se obtiene sen x 1 - cos x. 9 5 de donde sen x 5 3, solución positiva

Más detalles

GEOMETRIA GRADO 8 PROF. LIC. ESP. BLANCA NIEVES CASTILLO R. CORREO: cel

GEOMETRIA GRADO 8 PROF. LIC. ESP. BLANCA NIEVES CASTILLO R. CORREO: cel PENSAMIENTO NUMÉRICO Y PENSAMIENTO VARIACIONAL Triángulos Clasificación de triángulos Construcción de triángulos Líneas notables en el triángulo Utilizo los criterios de congruencias y semejanzas entre

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

PRIMER ENSAYO EXAMEN DE GEOMETRIA Las diagonales de un rombo miden 10 cm y24cm. Entonces el perímetro del rombo es:

PRIMER ENSAYO EXAMEN DE GEOMETRIA Las diagonales de un rombo miden 10 cm y24cm. Entonces el perímetro del rombo es: EJÉRITO E HILE OMNO E INSTITUTOS MILITRES cademia Politécnica Militar PRIMER ENSYO EXMEN E GEOMETRI 2005 1. Las diagonales de un rombo miden 10 cm y24cm. Entonces el perímetro del rombo es: a) 68cm b)

Más detalles

Seminario de problemas. Curso Hoja 5

Seminario de problemas. Curso Hoja 5 Seminario de problemas. Curso 2014-15. Hoja 5 29. Encuentra los números naturales N que cumplen las siguientes condiciones: sus únicos divisores primos son 2 y 3, y el número de divisores de N 2 es el

Más detalles

Teorema de Pitágoras Distancia y Puntos Medios

Teorema de Pitágoras Distancia y Puntos Medios Slide 1 / 78 Teorema de Pitágoras Distancia y Puntos Medios Tabla de Contenidos Slide 2 / 78 Teorema de Pitágoras Haga clic en un tema para ir a esa sección Fórmula de la Distancia Puntos Medios Slide

Más detalles

Tema 4: Dos teoremas básicos. Pitágoras y Tales.

Tema 4: Dos teoremas básicos. Pitágoras y Tales. Tema 4: Dos teoremas básicos. Pitágoras y Tales. Teorema de Pitágoras. Aplicaciones. Figuras semejantes. Teorema de Tales. Aplicaciones. 1 Distancia. Teorema de Pitágoras. El Teorema de Pitágoras es seguramente

Más detalles

6Soluciones a los ejercicios y problemas PÁGINA 139

6Soluciones a los ejercicios y problemas PÁGINA 139 ÁGIN 9 ág. RTI Figuras semejantes uáles de estas figuras son semejantes? uál es la razón de semejanza? F F F F es semejante a F. La razón de semejanza es. a) Son semejantes los triángulos interior y eterior?

Más detalles

Introducción. 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales?

Introducción. 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales? EL TRIÁNGULO: Un polígono con propiedades especiales Identificación de los puntos y las líneas notables del triángulo Introducción 1. Sabes por qué se sostienen los triángulos? 2. Son todos iguales? Figura

Más detalles

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta.

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta. CONCEPTOS Y TEOREMAS BÁSICOS PARA LA RESOLUCIÓN DE PROBLEMAS DE GEOMETRÍA PLANA 1. CONSIDERACIONES GENERALES El objeto de la Geometría plana es el estudio de las figuras geométricas en el plano desde el

Más detalles

I) Resuelve y encierra en un círculo la alternativa correcta.

I) Resuelve y encierra en un círculo la alternativa correcta. entro Educacional San arlos de ragón. oordinación cadémica Enseñanza Media. Sector: Matemática. Prof.: Ximena Gallegos H. 1 Guía Nº 8 PSU Matemática NM : Áreas y Perímetros Nombre: urso: Fecha: ontenido:

Más detalles

1 Ayudándote de la trama cuadrada de lado 1cm, dibuja una figura semejante a la siguiente cuyos lados midan el doble que los originales.

1 Ayudándote de la trama cuadrada de lado 1cm, dibuja una figura semejante a la siguiente cuyos lados midan el doble que los originales. Ayudándote de la trama cuadrada de lado cm, dibuja una figura semejante a la siguiente cuyos lados midan el doble que los originales. Comprueba que las dos figuras siguientes son semejantes: 3 Los lados

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUCIÓN DE TRIÁNGULOS Resolver un triángulo consiste en determinar la longitud de sus tres lados y la amplitud de sus tres ángulos. Vamos a recordar primero la resolución para triángulos rectángulos

Más detalles

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2.

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2. 1. Resolver las siguientes ecuaciones en Q. ARITMÉTICA a) b) 3. x + 1 = 3 83 3,90x x = 3 31 c) 0,x + x 4,16 = 6 d) ( x ) ( x ) + 3 1 = + 1 4 e) f) g) x x + = 0,3 0, 6x 3 0, 6 1x + 6x = 0,3 8 0,86x 0,73

Más detalles

Guía de ejercicios 2º medio(thales, homotecia,euclides,división interior) Nombre..

Guía de ejercicios 2º medio(thales, homotecia,euclides,división interior) Nombre.. Guía de ejercicios 2º medio(thales, homotecia,euclides,división interior) Nombre.. 1) En la figura, AC // BD, entonces x mide: 2) Con respecto a la figura, donde AB // CD // EF, cuál de las siguientes

Más detalles

SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA

SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO III - GEOMETRIA ENCUENTRO NÚMERO CUATRO TEOREMA DE PITÁGORAS 17 DE AGOSTO DEL 2014 MANAGUA FINANCIADO POR: FUNDACIÓN

Más detalles

1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior?

1 Cuáles de estas figuras son semejantes? Cuál es la razón de semejanza? 2 a) Son semejantes los triángulos interior y exterior? Pág. 1 Figuras semejantes 1 uáles de estas figuras son semejantes? uál es la razón de semejanza? F 1 F 2 F 3 2 a) Son semejantes los triángulos interior y eterior? b) uántas unidades medirán los catetos

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría-8a- Soluciones de relaciones métricas en los triángulos Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría-8a- Soluciones de relaciones métricas en los triángulos Fecha: Profesor: Fernando Viso GUIA DE TRAJO Materia: Matemáticas. Tema: Geometría-8a- Soluciones de relaciones métricas en los triángulos Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual.

Más detalles

TEMAS 4 Y 5 TRIGONOMETRÍA

TEMAS 4 Y 5 TRIGONOMETRÍA Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad

Más detalles

Capítulo 7. Trigonometría del triángulo rectángulo. Contenido breve. Presentación. Módulo 17 Medición de ángulos. Módulo 18 Ángulos notables

Capítulo 7. Trigonometría del triángulo rectángulo. Contenido breve. Presentación. Módulo 17 Medición de ángulos. Módulo 18 Ángulos notables Capítulo 7 Trigonometría del triángulo rectángulo Contenido breve Módulo 17 Medición de ángulos Módulo 18 Ángulos notables La trigonometría se utiliza para realizar medidas indirectas de posición y distancias.

Más detalles

EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha

Más detalles