Teoremas del triángulo rectángulo
|
|
|
- José Francisco Escobar Ríos
- hace 9 años
- Vistas:
Transcripción
1 Pre-universitario Manuel Guerrero Ceballos
2 Clase N 07 MODULO COMPLEMENTARIO Teoremas del triángulo rectángulo
3 Resumen de la clase anterior Triángulos Elementos Generalidades Clasificación primarios secundarios área según sus lados según sus ángulos vértices lados ángulos interiores ángulos exteriores altura simetral bisectriz transversal mediana perímetro escaleno acutángulo isósceles rectángulo equilátero obtusángulo
4 1. Triángulo rectángulo cateto 1.1 Definición Triángulo que tiene un ángulo interior recto. Sea ABC triángulo rectángulo en C, entonces el lado opuesto al ángulo recto, segmento AB, es llamado HIPOTENUSA, y segmentos AC y BC, lados del ángulo recto son llamados CATETOS. cateto
5 1. Triángulo rectángulo 1.2 Teoremas importantes Teorema de Pitágoras En todo triángulo rectángulo, la suma de los cuadrados de los catetos es igual al cuadrado de la hipotenusa. (cateto 1 ) 2 +(cateto 2 ) 2 =(hipotenusa) 2 o a 2 + b 2 = c 2
6 1. Triángulo rectángulo Ejemplo: De acuerdo a los datos de la figura, el trazo QR es igual a (QR) 2 = (QR) 2 = 625 (QR) 2 = (QR) 2 = 400 (Aplicando teorema de Pitágoras) (Despejando (QR) 2 ) (Restando) (Aplicando raíz cuadrada) QR = 20
7 1. Triángulo rectángulo 1.2 Teoremas importantes Teorema de Pitágoras Números pitagóricos: Son aquellos tríos de números que cumplen el teorema de Pitágoras. Los más utilizados son: 3, 4 y 5 5, 12 y 13 8, 15 y 17 Estos tríos, además de satisfacer el teorema de Pitágoras, generan familias de números pitagóricos, que corresponden a todos los tríos formados al multiplicar el trío inicial por cada número natural. Por ejemplo: 3, 4 y 5 6, 8 y 10 9, 12 y 15
8 1. Triángulo rectángulo 1.2 Teoremas importantes Teorema de Pitágoras Un cateto es el doble del otro: Un cateto es el triple del otro: Ejemplo Ejemplo
9 1. Triángulo rectángulo 1.2 Teoremas importantes Teorema de Euclides Sea ABC un triángulo rectángulo en C, y CD = h c, la altura sobre la hipotenusa, entonces se cumple que el producto de las proyecciones de los catetos sobre la hipotenusa es igual a la altura (h c ) al cuadrado. h c 2 = p q Además, se cumple que: p: proyección del cateto AC sobre la hipotenusa q: proyección del cateto BC sobre la hipotenusa h c = a b c a 2 = c q b 2 = c p
10 1. Triángulo rectángulo Ejemplo: De acuerdo a la figura, los segmentos CD y AC tienen medida igual a Aplicando Teorema de Euclides: CD 2 = AD D B (Reemplazando) AC 2 = AB AD (Reemplazando) CD 2 = 4 3 (Aplicando raíz) AC 2 = 7 4 (Aplicando raíz) CD = AC = CD = 2 3
11 o 2.Relaciones métricas en el triángulo rectángul Triángulo de ángulos 30º, 60º y 90º 30º 30º a 3 a a 2 h 60º 60º a 2 a 2 Ejemplo: N Dado el triángulo NJS, cuál es la medida de NJ? cuál es el perímetro del triángulo NJS? J 16 Se deduce que el ángulo faltante es 30º, por lo tanto se puede usar las relaciones métricas del triángulo 30º, 60º y 90º 60º S
12 o 2.Relaciones métricas en el triángulo rectángul Ejemplo: Dado el triángulo NJS, cuál es la medida de NJ? cuál es el perímetro del triángulo NJS? N 30º 30º a 16 3 a 2 J Entonces: 60º S a 2 60º Si NS = 16 y esto corresponde a a JS = 8, la mitad de a NJ = 8 3 la mitad de a por 3 Perímetro de triángulo NJS: =
13 o 2.Relaciones métricas en el triángulo rectángul Triángulo de ángulos 45º y 90º a 45º a 2 Siempre se dará esta relación métrica en un triángulo rectángulo isósceles. a 45º Ejemplo: El triángulo FCS, es isósceles en S. Calcular SC y el área del triángulo. S Se deduce que si el triángulo es isósceles y rectángulo, entonces se puede utilizar las relaciones métricas de un triángulo de ángulos 45º y 90º. F 9 2 C
14 o 2.Relaciones métricas en el triángulo rectángul Ejemplo: El triángulo FCS, es isósceles en S. Calcular SC y el área del triángulo. S Según lo visto en clases, en la hipotenusa ver el valor de cada cateto multiplicado por se 2 logra Por lo tanto SC = 9 F 45º 45º 9 2 C cateto cateto Área de triángulo FCS = = 9 9 =
15 o 2.Relaciones métricas en el triángulo rectángul Triángulo rectángulo y transversal de gravedad Si M es punto medio de AB, entonces AM MB CM t c : transversal Ejemplo: Se tiene el triángulo PAV, rectángulo en V, con D punto medio. Calcular la medida del ángulo DVA. V Como se sabe del enunciado, el triángulo es rectángulo y como VD llega al punto medio de la hipotenusa, es transversal de gravedad. 60º P D A
16 o 2.Relaciones métricas en el triángulo rectángul Ejemplo: Se tiene el triángulo PAV, rectángulo en V, con D punto medio. Calcular la medida del ángulo DVA. V 30º 60º 30º P D A Debido a la relación entre el triángulo rectángulo y la transversal de gravedad, se sabe que PD = DA = VD, esto convierte al triángulo DAV en isósceles, por lo tanto el ángulo DVA mide 30º
Triángulos (Parte 2)
Triángulos (Parte 2) APRENDIZAJES ESPERADOS Analizar en el triángulo rectángulo, los teoremas de Pitágoras y Euclides. Aplicar los diferentes teoremas y propiedades de los triángulos rectángulos, equiláteros
1. Teoremas válidos para triángulos rectángulos
1. Teoremas válidos para triángulos rectángulos Sea ABC triángulo rectángulo en C, entonces: El lado opuesto al ángulo recto, AB, es llamado HIPOTENUSA, y los lados AC y BC, CATETOS. cateto hipotenusa
Teorema de Euclides. Clase # 17. Universidad Andrés Bello. Octubre 2014
PreUnAB Clase # 17 Octubre 2014 Teorema de Pitágoras Teorema general de Pitágoras para el triángulo rectángulo Si ABC es triángulo rectángulo en C, con a y b, catetos, y c hipotenusa, entonces: a 2 + b
Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360
Triángulos Es un polígono formado por tres segmentos cuyos tres puntos de intersección no están en línea recta. Triángulo ABC A,B y C son vértices del triángulo α, β, γ s interiores. a, b y c, longitud
Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos.
Definición Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos. Elementos primarios Vértice:, y. Lados:, y. Ángulos interiores:, y. Ángulos exteriores:, y. * Observaciones:
Definición: Un triángulo es la unión de tres rectas que se cortan de dos en dos.
Triángulos Definición: Un triángulo es la unión de tres rectas que se cortan de dos en dos. Teoremas 1) La suma de las medidas de los ángulos interiores de un triángulo es 180º. δ + β+ α = 180 0 2) Todo
PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES:
PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: http://espaiescolar.wordpress.com CONCEPTOS PREVIOS PROPORCIONALIDAD Recta: línea continua formada por
4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES
4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES Y EL TEOREMA DE PITÁGORAS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS. 4.1.1. El teorema de Thales y consecuencias. Thales de Mileto vivió hacia
4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES
4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES Y EL TEOREMA DE PITÁGORAS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 4.1.1. El teorema de Thales y consecuencias. 4.1.1. El teorema
Areas y perímetros de triángulos.
Areas y perímetros de triángulos. Teorema de Pitágoras. Propiedades de las medidas de los lados de todo triángulo. Area de un triángulo rectángulo y cualquiera. Perímetro y semiperímetro de un triángulo
Módulo III: Geometría Elmentos del triángulo Teorema de Pitágoras Ángulos en la circunferencia
Módulo III: Geometría Elmentos del triángulo Altura Bisectriz Simetral o mediatriz Transversal de gravedad Teorema de Pitágoras Ángulos en la circunferencia Ángulo del centro Ángulo inscrito Ángulo interior
Bloque 33 Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano SGUICEG047EM33-A17V1
SGUICEG047EM33-A17V1 Bloque 33 Guía: Ubicación de puntos, distancia longitudes en el plano cartesiano TABLA DE CORRECCIÓN UBICACIÓN DE PUNTOS, DISTANCIAS Y LONGITUDES EN EL PLANO CARTESIANO N Clave Dificultad
4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES
4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES Y EL TEOREMA DE PITÁGORAS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS 4.1.1. El teorema de Thales y consecuencias. Thales de Mileto vivió hacia
POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos
1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular
Polígonos y Triángulos
7 o Básico 2015 Profesor Alberto Alvaradejo Ojeda 1. Polígono Un polígono es una figura plana cerrada formada por trazos o segmentos. Los polígonos se pueden clasificar en: Cóncavos: son los aquellos polígonos
Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180
CLASIFICACIÓN DE ÁNGULOS Nombre Definición Figura Ángulo recto Mide 90 Ángulo agudo Mide menos de 90 Ángulo obtuso Mide más de 90 Ángulo extendido Mide 180 Ángulo completo Mide 360 ÁNGULOS COMPARATIVOS
Estándar Anual. Matemática. Ejercicios PSU. Guía práctica Generalidades de los triángulos GUICES022MT22-A16V1. Programa
rograma Estándar nual Nº Guía práctica Generalidades de los triángulos Ejercicios U 1. Los ángulos interiores de un triángulo están en la razón 5 : 6 : 7, entonces el ángulo exterior adyacente al menor
Geometría con tijera y papel
Geometría con tijera y papel El siguiente trabajo tiene por objetivo presentar una demostración del Teorema Particular de Pitágoras basada en la fragmentación y las propiedades de rectas y puntos singulares
Cuaderno: LIMPIEZA Y ORGANIZACIÓN Realización de TAREAS TEMA 12 FIGURAS PLANAS Y ESPACIALES ALUMNO/A: Nº
Cuaderno: LIMPIEZA Y ORGANIZACIÓN Realización de TAREAS SATISFACTORIO ACEPTABLE MEJORABLE TEMA 12 FIGURAS PLANAS Y ESPACIALES ALUMNO/A: Nº Ejercicios TEMA 12 FIGURAS PLANAS Y ESPACIALES (1º ESO) Página
SOLUCIONARIO Cuerpos redondos
SOLUCIONARIO Cuerpos redondos SGUICEG07EM2-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Cuerpos redondos Ítem Alternativa 1 E 2 D A 4 C 5 C 6 D 7 B 8 D 9 B 10 D 11 B 12 C 1 B 14 B 15 A 16 C 17 A 18 E 19 D
Modulo de aprendizaje de matemática. Semejanza de figuras planas.
Modulo de aprendizaje de matemática. Semejanza de figuras planas. Concepto de semejanza. EJEMPLO. Dos polígonos convexos son semejantes si tienen la misma forma con diferentes dimensiones. Diremos que
Semejanza. Razones. Teorema de Thales. Proporciones. a = b. c d
Semejanza Razones Razones y proporciones Teorema de Thales Triángulos semejantes Teoremas de semejanza Teoremas de Euclides Perímetro y Área a) Razón. Es el cuociente entre dos números (positivos). b)
ELEMENTOS PRIMARIOS DEL TRIÁNGULO. también es el suplemento de α, por lo tanto,. α ' =β+γ
7.. TRIÁNGULOS 7..1. ELEMENTOS PRIMARIOS DEL TRIÁNGULO VÉRTICES: son los puntos donde se intersectan dos de los Lados del triángulo. Se designan con letras mayúsculas, A, B, C... LADOS: son los trazos
PSU Matemática NM-4 Guía 14: Ángulos y Triángulos
1 Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía 1: Ángulos y Triángulos Nombre: Curso: Fecha: - Contenido: Geometría. Aprendizaje Esperado:
SGUIC3M043M311-A16V1 NÚMEROS ENTEROS Y RACIONALES GUÍA DE EJERCITACIÓN SEMEJANZA DE FIGURAS Y TEOREMA DE EUCLIDES
SGUIC3M03M311-A16V1 NÚMEROS ENTEROS Y RACIONALES GUÍA DE EJERCITACIÓN SEMEJANZA DE FIGURAS Y TEOREMA DE EUCLIDES 1 TABLA DE CORRECCIÓN GUÍA DE EJERCITACIÓN SEMEJANZA DE FIGURAS Y TEOREMA DE EUCLIDES ÍTEM
Contenidos. Triángulos I. Elementos primarios. Clasificación. Elementos secundarios. Propiedad Intelectual Cpech
ontenidos Triángulos I Elementos primarios lasificación Elementos secundarios Triángulos Es un polígono de tres lados. Posee tres vértices, tres lados, tres ángulos interiores y tres ángulos exteriores.
Dibujo Técnico Triángulos
12. TRIÁNGULOS 12.1. Características generales Un triángulo ABC es una figura plana limitada por tres rectas que se cortan dos a dos, determinando los segmentos AB, AC y BC que son los lados del triángulo.
27.- La diferencia entre el lado de un triangulo equilátero y su altura es 12 cm. Cuanto mide el perímetro del triangulo?
EJERCICIOS 1.- Calcular la altura a la hipotenusa de un triángulo rectángulo cuyos catetos miden 6 y 8 cm. 5 2.- En un triángulo rectángulo, un cateto mide 15 cm., y la proyección del otro sobre la hipotenusa
GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.
GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el
ANGULOS. La unidad de medida es el grado sexagesimal. La "circunferencia completa " mide 360º (grados sexagesimales). Además considere que.
PREUNIVERSITARIO PROGRAMA DE NIVELACIÓN Y REFORZAMIENTO M 04 PRO-OCTAV@ TEXTO Nº 2 GEOMETRÍA ANGULOS SISTEMAS DE UNIDADES DE MEDIDA: SISTEMA SEXAGESIMAL: La unidad de medida es el grado sexagesimal. La
TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.
ALGUNAS RELACIONES PARA RECORDAR:
ALGUNAS RELACIONES PARA RECORDAR: División Áurea de un trazo: Consideremos el trazo: AB AP AP PB Se dice que P divide de modo áureo al trazo AB. Es decir el mayor de los trazos es media proporcional entre
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS ÁREA Y PERÍMETRO DE FIGURAS PLANAS LINEA POLIGONAL: Se llama línea poligonal
En una simple escalera donde b= 2,5 m y a= 6 m. Cuál sería el valor de p,q, h y c?
TEOREMA DE EUCLIDES. INTRODUCIIÓN. Euclides (330 a.c. - 275 a.c.) Gran matemático griego, escribió una serie de libros donde sintetizaba todos los conocimientos matemáticos conocidos hasta entonces. Euclides
La Geometría del triángulo TEMA 6
La Geometría del triángulo TEMA 6 Diana Barredo Blanco Profesora de Matemáticas I.E.S. Luis de Camoens (CEUTA) En este tema vamos a ver algunas aplicaciones y ejemplos de los teoremas vistos en los dos
RAZONAMIENTO GEOMÉTRICO
RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros
Guía Nº 1 CONTENIDOS: Ángulos y Triángulos. Nombre:
SUBSECTOR : Electivo de Geometría NIVELES : IIIº/VIº Medio PROFESORES : Martín Andrés Martínez Santana AÑO : 2017 Guía Nº 1 CONTENIDOS: Ángulos y Triángulos. Nombre: IIIº/IV Marque la alternativa correcta.
A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS:
TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS ELEMENTOS CLASIFICACIÓN TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO A b h A b a A perímetro apotema A r TEOREMA DE PITÁGORAS: a b c 1 POLÍGONOS
open green road Guía Matemática TRIÁNGULOS tutora: Jacky Moreno .cl
Guía Matemática TRIÁNGULOS tutora: Jacky Moreno.cl 1. Triángulos El triángulo es una figura plana formada por la unión de tres rectas que se cortan de dos en dos. A continuación estudiaremos los elementos
Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid
Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos
Geometría. Ángulos. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid
Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos
RESOLUCIÓN DE TRIÁNGULOS
RESOLUCIÓN DE TRIÁNGULOS Resolver un triángulo consiste en determinar la longitud de sus tres lados y la amplitud de sus tres ángulos. Vamos a recordar primero la resolución para triángulos rectángulos
FORMAS POLIGONALES TEMA 8
FORMAS POLIGONALES TEMA 8 1. LOS POLÍGONOS DEFINICIÓN: Un polígono es una figura geométrica plana limitada por segmentos llamados lados, y por vértices. A B C A Lado D Clasificación de los polígonos:
FICHA DE TRABAJO Nº 17
Nombre FICHA DE TRABAJO Nº 17 Nº orden Bimestre IV 3ºgrado - sección A B C D Ciclo III Fecha: - 11-12 Área Matemática Tema TRIÁNGULOS I: Propiedades Básicas TRIÁNGULO Es la figura que se forma al unir
ENUNCIADO DEL TEOREMA DE PITÁGORAS
ENUNCIADO DEL TEOREMA DE PITÁGORAS "En todo triángulo rectángulo se cumple que el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos" Este enunciado es equivalente al siguiente:
Guía: Semejanza y congruencia de figuras. SGUIC3M049M311-A17V1
Guía: Semejanza y congruencia de figuras. SGUIC3M049M311-A17V1 TABLA DE CORRECCIÓN SEMEJANZA Y CONGRUENCIA DE FIGURAS Ítem Alternativa Dificultad Estimada 1 C Aplicación Media A Aplicación Media 3 D Comprensión
Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica
Ángulos. DEFINICIÓN FIGURA OBSERVACIONES Ángulo. Es la abertura formada por dos semirrectas unidas en un solo punto llamado vértice. Donde: α = Ángulo O = Vértice OA = Lado inicial OB = Lado terminal Un
open green road Guía Matemática TRIÁNGULO RECTÁNGULO tutora: Jacky Moreno .cl
Guía Matemática TRIÁNGULO RECTÁNGULO tutora: Jacky Moreno.cl 1. Triángulo Rectángulo Un triángulo se denomina rectángulo si uno de sus ángulos mide 90 y por ende los otros dos ángulos son agudos. Los lados
FICHA DE TRABAJO Nº 18
FICHA DE TRABAJO Nº 18 Nombre Nº orden Bimestre IV 3ºgrado - sección A B C D Ciclo III Fecha: - 11-12 Área Matemática Tema TRIÁNGULOS II: Líneas y Puntos Notables LINEAS y PUNTOS NOTABLES EN EL TRIANGULO
Definición, Clasificación y Propiedades de los Triángulos
Definición, Clasificación y Propiedades de los Triángulos Que es un Triángulo? Un triángulo es un polígono de tres lados y tres ángulos. Trigonometría Básica Ing. Gonzalo Carranza E. TRIÁNGULO es un polígono
Cuaderno de trabajo Geometría y Trigonometría 2do.
Ejercicio. 21 Instrucciones: Relaciona las dos columnas, escribiendo en el paréntesis de la columna de la izquierda la clave de la respuesta localizada en la columna de la derecha. ( ) Es la figura formada
DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula.
DIBUJO GEOMÉTRICO 1. SIGNOS Y LÍNEAS. A. El punto: es la intersección de dos rectas. Se designa mediante una letra mayúscula y se puede representar también con un círculo pequeño o un punto. A B C D X
BÁSICOS DE GEOMETRÍA: Solución a los Ejercicios Propuestos
CONCEPTOS BÁSICOS DE GEOMETRÍA: Solución a los Ejercicios Propuestos Tutor Carmen Aleisy Rodríguez Junio de 009 Solución a los Ejercicios propuestos 1. El grafico muestra las rectas paralelas m y n y la
Geometría Conceptos básicos Elementos de Geometría. 1. Por un punto fuera de una recta pasa una única paralela a esa recta.
Geometría Conceptos básicos Elementos de Geometría Debido a que los conceptos de Geometría están siempre presente en Matemáticas, Física e Ingeniería, se hará un repaso de estas materias y se presentará
Repartido 2. Profesor Fernando Díaz Matemática II 5to cient. I.D.A.L. 2016
Repartido 2 Profesor Fernando Díaz Matemática II 5to cient. I.D.A.L. 2016 Actividad 1 Recordando al teorema de la bisectriz interior demostrado en clase, podemos decir que en el siguiente triángulo T(ABC)
D. Es una figura geométrica formada por la intersección de dos líneas rectas en un punto llamado vértice.
SEGUNDO PERIODO - PRUEBA DE GEOMETRÍA GRADO 601-602 - 603 1 Un triángulo se define como: A. Polígono formado por tres lados. B. Polígono formado por dos lados. C. Polígono formado por dos lados. D. Es
FIGURAS GEOMETRICAS PLANAS
UNIDAD 9 FIGURAS GEOMETRICAS PLANAS Objetivo General Al terminar esta Unidad entenderás y aplicaras los conceptos generales de las figuras geométricas planas, y resolverás ejercicios y problemas con figuras
SGUICEG024MT22-A16V1. SOLUCIONARIO Ubicación de puntos, distancia y longitudes en el plano cartesiano
SGUICEG04MT-A16V1 SOLUCIONARIO Ubicación de puntos, distancia longitudes en el plano cartesiano 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA UBICACIÓN DE PUNTOS, DISTANCIA Y LONGITUDES EN EL PLANO CARTESIANO Ítem
M AT E M Á T I C A S 4 º E S O D E I S Y M O L I N A C U R S O /
C O N C E P T O S B Á S I C O S M AT E M Á T I C A S 4 º E S O D E I S Y M O L I N A C U R S O 2 0 1 7 / 2 0 1 8 Q U É E S L A T R I G O N O M E T R Í A? R A M A D E L A S M A T E M Á T I C A S Q U E S
SGUICES028MT22-A16V1. SOLUCIONARIO Semejanza de triángulos
SGUICES08MT-A16V1 SOLUCIONARIO Semejanza de triángulos 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA SEMEJANZA DE TRIANGULOS Ítem Alternativa 1 C Comprensión D 3 D 4 B 5 E 6 B 7 A 8 A 9 E 10 B 11 E 1 C 13 E Comprensión
LOS POLIGONOS. 1. Definiciones.
LOS POLIGONOS 1. Definiciones. Un triángulo es un polígono cerrado y convexo constituido por tres ángulos (letras mayúsculas y sentido contrario a las agujas del reloj) y tres lado (letras minúsculas).
TALLER DE ENTRENAMIENTO PARA SEMIFINAL Sábado 6 de mayo y jueves 11 de mayo Elaborado por: Gustavo Meza García. Ángulos
Ángulos Ejercicios: 1) Si un triángulo tiene 2 ángulos que miden 25 y 75 Cuánto mide el tercer ángulo? 2) Cuánto suman los ángulos internos de un cuadrilátero cualquiera? Teorema: 1) La suma de los ángulos
GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría-8a- Soluciones de relaciones métricas en los triángulos Fecha: Profesor: Fernando Viso
GUIA DE TRAJO Materia: Matemáticas. Tema: Geometría-8a- Soluciones de relaciones métricas en los triángulos Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual.
GUÍA NÚMERO 13 ANGULOS:
Saint Gaspar ollege ISIOEROS DE PREIOS SGRE Formando Personas Íntegras Departamento de atemática RESUE PSU TETI GUÍ ÚERO 1 GUOS: edición: 1º = 60 1 = 60 1º = 600 omplemento de α = 0º α Suplemento de α
Autora: Jeanneth Galeano Peñaloza. 2 de abril de Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 1/1
Autora: Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 2 de abril de 2013 1/1 Parte I Introducción a la geometría elemental 2/1 Nociones básicas Las
Son los segmentos, cada uno de ellos con extremos en un vértice y en el punto medio del lado opuesto.
TRIÁNGULOS: LÍNEAS NOTABLES DE UN TRIÁNGULO: Medianas Son los segmentos, cada uno de ellos con extremos en un vértice y en el punto medio del lado opuesto. Notación: A la mediana correspondiente al vértice
INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES - MATEMÁTICA I - AÑO 2012 TRIÁNGULOS
TRIÁNGULOS Definición: Dados tres puntos no alineados, A, B y C, se llama triángulo a la intersección de los semiplanos que tienen como borde la recta determinada por dos de estos puntos y contiene al
DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo
DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo 1. Construir un triángulo equilátero conocida la altura. 2. Construir un triángulo isósceles conocida
Tema 2 2 Geometría métrica en el pla no
Tema Geometría métrica en el pla no CONCEPTOS BÁSICOS Figuras básicas en el plano: puntos, rectas, semirrectas, segmentos y ángulos Los polígonos y su clasificación según los ángulos internos y según el
TEMA 6 SEMEJANZA. APLICACIONES -
TEMA 6 SEMEJANZA. APLICACIONES - 1. SEMEJANZA: ESCALAS LECCIÓN I ESCALA: es el cociente entre cada longitud de reproducción (mapa, plano, maqueta) y la correspondiente longitud en la realidad. Es, por
Polígonos. Triángulos
CLAVES PARA EMPEZAR Cada hora equivale a una abertura de 360 o : 12 30 o A las 12 h: ángulo 0 o A las 11 h y a la 1 h: ángulo 30 o A las 9 h y a las 3 h: ángulo 90 o A las 7 h y a las 5 h: ángulo 150 o
MATEMÁTICA Teorema de Pitágoras Guía Nº 2
MATEMÁTICA Teorema de Pitágoras Guía Nº 2 APELLIDO: Prof. Karina G. Rizzo 2. b) Trazar una recta y dividir en partes iguales ubicando, en la misma, desde el el año 700 hasta el año 0 (en múltiplos de 100).
Tema 10: Problemas métricos en el plano
Tema 10: Problemas métricos en el plano 10.1 Relaciones angulares Construye un polígono de cinco lados, divídelo en triángulos para averiguar la suma de los ángulos interiores del pentágono. Nuestro pentágono
TEMA 6 SEMEJANZA. APLICACIONES -
TEMA 6 SEMEJANZA. APLICACIONES - 1. SEMEJANZA: ESCALAS LECCIÓN I ESCALA: es el cociente entre cada longitud de reproducción (mapa, plano, maqueta) y la correspondiente longitud en la realidad. Es, por
EF AB. Hallar la longitud del segmento BE si AC+BD+CE+DF=30. 3 a) 10 b) 14 c) 20 d) 8 e) Ning.
UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA CURSO PREFACULTATIVO GESTIÓN II-2012 PRÁCTICA Nº 1 GEOMETRÍA 1. Sobre una línea recta se consideran los puntos consecutivos A, B y C; luego
- 1 - RECTAS Y ÁNGULOS. Tipos de ángulos Los ángulos se clasifican según su apertura: -Agudos: menores de 90º. Rectas
Alonso Fernández Galián Geometría plana elemental Rectas RECTAS Y ÁNGULOS Una recta es una línea que no está curvada, y que no tiene principio ni final. Tipos de ángulos Los ángulos se clasifican según
Ver Aplicación Triángulos 03- Rectas y Puntos notables del triángulo: https://www.geogebra.org/m/uta2pdwd
TRIÁNGULOS RECTAS Y PUNTOS NOTABLES Las rectas notables del triángulo son altura, mediatriz, mediana y bisectriz. Ver Aplicación Triángulos 03- Rectas y Puntos notables del triángulo: https://www.geogebra.org/m/uta2pdwd
Tutorial MT-b10. Matemática Tutorial Nivel Básico. Cuadriláteros
134567890134567890 M ate m ática Tutorial MT-b10 Matemática 006 Tutorial Nivel Básico Cuadriláteros Matemática 006 Tutorial Cuadriláteros Marco teórico: 1. Definición: Polígono de cuatro lados, cuya suma
MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano
MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia
8 GEOMETRÍA DEL PLANO
EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,
Fundación Uno. 2. En la figura, BD es una altura del triángulo ABC. Cuál es el valor de b a?
ENCUENTRO # 51 TEMA: Semejanza de triángulo. CONTENIDOS: 1. Razones y proporciones(teorema de Tales). 2. Criterios de Semejanza. 3. Ejercicios de aplicación. Ejercicio Reto 1. Examen de la UNI 2014 En
Tutorial MT-a8. Matemática Tutorial Nivel Avanzado. Guía global Geometría
12345678901234567890 M ate m ática Tutorial MT-a8 Matemática 2006 Tutorial Nivel Avanzado Guía global Geometría Matemática 2006 Tutorial Guía Global Geometría Ejercicios 1. Cuál de las siguientes opciones
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.
n Por ejemplo, en un pentágono tenemos que saber que sus ángulos suman 540º y cada ángulo del pentágono son 108º.
MATEMÁTICAS 3º ESO TEMA 10 PROBLEMAS MÉTRICOS EM EL PLANO- 1. ÁNGULOS EN LOS POLÍGONOS La suma de los ángulos de un polígono de n lados es: 180º (n-2) 180º(n - 2) La medida de cada ángulo de un polígono
Serie de ejercicios para el examen de Matemáticas II PAE-Periodo
Serie de ejercicios para el examen de Matemáticas II PAE-Periodo 016-1 1- Se desea cercar un terreno de forma cuadrada que tiene una superficie de 400 m. Cuántos metros de tela de alambre se necesitan?
Programa Entrenamiento MT-22
Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8
PERÍMETRO Y ÁREA DE UN POLÍGONO
PERÍMETRO Y ÁREA DE UN POLÍGONO - Área y perímetro del triángulo - Cálculo del perímetro Es la longitud de su contorno ó la suma de sus lados. P = a + b + c Recuerda: - El perímetro de un triángulo escaleno
MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas
MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas
Demostración visual del Teorema de Pitágoras (en un sentido)
Demostración visual del Teorema de Pitágoras (en un sentido) Queremos ver que en todo triángulo rectángulo la suma de las áreas de los cuadrados construidos sobre los dos catetos es igual al área del cuadrado
UNIDAD DIDÁCTICA CONTENIDO
UNIDAD DIDÁCTICA CONTENIDO TRIÁNGULOS CLASIFICACIÓN DE TRIÁNGULO - SEGÚN SUS LADOS - SEGÚN SUS ÁNGULOS ÁNGULOS INTERIORES Y EXTERIORES DE UN TRIÁNGULO 1 ANALIZA LAS SIGUIENTES FIGURAS: Son polígonos: No
Geometría 1 de Secundaria: I Trimestre. yanapa.com. Rayo. I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano
I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano Rayo Segmento : Rayo de Origen O y que pasa por B : Rayo de Origen O y que pasa por A La Recta : Se lee Segmento AB : Se lee
Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.
Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo
NOMBRE: Nº 1ºESO TEMA 2 - FORMAS POLIGONALES
TEMA 2 - FORMAS POLIGONALES Los ejercicios se deben delinear a lápiz, debiendo dejar todas las construcciones que sean necesarias para la resolución de los ejercicios. 2.7.1 Triángulos Rectas y puntos
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es
Clasificación de polígonos según sus lados
POLÍGONOS Polígonos Un polígono es la región del plano limitada por tres o más segmentos. Elementos de un polígono Lados Son los segmentos que lo limitan. Vértices Son los puntos donde concurren dos lados.
