Tema 4: Dos teoremas básicos. Pitágoras y Tales.
|
|
|
- María Antonia Naranjo Hidalgo
- hace 9 años
- Vistas:
Transcripción
1 Tema 4: Dos teoremas básicos. Pitágoras y Tales. Teorema de Pitágoras. Aplicaciones. Figuras semejantes. Teorema de Tales. Aplicaciones. 1
2 Distancia. Teorema de Pitágoras. El Teorema de Pitágoras es seguramente el resultado más importante de la geometría elemental. No es parte del curriculum de primaria (ni opino que debiera serlo). Lo que sí creo es que es un resultado con muchas consecuencias, y que debe ser conocido y entendido por cualquier profesor de primaria. 2
3 El Teorema (p. 129) Un triángulo es rectángulo si tiene un ángulo recto. Los dos lados adyacentes al ángulo recto se llaman catetos, y el otro hipotenusa. Teorema de Pitágoras: En cualquier triángulo rectángulo, si a y b son las longitudes de los catetos, y c la de la hipotenusa, se verifica que c 2 = a 2 + b 2. a c 3 b
4 Interpretación con áreas. Teorema de Pitágoras c 2 = a 2 + b 2 a b c Un poco de historia: los egipcios y babilonios ya conocían algunas ternas pitagóricas. la primera demostración se debe a Pitágoras (Grecia, 500 a.c). 4
5 Demostración del teorema En 1927, E. S. Loomis catalogó 367 demostraciones distintas. Veamos una especialmente sencilla: a c a b c b (b a) 2 5 c 2 = 4 ab 2 + (b a)2 = a 2 + b 2
6 Demostración del teorema Y una segunda (y última) sin nada de álgebra. a b c a b a b 6
7 Comentario histórico Una consecuencia importante del teorema fue la conclusión de que la diagonal de un cuadrado de lado 1 mide 2. Los pitagóricos también comprobaron, horrorizados, que ese número no se podía escribir como cociente de números naturales. Habían descubierto los números irracionales. 7
8 Problemas Calcula el área del triángulo de la figura. 5 cm 13 cm Calcula el área de un cuadrado cuya diagonal mide 5 m. Calcula el área de un triángulo equilátero de perímetro 6 m. 8
9 Recíproco del teorema El recíproco del teorema también es cierto, es decir: Si un triángulo tiene lados de longitudes a, b y c, y se cumple que c 2 = a 2 + b 2, entonces el triángulo es rectángulo. Veamos la idea de la demostración con un ejemplo: Demuestra que un triángulo de lados 6, 8 y 10 es un triángulo rectánculo, siguiendo los siguientes pasos: 1. Construye un triángulo T con dos lados de longitud 6 y 8, y que formen un ángulo recto entre ellos. 2. Calcula la longitud del tercer lado de T. 3. Por qué el triángulo del enunciado y T son iguales? 9
10 Algunas aplicaciones Distancia de un punto a una recta. P r Cuál es el conjunto de puntos que están a la misma distancia que P de la recta r? 10
11 Recta tangente a una circunferencia Propiedad: La recta tangente a una circunferencia es perpendicular al radio en el punto de tangencia. Para comprobar que esto es así piensa en el punto de la recta más cercano al centro de la circunferencia. Esta propiedad es la base de la siguiente construcción: Construye una recta tangente a la circunferencia C desde un punto P (exterior a C). C P 11
12 12 Ternas pitagóricas (p. 134) Tres números (a, b, c) forman una terna pitagórica si cumplen que c 2 = a 2 + b 2 (es decir, si existe un triángulo rectángulo con esos lados). Para dos números naturales m y n (con m > n), considera los números a = m 2 n 2, b = 2mn Obs: a 2 + b 2 es siempre un cuadrado perfecto. a = m 2 n 2 Los números b = 2mn forman siempre una c = m 2 + n 2 terna pitagórica (si m > n). Ejercicio: construye triángulos rectángulos que tengan un cateto de longitud 40.
13 Triángulos rectángulos especiales (p. 139) Triángulo rectángulo isósceles. Ejercicio: cuál es el área de un triángulo rectángulo isósceles cuya hipotenusa mide 10 cm? 13
14 Triángulos (p. 141) Un triángulo rectángulo con ángulos de 30 y 60 es la mitad de un triángulo equilátero. Por tanto, en estos triángulos el cateto menor mide la mitad que la hipotenusa. Ejercicio: Calcula el área del triángulo de la figura cm
15 Ejercicios En la figura BC = 6 cm, CD = 5 cm y AC = 12 cm. Determina la longitud de AD. D C A B Calcula el área y el perímetro del cuadrilátero de la figura
16 Semejanza El cerebro humano está muy entrenado para detectar la semejanza (proporcionalidad). Esto hace que sea sencillo adquirir la idea intuitiva de figuras semejantes: 16 Dos figuras son semejantes si tienen la misma forma (aunque pueden tener distinto tamaño).
17 Primeros ejemplos La cuadrícula facilita la presentación de los primeros ejemplos. La semejanza se puede estudiar de forma un poco más precisa en el tercer ciclo (después de la proporcionalidad). 17
18 Triángulos semejantes Definición: Dos triángulos son semejantes si sus ángulos correspondientes son iguales y sus lados correspondientes son proporcionales. Al cociente (proporción) de las longitudes de los lados se le llama razón de semejanza (factor de escala). A ABC y UV W son semejantes si: CAB = W UV ABC = UV W BCA = V W U AB UV = BC V W = CA W U (= r) B V U C W 18
19 Triángulos semejantes Una idea fundamental de este tema es que, en el caso de los triángulos, los ángulos determinan la forma. En concreto, si dos triángulos tienen ángulos correspondientes iguales, entonces son semejantes. Este hecho se puede motivar en primaria con ejercicios como: construye dos triángulos con ángulos 50, 60 y 70 y comprueba que sus lados son proporcionales. construye un triángulo de lados 4 cm, 8 cm y 10 cm, y otro de lados 6 cm, 12 cm y 15 cm, y luego mide sus ángulos. 19
20 Triángulos semejantes Si los triángulos ABC y UV W son semejantes, escribimos ABC UV W. Consideremos dos triángulos que tienen ángulos iguales: Siempre se pueden colocar en esta posición: Ahora, los dos lados no coincidentes son paralelos. Y que los triángulos son semejantes será consecuencia del Teorema de Tales. 20
21 Teorema de Tales Teorema: Si en el triángulo ACE de la figura el segmento BD es paralelo al segmento CE, entonces AB AC = AD AE A B C D E Demostración: A (1) Área(CED) = Área(CEB) (2) Área(CDB) = Área(EBD) B D 21 (3) Área(CDA) = Área(EBA) C E
22 Teorema de Tales A B D h h 2 1 C E (3) Área(CDA) = Área(EBA) AD h 2 2 = AB h 1 2 (1) Área(CED) = Área(CEB) Dividiendo, AB BC = AD DE 22 DE h 2 2 AB AC = AD AE = BC h 1 2
23 Teorema de Tales: versión extendida Si dos rectas secantes son intersecadas por dos rectas paralelas, en la configuración resultante los segmentos correspondientes son proporcionales. B A D B A D C E E C 23 AB AC = AD AE = BD CE AB BC = AD DE AB AC = AD AE = BD EC AB BC = AD DE
24 Triángulos semejantes El Teorema de Tales nos da este criterio de semejanza: Criterio AAA: Si dos triángulos tienen ángulos correspondientes iguales, entonces son semejantes. Obsérvese que es suficiente comprobar que 2 ángulos son iguales. 24
25 Problemas En la figura de abajo: 1. Por qué son semejantes los dos triángulos? 2. Cuál es la razón de semejanza? 3. Cuánto vale y? 4. Cuál es la razón entre las áreas? y Un comentario: obsérvese que, precisamente gracias a la semejanza, se puede prescindir de las unidades en este tipo de problemas. 25
26 Problemas El otro día vi en el puerto de Barcelona un crucero que tenía 300 m de eslora (longitud). Un rato después lo volví a ver desde la playa, y comprobé que se movía paralelo a la costa y que lo tapaba aproximadamente con mi pulgar cuando extendía el brazo. Podrías dar un valor aproximado de a qué distancia se encontraba el crucero en ese momento? Construye un triángulo ABC (como quieras). Ahora, con regla (sin graduar) y compás, contruye un triángulo semejante que sea 3 veces mayor. 26
27 Criterios de semejanza Hay otros dos criterios de semejanza: Criterio LLL Si en dos triángulos los lados correspondientes son proporcionales, entonces los triángulos son semejantes Criterio LAL: Si dos triángulos tienen un ángulo igual y los lados adyacentes proporcionales, entonces son semejantes La justificación de estos criterios de semejanza es sencilla a partir de 27 los criterios de congruencia. 6
28 Problemas Demuestra que, en un triángulo rectángulo, la altura sobre la hipotenusa divide al triángulo en dos triángulos que son semejantes entre sí, y semejantes al triángulo completo. A ABC DAC DBA B D C Utilizando sólo un compás y una regla sin graduar, divide el segmento AB en 5 partes iguales. A B 28
29 Semejanza de poĺıgonos Dos poĺıgonos P y Q son semejantes si se puede establecer una correspondencia entre sus lados de forma que los ángulos correspondientes son iguales los lados correspondientes son proporcionales Ya no se puede eliminar ninguna condición. Por ejemplo, dos cuadriláteros pueden tener ángulos correspondientes iguales y no ser semejantes. 29
30 Construcción de poĺıgonos semejantes Problema: construye un poĺıgono semejante al de la figura con razón de semejanza Elige un punto del plano. 2. Traza rayos desde el punto por los vértices y toma distancia el triple. 30
31 Figuras semejantes Esta transformación de puede tomar como la definición de semejanza: Dos figuras son semejantes si se puede obtener una de la otra con una transformación como la de la transparencia anterior. Esto tiene la ventaja de que se puede hablar de semejanza de figuras que no son poĺıgonos. 31
32 La semejanza en la vida cotidiana Un plano es semejante al objeto que representa. La razón de semejanza es la escala. Una propuesta de actividad para el tercer ciclo de primaria: En el mapa se muestra la excursión que hicieron el otro día un grupo de amigos. 1. Cuál es la escala del mapa? 2. Podrías aproximar la longitud de la excursión? 32
33 La proporción áurea a + b a b a + b a = a b (= ϕ) ϕ = ϕ ϕ = El rectángulo áureo 1,618 número de oro (áureo) b 33 Al recortar un cuadrado a un rectángulo áureo se obtiene un rectángulo semejante al original. a a + b
34 ϕ: el número de oro (áureo) La proporción áurea siempre se ha considerado bella. - lo es intrínsecamente? - estamos acostumbrados a ella? La proporción áurea es ubicua: en la arquitectura (y en las artes, en general). en nuestras carteras (tarjetas de crédito, dni). en la naturaleza Por qué aparece en la naturaleza? Sucesión de Fibonacci 34
35 La sucesión de Fibonacci 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,... Definición recursiva: f n = f n 1 + f n 2, (f 1 = 1, f 2 = 1). A partir de esta definición no es difícil obtener una fórmula para f n. f n = 1 ( ) n 1 ( 1 5 ) n Y a partir de esta fórmula es fácil ver que 35 lím n f n+1 f n = ϕ
36 Sucesión de Fibonacci y proporción áurea Patrones de crecimiento Espiral logarítmica Rectángulos áureos En los procesos de crecimiento, no ocurre que f n = f n 1 + f n 2, sino que f n = f n 1 + f n 3 + f n 4. Para saber más: buscar Proporción áurea en naturaleza. 36 Ir a (en inglés).
Triángulos (Parte 2)
Triángulos (Parte 2) APRENDIZAJES ESPERADOS Analizar en el triángulo rectángulo, los teoremas de Pitágoras y Euclides. Aplicar los diferentes teoremas y propiedades de los triángulos rectángulos, equiláteros
GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría-8a- Soluciones de relaciones métricas en los triángulos Fecha: Profesor: Fernando Viso
GUIA DE TRAJO Materia: Matemáticas. Tema: Geometría-8a- Soluciones de relaciones métricas en los triángulos Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual.
4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES
4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES Y EL TEOREMA DE PITÁGORAS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS 4.1.1. El teorema de Thales y consecuencias. Thales de Mileto vivió hacia
1. Teoremas válidos para triángulos rectángulos
1. Teoremas válidos para triángulos rectángulos Sea ABC triángulo rectángulo en C, entonces: El lado opuesto al ángulo recto, AB, es llamado HIPOTENUSA, y los lados AC y BC, CATETOS. cateto hipotenusa
unidad 9 Problemas métricos en el plano
unidad 9 Problemas métricos en el plano Propiedades de los ángulo en los polígonos Página 1 Los ángulos de un triángulo suman 180. Los ángulos de un polígono de n lados suman 180 (n 2), pues se puede descomponer
Autora: Jeanneth Galeano Peñaloza. 2 de abril de Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 1/1
Autora: Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 2 de abril de 2013 1/1 Parte I Introducción a la geometría elemental 2/1 Nociones básicas Las
Geometría Conceptos básicos Elementos de Geometría. 1. Por un punto fuera de una recta pasa una única paralela a esa recta.
Geometría Conceptos básicos Elementos de Geometría Debido a que los conceptos de Geometría están siempre presente en Matemáticas, Física e Ingeniería, se hará un repaso de estas materias y se presentará
Modulo de aprendizaje de matemática. Semejanza de figuras planas.
Modulo de aprendizaje de matemática. Semejanza de figuras planas. Concepto de semejanza. EJEMPLO. Dos polígonos convexos son semejantes si tienen la misma forma con diferentes dimensiones. Diremos que
4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES
4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES Y EL TEOREMA DE PITÁGORAS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS. 4.1.1. El teorema de Thales y consecuencias. Thales de Mileto vivió hacia
Semejanza. Razones. Teorema de Thales. Proporciones. a = b. c d
Semejanza Razones Razones y proporciones Teorema de Thales Triángulos semejantes Teoremas de semejanza Teoremas de Euclides Perímetro y Área a) Razón. Es el cuociente entre dos números (positivos). b)
4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES
4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES Y EL TEOREMA DE PITÁGORAS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 4.1.1. El teorema de Thales y consecuencias. 4.1.1. El teorema
Colegio Fernando de Aragón Departamento de matemática Prof. Sergio Moreno SEMEJANZA N 15 NOMBRE: II FECHA: / /201
Colegio Fernando de Aragón Departamento de matemática Prof. Sergio Moreno N lista: SEMEJANZA N 15 NOMBRE: II FECHA: / /201 ALTERNATIVAS Cómo se puede saber si los polígonos ABCD y A B C D (figura 1) son
SEMEJANZA Y PROPORCIONALIDAD
SEMEJANZA Y PROPORCIONALIDAD Teorema de Pitágoras En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos. congruencia ( ) : Dos figuras son congruentes
MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas
MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas
MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano
MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia
EJERCICIOS ÁREAS DE REGIONES PLANAS
EJERCICIOS ÁREAS DE REGIONES PLANAS 1. En un triángulo equilátero se inscribe una circunferencia de radio R y otra de radio r tangente a dos de los lados y a la primera circunferencia, hallar el área que
TALLER DE ENTRENAMIENTO PARA SEMIFINAL Sábado 6 de mayo y jueves 11 de mayo Elaborado por: Gustavo Meza García. Ángulos
Ángulos Ejercicios: 1) Si un triángulo tiene 2 ángulos que miden 25 y 75 Cuánto mide el tercer ángulo? 2) Cuánto suman los ángulos internos de un cuadrilátero cualquiera? Teorema: 1) La suma de los ángulos
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es
GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.
GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el
Tema 2: Figuras geométricas
Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. 1 2 La circunferencia (p. 31) El cerebro humano es muy
Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360
Triángulos Es un polígono formado por tres segmentos cuyos tres puntos de intersección no están en línea recta. Triángulo ABC A,B y C son vértices del triángulo α, β, γ s interiores. a, b y c, longitud
ALGUNAS RELACIONES PARA RECORDAR:
ALGUNAS RELACIONES PARA RECORDAR: División Áurea de un trazo: Consideremos el trazo: AB AP AP PB Se dice que P divide de modo áureo al trazo AB. Es decir el mayor de los trazos es media proporcional entre
TEMA 7: PROPORCIONALIDAD GEOMÉTRICA
TEMA 7: PROPORCIONALIDAD GEOMÉTRICA Índice Definiciones Homotecia (transformación del plano que NO es un movimiento) Semejanza (transformación del plano que NO es un movimiento) Semejanza e igualdad de
PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES:
PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: http://espaiescolar.wordpress.com CONCEPTOS PREVIOS PROPORCIONALIDAD Recta: línea continua formada por
La razón entre los lados homólogos es la razón de semejanza. Si dos figuras son semejantes la razón entre sus áreas es:
TEMA 7: SEMEJANZA FIGURAS SEMEJANTES Dos figuras son semejantes si sus segmentos correspondientes, u homólogos, son proporcionales y sus ángulos iguales. Es decir; o son iguales, o tienen "la misma forma"
4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.
7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.
TEOREMAS, POSTULADOS Y COROLARIOS DE GEOMETRIA
UNIVERSIDAD PEDAGÓGICA NACIONAL FRANCISCO MORAZÁN CENTRO UNIVERSITARIO REGIONAL DE LA CEIBA COMITÉ NACIONAL DE OLIMPIADAS MATEMÁTICAS DE HONDURAS ACADEMIA TALENTOS MATEMÁTICOS DE ATLÁNTIDA TEOREMAS, POSTULADOS
NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo?
FICHA REFUERZO TEMA 8: TEOREMA DE PITAGORAS. SEMEJANZA. CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Los dos lados menores de un triángulo miden 8 cm y 15 cm. Cuánto debe medir el tercero para que
Repartido 2. Profesor Fernando Díaz Matemática II 5to cient. I.D.A.L. 2016
Repartido 2 Profesor Fernando Díaz Matemática II 5to cient. I.D.A.L. 2016 Actividad 1 Recordando al teorema de la bisectriz interior demostrado en clase, podemos decir que en el siguiente triángulo T(ABC)
5 Semejanza. Las transformaciones que mantienen la forma y las proporciones se llaman semejanzas. Unidad 5: Semejanzas
5 Semejanza 6 Las transformaciones que mantienen la forma y las proporciones se llaman semejanzas. LECTURA INICIAL ESQUEMA INTERNET ACTIVIDAD La proporción y la forma Busca en la web El número de oro en
MATEMÁTICAS 1º E.S.O.
CUADERNILLO RECUPERACIÓN DE PENDIENTES CURSO 2017/2018 MATEMÁTICAS 1º E.S.O. 3ª EVALUACIÓN Los ejercicios deben ser entregados en A4 blancos al profesor correspondiente en la fecha que éste le indique.
Bloque 33 Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano SGUICEG047EM33-A17V1
SGUICEG047EM33-A17V1 Bloque 33 Guía: Ubicación de puntos, distancia longitudes en el plano cartesiano TABLA DE CORRECCIÓN UBICACIÓN DE PUNTOS, DISTANCIAS Y LONGITUDES EN EL PLANO CARTESIANO N Clave Dificultad
Notas de Clase. Proporcionalidad y semejanza 2012
Proporcionalidad y semejanza Introducción En la figura adjunta se presentan las piezas de un rompecabezas. Los números escritos junto a los lados de los polígonos corresponden a las medidas de dichos lados
Fundación Uno. 2. En la figura, BD es una altura del triángulo ABC. Cuál es el valor de b a?
ENCUENTRO # 51 TEMA: Semejanza de triángulo. CONTENIDOS: 1. Razones y proporciones(teorema de Tales). 2. Criterios de Semejanza. 3. Ejercicios de aplicación. Ejercicio Reto 1. Examen de la UNI 2014 En
Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:
3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-
Teoremas del triángulo rectángulo
Pre-universitario Manuel Guerrero Ceballos Clase N 07 MODULO COMPLEMENTARIO Teoremas del triángulo rectángulo Resumen de la clase anterior Triángulos Elementos Generalidades Clasificación primarios secundarios
Geometría Básica 49 UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL
Geometría Básica 49 UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL GEOMETRÍA 10 Prof. Alfonso Sánchez ENCUENTRO 6 TRIÁNGULOS Y CUADRILÁTEROS A los filósofos
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS ÁREA Y PERÍMETRO DE FIGURAS PLANAS LINEA POLIGONAL: Se llama línea poligonal
Relaciones geométricas IES BELLAVISTA
Relaciones geométricas IES BELLAVISTA Igualdad y semejanza Dos figuras son iguales cuando sus lados y sus ángulos son iguales y están igualmente dispuestos. Dos figuras son semejantes cuando sus ángulos
2ª.- Halla el valor de Xˆ, Yˆ, Z ˆ, en los siguientes polígonos regulares:
TRABAJO DE RECUPERACIÓN DE GEOMETRÍA de 3º ESO 1ª.- Calcula el valor de Xˆ, Yˆ, Z ˆ, en los siguientes polígonos regulares: a) b) 2ª.- Halla el valor de Xˆ, Yˆ, Z ˆ, en los siguientes polígonos regulares:
TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad
TORNEOS GEOMÉTRICOS 2017. Primera Ronda Primer Nivel - 5º Año de Escolaridad Problema 1. El hexágono regular de la figura tiene área 6cm 2. Halla el área de la región sombreada. Solución: El triángulo
2º Polígonos semejantes. a) Razón de semejanza. b) Criterios de semejanza entre polígonos.
Tema 9º. Semejanza Nivel 2º E.S.O. 1 MATEMÁTICAS Nivel 2º E.S.O. Tema 9º SEMEJANZA Conocimientos que puedes adquirir: 1º Figuras semejantes. Ampliación y reducción. 2º Polígonos semejantes. a) Razón de
Tema 10: Problemas métricos en el plano
Tema 10: Problemas métricos en el plano 10.1 Relaciones angulares Construye un polígono de cinco lados, divídelo en triángulos para averiguar la suma de los ángulos interiores del pentágono. Nuestro pentágono
Tema 5 Proporcionalidad y escalas
Tema 5 Proporcionalidad y escalas Tema 5 Proporcionalidad y escalas...1 Proporcionalidad... 2 Razón...2 Proporción...2 Proporcionalidad directa...2 Proporcionalidad inversa...3 Construcción de la media
Seminario de problemas. Curso Hoja 5
Seminario de problemas. Curso 2014-15. Hoja 5 29. Encuentra los números naturales N que cumplen las siguientes condiciones: sus únicos divisores primos son 2 y 3, y el número de divisores de N 2 es el
( 2) 1. Simplificar las siguientes expresiones usando propiedades de la potenciación: a) f) 5 0 b) 2 6 : 2 3 g) 2 4.
DO AÑO. 014 TRABAJO PRÁCTICO 0 1. Simplificar las siguientes expresiones usando propiedades de la potenciación: a) 5.. f) 5 0 b) 6 : g) 4. - + c) 5-5. 5 h) 5 d) ( 5 ) 5 i) e) Esta Guía 0 contiene los prerrequisitos
INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES - MATEMÁTICA I TRIÁNGULOS
TRIÁNGULOS Definición: Dados tres puntos no alineados, A, B y C, se llama triángulo a la intersección de los semiplanos que tienen como borde la recta determinada por dos de estos puntos y contiene al
Tema 8. Teorema de Pitágoras. Semejanza
Material necesario: Escuadra Cartabón Regla Transportador de ángulos Compás Calculadora Libro de texto nuevo!!!!!!!!!!!!!! Tema 8. Teorema de Pitágoras. Semejanza 8.1 Teorema de Pitágoras Página 17 Actividades
CICLO ESCOLAR: SEMESTRE: ENERO JUNIO 2018 ACTIVIDAD DE INTEGRADORA ETAPA 2 DE MATEMÁTICAS II FECHA: MARZO 2018
UANL UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN CICLO ESCOLAR: 2017 2018 SEMESTRE: ENERO JUNIO 2018 ACTIVIDAD DE INTEGRADORA ETAPA 2 DE MATEMÁTICAS II FECHA: MARZO 2018 ELABORÓ: ACADEMIA DE MATEMÁTICAS SEGUNDO
PREPARACIÓN DE OLIMPIADAS RSME BLOQUE GEOMETRÍA I
PREPARACIÓN DE OLIMPIADAS RSME BLOQUE GEOMETRÍA I Almería, 3 de noviembre de 2017 David Crespo Casteleiro Índice de la sesión 1. Porqué hay que prepararse para unas Olimpiadas? 2. Resultados de gran utilidad.
, correspondencia homologa. Ejemplo: SEMEJANZA DE TRIANGULOS: Se deben dar dos condiciones: Cada una como consecuencia directa de la otra.
CONGRUENCIA DE TRIANGULOS: se deben dar dos condiciones: 1.-Los lados deben ser congruentes (iguales) a=a, b=b, c=c 2.-Los ángulos deben ser congruentes (iguales)
- 1 - RECTAS Y ÁNGULOS. Tipos de ángulos Los ángulos se clasifican según su apertura: -Agudos: menores de 90º. Rectas
Alonso Fernández Galián Geometría plana elemental Rectas RECTAS Y ÁNGULOS Una recta es una línea que no está curvada, y que no tiene principio ni final. Tipos de ángulos Los ángulos se clasifican según
SGUICEG024MT22-A16V1. SOLUCIONARIO Ubicación de puntos, distancia y longitudes en el plano cartesiano
SGUICEG04MT-A16V1 SOLUCIONARIO Ubicación de puntos, distancia longitudes en el plano cartesiano 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA UBICACIÓN DE PUNTOS, DISTANCIA Y LONGITUDES EN EL PLANO CARTESIANO Ítem
MATEMÁTICAS Y SU DIDÁCTICA
MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se
Capítulo 1. Geometría
Capítulo 1 Geometría Estas notas tienen como fin preparar el lector para la resolución de problemas de Matemáticas tipo olimpiada. Por esta razón hay muy poca teoría y sí muchos problemas. En cada sección
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Los segmentos se determinan por su longitud. Supongamos que tenemos dos
TEOREMA DE PITÁGORAS
TEOREMA DE PITÁGORAS 1. Triángulos rectángulos. Teorema de Pitágoras.. Demostraciones visuales del Teorema de Pitágoras. 3. Ternas pitagóricas. 4. Aplicaciones del teorema de Pitágoras. 4.1.Conocidos los
7-1 Razón y proporción (págs )
Vocabulario dibujo a escala.................489 dilatación......................495 escala..........................489 factor de escala.................495 medición indirecta..............488 polígonos
RESOLUCIÓN DE TRIÁNGULOS
RESOLUCIÓN DE TRIÁNGULOS Resolver un triángulo consiste en determinar la longitud de sus tres lados y la amplitud de sus tres ángulos. Vamos a recordar primero la resolución para triángulos rectángulos
MATEMÁTICAS Y SU DIDÁCTICA
MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2009 2010 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se
UNIDAD 2. Semejanzas. 14 x
UNIDAD 2 2. TEOREMA DE THALES: Si varias paralelas cortan a dos transversales, determinan en ellas segmentos correspondientes y proporcionales. Hipótesis: AA ' // BB ' // CC ' r, s, transversales AB y
POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos
1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular
Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA
Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA ASIGNATURA: Cálculo Diferencial e Integral I PROFESOR: José Alexander Echeverría Ruiz CUATRIMESTRE: Segundo TÍTULO DE LA
El ejercicio de la demostración en matemáticas
El ejercicio de la demostración en matemáticas Demostración directa En el tipo de demostración conocido como demostración directa (hacia adelante) se trata de demostrar que A B partiendo de A y deduciendo
10 ACTIVIDADES DE REFUERZO
0 ACTIVIDADES DE REFUERZO. Calcula el área de estos polígonos. a) Trapecio de bases de longitud cm y 8 cm, y altura 4,5 cm. Pentágono regular de lado 4 cm y apotema 4, cm.. Halla el área de estos polígonos.
Teorema de Euclides. Clase # 17. Universidad Andrés Bello. Octubre 2014
PreUnAB Clase # 17 Octubre 2014 Teorema de Pitágoras Teorema general de Pitágoras para el triángulo rectángulo Si ABC es triángulo rectángulo en C, con a y b, catetos, y c hipotenusa, entonces: a 2 + b
TEMA 12 SEMEJANZA 2º ESO
TEMA 12 SEMEJANZA 2º ESO 1. SEMEJANZA Ejemplo 1: Observa estas tres fotografías e indica si son semejantes entre sí y por qué: 10 6 5 3 21 12 10 6 A y B sí son semejantes. B y C no son semejantes. Ejemplo
Curso Topografia I Doc. de Trabajo Ing. Angel F. Becerra Pajuelo
El curso de topografía I; utiliza muchos conceptos y formulas por no decir todo, de la geometría y la trigonometría. La primera ciencia toma como objeto de estudio a las diferentes figuras geométricas
Trazados geométricos con escuadra, cartabón y compás. 1. Traza la mediatriz del segmento dado AB.
1. Traza la mediatriz del segmento dado AB. 2. A la semirrecta s trázale una perpendicular en su extremo.. ª.2. Construye un triángulo sabiendo A= 30º, B= 45º Y se A B x s 3. Dada la recta r, trázale desde
UNIDAD 8 Geometría analítica
Pág. 1 de 5 I. Sabes hallar puntos medios de segmentos, puntos simétricos de otros y ver si varios puntos están alineados? 1 Los puntos A( 1, 3), B(2, 6), C (7, 2) y D( 5, 3) son vértices de un cuadrilátero.
Lección 6: EXPRESIONES ALGEBRAICAS: MONOMIOS
Lección 6: EXPRESIONES ALGEBRAICAS: MONOMIOS 1.- ÁLGEBRA. EXPRESIONES ALGEBRAICAS Y LENGUAJE ALGEBRAICO ÁLGEBRA es la parte de las matemáticas que estudia las expresiones algebraicas. EXPRESIÓN ALGEBRAICA
Cuadrilátero conocido su lado, AB, con la escuadra. Se apoya la escuadra por su hipotenusa sobre la regla y se traza el lado, AB, del cuadrado.
Elementos geométricos / Cuadrilátero 47 Cuadrilátero conocido su lado, AB, con la escuadra Se apoya la escuadra por su hipotenusa sobre la regla y se traza el lado, AB, del cuadrado. Se desliza hacia arriba
Tema 2: Figuras geométricas
Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. La circunferencia (p. 31) El cerebro humano es muy bueno
congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida
COLEGIO COLMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS GEOMETRÍA NOVENO GRADO PROFESORES: RAÚL MARTÍNEZ, JAVIER MURILLO Y JESÚS VARGAS CONGRUENCIA Y SEMEJANZA Cuando tenemos dos segmentos escribimos AB CD
Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales.
TEMA 8: PROBLEMAS MÉTRICOS EN EL PLANO ÁNGULOS EN LA CIRCUNFERENCIA Ángulo central es aquel cuyo vértice está en el centro de la circunferencia. Ángulo inscrito es aquel cuyo vértice está en la circunferencia.
10 SEMEJANZA. TEOREMA DE PITÁGORAS EJERCICIOS
0 SEMEJNZ. TEOREM DE PITÁGORS EJERCICIOS Indica qué rectángulos son semejantes: a) ase cm, altura cm y base 0 cm, altura cm. b) ase 0 m, altura m y base 0 m, altura 8 m. c) ase 0,7 dm, altura 0, dm y base,0
SOLUCIONES PRIMER NIVEL
SOLUCIONES PRIMER NIVEL 1. Los cuatro polígonos de la figura son regulares. Halla los valores de los tres ángulos, de vértice A limitados por dos lados de los polígonos dados, indicados en la figura. Solución:
Definición: Un triángulo es la unión de tres rectas que se cortan de dos en dos.
Triángulos Definición: Un triángulo es la unión de tres rectas que se cortan de dos en dos. Teoremas 1) La suma de las medidas de los ángulos interiores de un triángulo es 180º. δ + β+ α = 180 0 2) Todo
Unidad didáctica 9 Geometría plana
Unidad didáctica 9 Geometría plana 1.- Ángulos Un ángulo es la porción de plano limitada por dos semirrectas que tienen el mismo origen. Los lados del ángulo son las semirrectas que lo forman. El vértice
Comencemos este breve estudio acerca de las propiedades angulares en la circunferencia describiendo algunos elementos básicos:
MATEMÁTICA MÓDULO 2 Eje temático: Geometría 1. PROPIEDADES ANGULARES EN LA CIRCUNFERENCIA Comencemos este breve estudio acerca de las propiedades angulares en la circunferencia describiendo algunos elementos
Taller de Matemática Preparación PSU
octubre 01 Taller de Matemática Preparación PSU Marcar con una X la alternativa que considere correcta. 1. Cuando se divide cierto trazo armónicamente en la razón : 4, la distancia entre los puntos de
Soluciones Nota nº 2. Problemas propuestos 1. El segmento AC es una diagonal del cuadrado ABCD. Reconstruir el cuadrado.
Soluciones Nota nº 2 Problemas propuestos 1. El segmento AC es una diagonal del cuadrado ABCD. Reconstruir el cuadrado. Si el segmento AC fuera una diagonal del rectángulo ABCD, que no es cuadrado, es
EF AB. Hallar la longitud del segmento BE si AC+BD+CE+DF=30. 3 a) 10 b) 14 c) 20 d) 8 e) Ning.
UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA CURSO PREFACULTATIVO GESTIÓN II-2012 PRÁCTICA Nº 1 GEOMETRÍA 1. Sobre una línea recta se consideran los puntos consecutivos A, B y C; luego
Tema 2 2 Geometría métrica en el pla no
Tema Geometría métrica en el pla no CONCEPTOS BÁSICOS Figuras básicas en el plano: puntos, rectas, semirrectas, segmentos y ángulos Los polígonos y su clasificación según los ángulos internos y según el
Guía: Semejanza y congruencia de figuras. SGUIC3M049M311-A17V1
Guía: Semejanza y congruencia de figuras. SGUIC3M049M311-A17V1 TABLA DE CORRECCIÓN SEMEJANZA Y CONGRUENCIA DE FIGURAS Ítem Alternativa Dificultad Estimada 1 C Aplicación Media A Aplicación Media 3 D Comprensión
INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES - MATEMÁTICA I - AÑO 2012 TRIÁNGULOS
TRIÁNGULOS Definición: Dados tres puntos no alineados, A, B y C, se llama triángulo a la intersección de los semiplanos que tienen como borde la recta determinada por dos de estos puntos y contiene al
José Gómez Penas 1 UNIDAD DIDÁCTICA. GEOMETRÍA : Triángulos y Cuadriláteros. Autor : José Gómez Penas 1º ESO.Matemáticas.
1 UNIDAD DIDÁCTICA GEOMETRÍA : Triángulos y Cuadriláteros Autor : 1º ESO.Matemáticas. IES Miraflores CONTENIDOS: Triángulos: Teorema de Pitágoras. Áreas y Perímetros OBJETIVOS: -Comprender el teorema de
Congruencia, Semejanza y Proporcionalidad de Triángulos
PreUnAB Congruencia, Semejanza y Proporcionalidad de Triángulos Clase # 16 Septiembre 2013 Congruencia de triángulos Definición Dos triángulos son congruentes si tienen la misma forma y las mismas medidas.
EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA
1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.
TORNEOS GEOMÉTRICOS 2016 Primera Ronda. Primer Nivel - 5º Año de Escolaridad
TORNEOS GEOMÉTRICOS 2016 Primera Ronda Primer Nivel - 5º Año de Escolaridad 1- En el triángulo rectángulo ABC cuyo ángulo en C mide 48º se trazan la bisectrices de los ángulos B y C, que se cortan en O.
Geometría. Problemas de Semejanza. Olimpiada de Matemáticas en Tamaulipas
Geometría Problemas de Semejanza Olimpiada de Matemáticas en Tamaulipas 1. Problemas Antes de comenzar con los problemas, es conveniente recordar o asegurarse que los olímpicos tienen presentes el tema
Geometría con tijera y papel
Geometría con tijera y papel El siguiente trabajo tiene por objetivo presentar una demostración del Teorema Particular de Pitágoras basada en la fragmentación y las propiedades de rectas y puntos singulares
DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula.
DIBUJO GEOMÉTRICO 1. SIGNOS Y LÍNEAS. A. El punto: es la intersección de dos rectas. Se designa mediante una letra mayúscula y se puede representar también con un círculo pequeño o un punto. A B C D X
DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez
DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución- CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α
MATEMÁTICA Semejanza Guía Nº 4
MATEMÁTICA Semejanza Guía Nº 4 APELLIDO: Prof. Karina G. Rizzo. Las figuras tienen la misma forma pero distinto tamaño. No son iguales; son SEMEJANTES. 2. a) Cuando se indica construir hay que trabajar
DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez
DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado
