Teoremas del triángulo rectángulo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teoremas del triángulo rectángulo"

Transcripción

1 Pre-universitario Manuel Guerrero Ceballos

2 Clase N 07 MODULO COMPLEMENTARIO Teoremas del triángulo rectángulo

3 Resumen de la clase anterior Triángulos Elementos Generalidades Clasificación primarios secundarios área según sus lados según sus ángulos vértices lados ángulos interiores ángulos exteriores altura simetral bisectriz transversal mediana perímetro escaleno acutángulo isósceles rectángulo equilátero obtusángulo

4 1. Triángulo rectángulo cateto 1.1 Definición Triángulo que tiene un ángulo interior recto. Sea ABC triángulo rectángulo en C, entonces el lado opuesto al ángulo recto, segmento AB, es llamado HIPOTENUSA, y segmentos AC y BC, lados del ángulo recto son llamados CATETOS. cateto

5 1. Triángulo rectángulo 1.2 Teoremas importantes Teorema de Pitágoras En todo triángulo rectángulo, la suma de los cuadrados de los catetos es igual al cuadrado de la hipotenusa. (cateto 1 ) 2 +(cateto 2 ) 2 =(hipotenusa) 2 o a 2 + b 2 = c 2

6 1. Triángulo rectángulo Ejemplo: De acuerdo a los datos de la figura, el trazo QR es igual a (QR) 2 = (QR) 2 = 625 (QR) 2 = (QR) 2 = 400 (Aplicando teorema de Pitágoras) (Despejando (QR) 2 ) (Restando) (Aplicando raíz cuadrada) QR = 20

7 1. Triángulo rectángulo 1.2 Teoremas importantes Teorema de Pitágoras Números pitagóricos: Son aquellos tríos de números que cumplen el teorema de Pitágoras. Los más utilizados son: 3, 4 y 5 5, 12 y 13 8, 15 y 17 Estos tríos, además de satisfacer el teorema de Pitágoras, generan familias de números pitagóricos, que corresponden a todos los tríos formados al multiplicar el trío inicial por cada número natural. Por ejemplo: 3, 4 y 5 6, 8 y 10 9, 12 y 15

8 1. Triángulo rectángulo 1.2 Teoremas importantes Teorema de Pitágoras Un cateto es el doble del otro: Un cateto es el triple del otro: Ejemplo Ejemplo

9 1. Triángulo rectángulo 1.2 Teoremas importantes Teorema de Euclides Sea ABC un triángulo rectángulo en C, y CD = h c, la altura sobre la hipotenusa, entonces se cumple que el producto de las proyecciones de los catetos sobre la hipotenusa es igual a la altura (h c ) al cuadrado. h c 2 = p q Además, se cumple que: p: proyección del cateto AC sobre la hipotenusa q: proyección del cateto BC sobre la hipotenusa h c = a b c a 2 = c q b 2 = c p

10 1. Triángulo rectángulo Ejemplo: De acuerdo a la figura, los segmentos CD y AC tienen medida igual a Aplicando Teorema de Euclides: CD 2 = AD D B (Reemplazando) AC 2 = AB AD (Reemplazando) CD 2 = 4 3 (Aplicando raíz) AC 2 = 7 4 (Aplicando raíz) CD = AC = CD = 2 3

11 o 2.Relaciones métricas en el triángulo rectángul Triángulo de ángulos 30º, 60º y 90º 30º 30º a 3 a a 2 h 60º 60º a 2 a 2 Ejemplo: N Dado el triángulo NJS, cuál es la medida de NJ? cuál es el perímetro del triángulo NJS? J 16 Se deduce que el ángulo faltante es 30º, por lo tanto se puede usar las relaciones métricas del triángulo 30º, 60º y 90º 60º S

12 o 2.Relaciones métricas en el triángulo rectángul Ejemplo: Dado el triángulo NJS, cuál es la medida de NJ? cuál es el perímetro del triángulo NJS? N 30º 30º a 16 3 a 2 J Entonces: 60º S a 2 60º Si NS = 16 y esto corresponde a a JS = 8, la mitad de a NJ = 8 3 la mitad de a por 3 Perímetro de triángulo NJS: =

13 o 2.Relaciones métricas en el triángulo rectángul Triángulo de ángulos 45º y 90º a 45º a 2 Siempre se dará esta relación métrica en un triángulo rectángulo isósceles. a 45º Ejemplo: El triángulo FCS, es isósceles en S. Calcular SC y el área del triángulo. S Se deduce que si el triángulo es isósceles y rectángulo, entonces se puede utilizar las relaciones métricas de un triángulo de ángulos 45º y 90º. F 9 2 C

14 o 2.Relaciones métricas en el triángulo rectángul Ejemplo: El triángulo FCS, es isósceles en S. Calcular SC y el área del triángulo. S Según lo visto en clases, en la hipotenusa ver el valor de cada cateto multiplicado por se 2 logra Por lo tanto SC = 9 F 45º 45º 9 2 C cateto cateto Área de triángulo FCS = = 9 9 =

15 o 2.Relaciones métricas en el triángulo rectángul Triángulo rectángulo y transversal de gravedad Si M es punto medio de AB, entonces AM MB CM t c : transversal Ejemplo: Se tiene el triángulo PAV, rectángulo en V, con D punto medio. Calcular la medida del ángulo DVA. V Como se sabe del enunciado, el triángulo es rectángulo y como VD llega al punto medio de la hipotenusa, es transversal de gravedad. 60º P D A

16 o 2.Relaciones métricas en el triángulo rectángul Ejemplo: Se tiene el triángulo PAV, rectángulo en V, con D punto medio. Calcular la medida del ángulo DVA. V 30º 60º 30º P D A Debido a la relación entre el triángulo rectángulo y la transversal de gravedad, se sabe que PD = DA = VD, esto convierte al triángulo DAV en isósceles, por lo tanto el ángulo DVA mide 30º

Triángulos (Parte 2)

Triángulos (Parte 2) Triángulos (Parte 2) APRENDIZAJES ESPERADOS Analizar en el triángulo rectángulo, los teoremas de Pitágoras y Euclides. Aplicar los diferentes teoremas y propiedades de los triángulos rectángulos, equiláteros

Más detalles

1. Teoremas válidos para triángulos rectángulos

1. Teoremas válidos para triángulos rectángulos 1. Teoremas válidos para triángulos rectángulos Sea ABC triángulo rectángulo en C, entonces: El lado opuesto al ángulo recto, AB, es llamado HIPOTENUSA, y los lados AC y BC, CATETOS. cateto hipotenusa

Más detalles

Teorema de Euclides. Clase # 17. Universidad Andrés Bello. Octubre 2014

Teorema de Euclides. Clase # 17. Universidad Andrés Bello. Octubre 2014 PreUnAB Clase # 17 Octubre 2014 Teorema de Pitágoras Teorema general de Pitágoras para el triángulo rectángulo Si ABC es triángulo rectángulo en C, con a y b, catetos, y c hipotenusa, entonces: a 2 + b

Más detalles

Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360

Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360 Triángulos Es un polígono formado por tres segmentos cuyos tres puntos de intersección no están en línea recta. Triángulo ABC A,B y C son vértices del triángulo α, β, γ s interiores. a, b y c, longitud

Más detalles

Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos.

Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos. Definición Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos. Elementos primarios Vértice:, y. Lados:, y. Ángulos interiores:, y. Ángulos exteriores:, y. * Observaciones:

Más detalles

Definición: Un triángulo es la unión de tres rectas que se cortan de dos en dos.

Definición: Un triángulo es la unión de tres rectas que se cortan de dos en dos. Triángulos Definición: Un triángulo es la unión de tres rectas que se cortan de dos en dos. Teoremas 1) La suma de las medidas de los ángulos interiores de un triángulo es 180º. δ + β+ α = 180 0 2) Todo

Más detalles

PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES:

PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: http://espaiescolar.wordpress.com CONCEPTOS PREVIOS PROPORCIONALIDAD Recta: línea continua formada por

Más detalles

4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES

4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES 4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES Y EL TEOREMA DE PITÁGORAS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS. 4.1.1. El teorema de Thales y consecuencias. Thales de Mileto vivió hacia

Más detalles

4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES

4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES 4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES Y EL TEOREMA DE PITÁGORAS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 4.1.1. El teorema de Thales y consecuencias. 4.1.1. El teorema

Más detalles

Areas y perímetros de triángulos.

Areas y perímetros de triángulos. Areas y perímetros de triángulos. Teorema de Pitágoras. Propiedades de las medidas de los lados de todo triángulo. Area de un triángulo rectángulo y cualquiera. Perímetro y semiperímetro de un triángulo

Más detalles

Módulo III: Geometría Elmentos del triángulo Teorema de Pitágoras Ángulos en la circunferencia

Módulo III: Geometría Elmentos del triángulo Teorema de Pitágoras Ángulos en la circunferencia Módulo III: Geometría Elmentos del triángulo Altura Bisectriz Simetral o mediatriz Transversal de gravedad Teorema de Pitágoras Ángulos en la circunferencia Ángulo del centro Ángulo inscrito Ángulo interior

Más detalles

Bloque 33 Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano SGUICEG047EM33-A17V1

Bloque 33 Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano SGUICEG047EM33-A17V1 SGUICEG047EM33-A17V1 Bloque 33 Guía: Ubicación de puntos, distancia longitudes en el plano cartesiano TABLA DE CORRECCIÓN UBICACIÓN DE PUNTOS, DISTANCIAS Y LONGITUDES EN EL PLANO CARTESIANO N Clave Dificultad

Más detalles

4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES

4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES 4. GEOMETRÍA // 4.1. EL TEOREMA DE THALES Y EL TEOREMA DE PITÁGORAS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS 4.1.1. El teorema de Thales y consecuencias. Thales de Mileto vivió hacia

Más detalles

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos 1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular

Más detalles

Polígonos y Triángulos

Polígonos y Triángulos 7 o Básico 2015 Profesor Alberto Alvaradejo Ojeda 1. Polígono Un polígono es una figura plana cerrada formada por trazos o segmentos. Los polígonos se pueden clasificar en: Cóncavos: son los aquellos polígonos

Más detalles

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180

Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180 CLASIFICACIÓN DE ÁNGULOS Nombre Definición Figura Ángulo recto Mide 90 Ángulo agudo Mide menos de 90 Ángulo obtuso Mide más de 90 Ángulo extendido Mide 180 Ángulo completo Mide 360 ÁNGULOS COMPARATIVOS

Más detalles

Estándar Anual. Matemática. Ejercicios PSU. Guía práctica Generalidades de los triángulos GUICES022MT22-A16V1. Programa

Estándar Anual. Matemática. Ejercicios PSU. Guía práctica Generalidades de los triángulos GUICES022MT22-A16V1. Programa rograma Estándar nual Nº Guía práctica Generalidades de los triángulos Ejercicios U 1. Los ángulos interiores de un triángulo están en la razón 5 : 6 : 7, entonces el ángulo exterior adyacente al menor

Más detalles

Geometría con tijera y papel

Geometría con tijera y papel Geometría con tijera y papel El siguiente trabajo tiene por objetivo presentar una demostración del Teorema Particular de Pitágoras basada en la fragmentación y las propiedades de rectas y puntos singulares

Más detalles

Cuaderno: LIMPIEZA Y ORGANIZACIÓN Realización de TAREAS TEMA 12 FIGURAS PLANAS Y ESPACIALES ALUMNO/A: Nº

Cuaderno: LIMPIEZA Y ORGANIZACIÓN Realización de TAREAS TEMA 12 FIGURAS PLANAS Y ESPACIALES ALUMNO/A: Nº Cuaderno: LIMPIEZA Y ORGANIZACIÓN Realización de TAREAS SATISFACTORIO ACEPTABLE MEJORABLE TEMA 12 FIGURAS PLANAS Y ESPACIALES ALUMNO/A: Nº Ejercicios TEMA 12 FIGURAS PLANAS Y ESPACIALES (1º ESO) Página

Más detalles

SOLUCIONARIO Cuerpos redondos

SOLUCIONARIO Cuerpos redondos SOLUCIONARIO Cuerpos redondos SGUICEG07EM2-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Cuerpos redondos Ítem Alternativa 1 E 2 D A 4 C 5 C 6 D 7 B 8 D 9 B 10 D 11 B 12 C 1 B 14 B 15 A 16 C 17 A 18 E 19 D

Más detalles

Modulo de aprendizaje de matemática. Semejanza de figuras planas.

Modulo de aprendizaje de matemática. Semejanza de figuras planas. Modulo de aprendizaje de matemática. Semejanza de figuras planas. Concepto de semejanza. EJEMPLO. Dos polígonos convexos son semejantes si tienen la misma forma con diferentes dimensiones. Diremos que

Más detalles

Semejanza. Razones. Teorema de Thales. Proporciones. a = b. c d

Semejanza. Razones. Teorema de Thales. Proporciones. a = b. c d Semejanza Razones Razones y proporciones Teorema de Thales Triángulos semejantes Teoremas de semejanza Teoremas de Euclides Perímetro y Área a) Razón. Es el cuociente entre dos números (positivos). b)

Más detalles

ELEMENTOS PRIMARIOS DEL TRIÁNGULO. también es el suplemento de α, por lo tanto,. α ' =β+γ

ELEMENTOS PRIMARIOS DEL TRIÁNGULO. también es el suplemento de α, por lo tanto,. α ' =β+γ 7.. TRIÁNGULOS 7..1. ELEMENTOS PRIMARIOS DEL TRIÁNGULO VÉRTICES: son los puntos donde se intersectan dos de los Lados del triángulo. Se designan con letras mayúsculas, A, B, C... LADOS: son los trazos

Más detalles

PSU Matemática NM-4 Guía 14: Ángulos y Triángulos

PSU Matemática NM-4 Guía 14: Ángulos y Triángulos 1 Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía 1: Ángulos y Triángulos Nombre: Curso: Fecha: - Contenido: Geometría. Aprendizaje Esperado:

Más detalles

SGUIC3M043M311-A16V1 NÚMEROS ENTEROS Y RACIONALES GUÍA DE EJERCITACIÓN SEMEJANZA DE FIGURAS Y TEOREMA DE EUCLIDES

SGUIC3M043M311-A16V1 NÚMEROS ENTEROS Y RACIONALES GUÍA DE EJERCITACIÓN SEMEJANZA DE FIGURAS Y TEOREMA DE EUCLIDES SGUIC3M03M311-A16V1 NÚMEROS ENTEROS Y RACIONALES GUÍA DE EJERCITACIÓN SEMEJANZA DE FIGURAS Y TEOREMA DE EUCLIDES 1 TABLA DE CORRECCIÓN GUÍA DE EJERCITACIÓN SEMEJANZA DE FIGURAS Y TEOREMA DE EUCLIDES ÍTEM

Más detalles

Contenidos. Triángulos I. Elementos primarios. Clasificación. Elementos secundarios. Propiedad Intelectual Cpech

Contenidos. Triángulos I. Elementos primarios. Clasificación. Elementos secundarios. Propiedad Intelectual Cpech ontenidos Triángulos I Elementos primarios lasificación Elementos secundarios Triángulos Es un polígono de tres lados. Posee tres vértices, tres lados, tres ángulos interiores y tres ángulos exteriores.

Más detalles

Dibujo Técnico Triángulos

Dibujo Técnico Triángulos 12. TRIÁNGULOS 12.1. Características generales Un triángulo ABC es una figura plana limitada por tres rectas que se cortan dos a dos, determinando los segmentos AB, AC y BC que son los lados del triángulo.

Más detalles

27.- La diferencia entre el lado de un triangulo equilátero y su altura es 12 cm. Cuanto mide el perímetro del triangulo?

27.- La diferencia entre el lado de un triangulo equilátero y su altura es 12 cm. Cuanto mide el perímetro del triangulo? EJERCICIOS 1.- Calcular la altura a la hipotenusa de un triángulo rectángulo cuyos catetos miden 6 y 8 cm. 5 2.- En un triángulo rectángulo, un cateto mide 15 cm., y la proyección del otro sobre la hipotenusa

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

ANGULOS. La unidad de medida es el grado sexagesimal. La "circunferencia completa " mide 360º (grados sexagesimales). Además considere que.

ANGULOS. La unidad de medida es el grado sexagesimal. La circunferencia completa  mide 360º (grados sexagesimales). Además considere que. PREUNIVERSITARIO PROGRAMA DE NIVELACIÓN Y REFORZAMIENTO M 04 PRO-OCTAV@ TEXTO Nº 2 GEOMETRÍA ANGULOS SISTEMAS DE UNIDADES DE MEDIDA: SISTEMA SEXAGESIMAL: La unidad de medida es el grado sexagesimal. La

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

ALGUNAS RELACIONES PARA RECORDAR:

ALGUNAS RELACIONES PARA RECORDAR: ALGUNAS RELACIONES PARA RECORDAR: División Áurea de un trazo: Consideremos el trazo: AB AP AP PB Se dice que P divide de modo áureo al trazo AB. Es decir el mayor de los trazos es media proporcional entre

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS ÁREA Y PERÍMETRO DE FIGURAS PLANAS LINEA POLIGONAL: Se llama línea poligonal

Más detalles

En una simple escalera donde b= 2,5 m y a= 6 m. Cuál sería el valor de p,q, h y c?

En una simple escalera donde b= 2,5 m y a= 6 m. Cuál sería el valor de p,q, h y c? TEOREMA DE EUCLIDES. INTRODUCIIÓN. Euclides (330 a.c. - 275 a.c.) Gran matemático griego, escribió una serie de libros donde sintetizaba todos los conocimientos matemáticos conocidos hasta entonces. Euclides

Más detalles

La Geometría del triángulo TEMA 6

La Geometría del triángulo TEMA 6 La Geometría del triángulo TEMA 6 Diana Barredo Blanco Profesora de Matemáticas I.E.S. Luis de Camoens (CEUTA) En este tema vamos a ver algunas aplicaciones y ejemplos de los teoremas vistos en los dos

Más detalles

RAZONAMIENTO GEOMÉTRICO

RAZONAMIENTO GEOMÉTRICO RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros

Más detalles

Guía Nº 1 CONTENIDOS: Ángulos y Triángulos. Nombre:

Guía Nº 1 CONTENIDOS: Ángulos y Triángulos. Nombre: SUBSECTOR : Electivo de Geometría NIVELES : IIIº/VIº Medio PROFESORES : Martín Andrés Martínez Santana AÑO : 2017 Guía Nº 1 CONTENIDOS: Ángulos y Triángulos. Nombre: IIIº/IV Marque la alternativa correcta.

Más detalles

A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS:

A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS: TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS ELEMENTOS CLASIFICACIÓN TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO A b h A b a A perímetro apotema A r TEOREMA DE PITÁGORAS: a b c 1 POLÍGONOS

Más detalles

open green road Guía Matemática TRIÁNGULOS tutora: Jacky Moreno .cl

open green road Guía Matemática TRIÁNGULOS tutora: Jacky Moreno .cl Guía Matemática TRIÁNGULOS tutora: Jacky Moreno.cl 1. Triángulos El triángulo es una figura plana formada por la unión de tres rectas que se cortan de dos en dos. A continuación estudiaremos los elementos

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

Geometría. Ángulos. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Ángulos. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUCIÓN DE TRIÁNGULOS Resolver un triángulo consiste en determinar la longitud de sus tres lados y la amplitud de sus tres ángulos. Vamos a recordar primero la resolución para triángulos rectángulos

Más detalles

FORMAS POLIGONALES TEMA 8

FORMAS POLIGONALES TEMA 8 FORMAS POLIGONALES TEMA 8 1. LOS POLÍGONOS DEFINICIÓN: Un polígono es una figura geométrica plana limitada por segmentos llamados lados, y por vértices. A B C A Lado D Clasificación de los polígonos:

Más detalles

FICHA DE TRABAJO Nº 17

FICHA DE TRABAJO Nº 17 Nombre FICHA DE TRABAJO Nº 17 Nº orden Bimestre IV 3ºgrado - sección A B C D Ciclo III Fecha: - 11-12 Área Matemática Tema TRIÁNGULOS I: Propiedades Básicas TRIÁNGULO Es la figura que se forma al unir

Más detalles

ENUNCIADO DEL TEOREMA DE PITÁGORAS

ENUNCIADO DEL TEOREMA DE PITÁGORAS ENUNCIADO DEL TEOREMA DE PITÁGORAS "En todo triángulo rectángulo se cumple que el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos" Este enunciado es equivalente al siguiente:

Más detalles

Guía: Semejanza y congruencia de figuras. SGUIC3M049M311-A17V1

Guía: Semejanza y congruencia de figuras. SGUIC3M049M311-A17V1 Guía: Semejanza y congruencia de figuras. SGUIC3M049M311-A17V1 TABLA DE CORRECCIÓN SEMEJANZA Y CONGRUENCIA DE FIGURAS Ítem Alternativa Dificultad Estimada 1 C Aplicación Media A Aplicación Media 3 D Comprensión

Más detalles

Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica

Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica Ángulos. DEFINICIÓN FIGURA OBSERVACIONES Ángulo. Es la abertura formada por dos semirrectas unidas en un solo punto llamado vértice. Donde: α = Ángulo O = Vértice OA = Lado inicial OB = Lado terminal Un

Más detalles

open green road Guía Matemática TRIÁNGULO RECTÁNGULO tutora: Jacky Moreno .cl

open green road Guía Matemática TRIÁNGULO RECTÁNGULO tutora: Jacky Moreno .cl Guía Matemática TRIÁNGULO RECTÁNGULO tutora: Jacky Moreno.cl 1. Triángulo Rectángulo Un triángulo se denomina rectángulo si uno de sus ángulos mide 90 y por ende los otros dos ángulos son agudos. Los lados

Más detalles

FICHA DE TRABAJO Nº 18

FICHA DE TRABAJO Nº 18 FICHA DE TRABAJO Nº 18 Nombre Nº orden Bimestre IV 3ºgrado - sección A B C D Ciclo III Fecha: - 11-12 Área Matemática Tema TRIÁNGULOS II: Líneas y Puntos Notables LINEAS y PUNTOS NOTABLES EN EL TRIANGULO

Más detalles

Definición, Clasificación y Propiedades de los Triángulos

Definición, Clasificación y Propiedades de los Triángulos Definición, Clasificación y Propiedades de los Triángulos Que es un Triángulo? Un triángulo es un polígono de tres lados y tres ángulos. Trigonometría Básica Ing. Gonzalo Carranza E. TRIÁNGULO es un polígono

Más detalles

Cuaderno de trabajo Geometría y Trigonometría 2do.

Cuaderno de trabajo Geometría y Trigonometría 2do. Ejercicio. 21 Instrucciones: Relaciona las dos columnas, escribiendo en el paréntesis de la columna de la izquierda la clave de la respuesta localizada en la columna de la derecha. ( ) Es la figura formada

Más detalles

DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula.

DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula. DIBUJO GEOMÉTRICO 1. SIGNOS Y LÍNEAS. A. El punto: es la intersección de dos rectas. Se designa mediante una letra mayúscula y se puede representar también con un círculo pequeño o un punto. A B C D X

Más detalles

BÁSICOS DE GEOMETRÍA: Solución a los Ejercicios Propuestos

BÁSICOS DE GEOMETRÍA: Solución a los Ejercicios Propuestos CONCEPTOS BÁSICOS DE GEOMETRÍA: Solución a los Ejercicios Propuestos Tutor Carmen Aleisy Rodríguez Junio de 009 Solución a los Ejercicios propuestos 1. El grafico muestra las rectas paralelas m y n y la

Más detalles

Geometría Conceptos básicos Elementos de Geometría. 1. Por un punto fuera de una recta pasa una única paralela a esa recta.

Geometría Conceptos básicos Elementos de Geometría. 1. Por un punto fuera de una recta pasa una única paralela a esa recta. Geometría Conceptos básicos Elementos de Geometría Debido a que los conceptos de Geometría están siempre presente en Matemáticas, Física e Ingeniería, se hará un repaso de estas materias y se presentará

Más detalles

Repartido 2. Profesor Fernando Díaz Matemática II 5to cient. I.D.A.L. 2016

Repartido 2. Profesor Fernando Díaz Matemática II 5to cient. I.D.A.L. 2016 Repartido 2 Profesor Fernando Díaz Matemática II 5to cient. I.D.A.L. 2016 Actividad 1 Recordando al teorema de la bisectriz interior demostrado en clase, podemos decir que en el siguiente triángulo T(ABC)

Más detalles

D. Es una figura geométrica formada por la intersección de dos líneas rectas en un punto llamado vértice.

D. Es una figura geométrica formada por la intersección de dos líneas rectas en un punto llamado vértice. SEGUNDO PERIODO - PRUEBA DE GEOMETRÍA GRADO 601-602 - 603 1 Un triángulo se define como: A. Polígono formado por tres lados. B. Polígono formado por dos lados. C. Polígono formado por dos lados. D. Es

Más detalles

FIGURAS GEOMETRICAS PLANAS

FIGURAS GEOMETRICAS PLANAS UNIDAD 9 FIGURAS GEOMETRICAS PLANAS Objetivo General Al terminar esta Unidad entenderás y aplicaras los conceptos generales de las figuras geométricas planas, y resolverás ejercicios y problemas con figuras

Más detalles

SGUICEG024MT22-A16V1. SOLUCIONARIO Ubicación de puntos, distancia y longitudes en el plano cartesiano

SGUICEG024MT22-A16V1. SOLUCIONARIO Ubicación de puntos, distancia y longitudes en el plano cartesiano SGUICEG04MT-A16V1 SOLUCIONARIO Ubicación de puntos, distancia longitudes en el plano cartesiano 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA UBICACIÓN DE PUNTOS, DISTANCIA Y LONGITUDES EN EL PLANO CARTESIANO Ítem

Más detalles

M AT E M Á T I C A S 4 º E S O D E I S Y M O L I N A C U R S O /

M AT E M Á T I C A S 4 º E S O D E I S Y M O L I N A C U R S O / C O N C E P T O S B Á S I C O S M AT E M Á T I C A S 4 º E S O D E I S Y M O L I N A C U R S O 2 0 1 7 / 2 0 1 8 Q U É E S L A T R I G O N O M E T R Í A? R A M A D E L A S M A T E M Á T I C A S Q U E S

Más detalles

SGUICES028MT22-A16V1. SOLUCIONARIO Semejanza de triángulos

SGUICES028MT22-A16V1. SOLUCIONARIO Semejanza de triángulos SGUICES08MT-A16V1 SOLUCIONARIO Semejanza de triángulos 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA SEMEJANZA DE TRIANGULOS Ítem Alternativa 1 C Comprensión D 3 D 4 B 5 E 6 B 7 A 8 A 9 E 10 B 11 E 1 C 13 E Comprensión

Más detalles

LOS POLIGONOS. 1. Definiciones.

LOS POLIGONOS. 1. Definiciones. LOS POLIGONOS 1. Definiciones. Un triángulo es un polígono cerrado y convexo constituido por tres ángulos (letras mayúsculas y sentido contrario a las agujas del reloj) y tres lado (letras minúsculas).

Más detalles

TALLER DE ENTRENAMIENTO PARA SEMIFINAL Sábado 6 de mayo y jueves 11 de mayo Elaborado por: Gustavo Meza García. Ángulos

TALLER DE ENTRENAMIENTO PARA SEMIFINAL Sábado 6 de mayo y jueves 11 de mayo Elaborado por: Gustavo Meza García. Ángulos Ángulos Ejercicios: 1) Si un triángulo tiene 2 ángulos que miden 25 y 75 Cuánto mide el tercer ángulo? 2) Cuánto suman los ángulos internos de un cuadrilátero cualquiera? Teorema: 1) La suma de los ángulos

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría-8a- Soluciones de relaciones métricas en los triángulos Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría-8a- Soluciones de relaciones métricas en los triángulos Fecha: Profesor: Fernando Viso GUIA DE TRAJO Materia: Matemáticas. Tema: Geometría-8a- Soluciones de relaciones métricas en los triángulos Fecha: Profesor: Fernando Viso Nombre del alumno: Sección del alumno: CONDICIONES: Trabajo individual.

Más detalles

GUÍA NÚMERO 13 ANGULOS:

GUÍA NÚMERO 13 ANGULOS: Saint Gaspar ollege ISIOEROS DE PREIOS SGRE Formando Personas Íntegras Departamento de atemática RESUE PSU TETI GUÍ ÚERO 1 GUOS: edición: 1º = 60 1 = 60 1º = 600 omplemento de α = 0º α Suplemento de α

Más detalles

Autora: Jeanneth Galeano Peñaloza. 2 de abril de Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 1/1

Autora: Jeanneth Galeano Peñaloza. 2 de abril de Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 1/1 Autora: Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 2 de abril de 2013 1/1 Parte I Introducción a la geometría elemental 2/1 Nociones básicas Las

Más detalles

Son los segmentos, cada uno de ellos con extremos en un vértice y en el punto medio del lado opuesto.

Son los segmentos, cada uno de ellos con extremos en un vértice y en el punto medio del lado opuesto. TRIÁNGULOS: LÍNEAS NOTABLES DE UN TRIÁNGULO: Medianas Son los segmentos, cada uno de ellos con extremos en un vértice y en el punto medio del lado opuesto. Notación: A la mediana correspondiente al vértice

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES - MATEMÁTICA I - AÑO 2012 TRIÁNGULOS

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES - MATEMÁTICA I - AÑO 2012 TRIÁNGULOS TRIÁNGULOS Definición: Dados tres puntos no alineados, A, B y C, se llama triángulo a la intersección de los semiplanos que tienen como borde la recta determinada por dos de estos puntos y contiene al

Más detalles

DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 3. POLÍGONOS. Departamento de Artes Plásticas y Dibujo 1. Construir un triángulo equilátero conocida la altura. 2. Construir un triángulo isósceles conocida

Más detalles

Tema 2 2 Geometría métrica en el pla no

Tema 2 2 Geometría métrica en el pla no Tema Geometría métrica en el pla no CONCEPTOS BÁSICOS Figuras básicas en el plano: puntos, rectas, semirrectas, segmentos y ángulos Los polígonos y su clasificación según los ángulos internos y según el

Más detalles

TEMA 6 SEMEJANZA. APLICACIONES -

TEMA 6 SEMEJANZA. APLICACIONES - TEMA 6 SEMEJANZA. APLICACIONES - 1. SEMEJANZA: ESCALAS LECCIÓN I ESCALA: es el cociente entre cada longitud de reproducción (mapa, plano, maqueta) y la correspondiente longitud en la realidad. Es, por

Más detalles

Polígonos. Triángulos

Polígonos. Triángulos CLAVES PARA EMPEZAR Cada hora equivale a una abertura de 360 o : 12 30 o A las 12 h: ángulo 0 o A las 11 h y a la 1 h: ángulo 30 o A las 9 h y a las 3 h: ángulo 90 o A las 7 h y a las 5 h: ángulo 150 o

Más detalles

MATEMÁTICA Teorema de Pitágoras Guía Nº 2

MATEMÁTICA Teorema de Pitágoras Guía Nº 2 MATEMÁTICA Teorema de Pitágoras Guía Nº 2 APELLIDO: Prof. Karina G. Rizzo 2. b) Trazar una recta y dividir en partes iguales ubicando, en la misma, desde el el año 700 hasta el año 0 (en múltiplos de 100).

Más detalles

Tema 10: Problemas métricos en el plano

Tema 10: Problemas métricos en el plano Tema 10: Problemas métricos en el plano 10.1 Relaciones angulares Construye un polígono de cinco lados, divídelo en triángulos para averiguar la suma de los ángulos interiores del pentágono. Nuestro pentágono

Más detalles

TEMA 6 SEMEJANZA. APLICACIONES -

TEMA 6 SEMEJANZA. APLICACIONES - TEMA 6 SEMEJANZA. APLICACIONES - 1. SEMEJANZA: ESCALAS LECCIÓN I ESCALA: es el cociente entre cada longitud de reproducción (mapa, plano, maqueta) y la correspondiente longitud en la realidad. Es, por

Más detalles

EF AB. Hallar la longitud del segmento BE si AC+BD+CE+DF=30. 3 a) 10 b) 14 c) 20 d) 8 e) Ning.

EF AB. Hallar la longitud del segmento BE si AC+BD+CE+DF=30. 3 a) 10 b) 14 c) 20 d) 8 e) Ning. UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA CURSO PREFACULTATIVO GESTIÓN II-2012 PRÁCTICA Nº 1 GEOMETRÍA 1. Sobre una línea recta se consideran los puntos consecutivos A, B y C; luego

Más detalles

- 1 - RECTAS Y ÁNGULOS. Tipos de ángulos Los ángulos se clasifican según su apertura: -Agudos: menores de 90º. Rectas

- 1 - RECTAS Y ÁNGULOS. Tipos de ángulos Los ángulos se clasifican según su apertura: -Agudos: menores de 90º. Rectas Alonso Fernández Galián Geometría plana elemental Rectas RECTAS Y ÁNGULOS Una recta es una línea que no está curvada, y que no tiene principio ni final. Tipos de ángulos Los ángulos se clasifican según

Más detalles

Ver Aplicación Triángulos 03- Rectas y Puntos notables del triángulo: https://www.geogebra.org/m/uta2pdwd

Ver Aplicación Triángulos 03- Rectas y Puntos notables del triángulo: https://www.geogebra.org/m/uta2pdwd TRIÁNGULOS RECTAS Y PUNTOS NOTABLES Las rectas notables del triángulo son altura, mediatriz, mediana y bisectriz. Ver Aplicación Triángulos 03- Rectas y Puntos notables del triángulo: https://www.geogebra.org/m/uta2pdwd

Más detalles

Tutorial MT-b10. Matemática Tutorial Nivel Básico. Cuadriláteros

Tutorial MT-b10. Matemática Tutorial Nivel Básico. Cuadriláteros 134567890134567890 M ate m ática Tutorial MT-b10 Matemática 006 Tutorial Nivel Básico Cuadriláteros Matemática 006 Tutorial Cuadriláteros Marco teórico: 1. Definición: Polígono de cuatro lados, cuya suma

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,

Más detalles

Fundación Uno. 2. En la figura, BD es una altura del triángulo ABC. Cuál es el valor de b a?

Fundación Uno. 2. En la figura, BD es una altura del triángulo ABC. Cuál es el valor de b a? ENCUENTRO # 51 TEMA: Semejanza de triángulo. CONTENIDOS: 1. Razones y proporciones(teorema de Tales). 2. Criterios de Semejanza. 3. Ejercicios de aplicación. Ejercicio Reto 1. Examen de la UNI 2014 En

Más detalles

Tutorial MT-a8. Matemática Tutorial Nivel Avanzado. Guía global Geometría

Tutorial MT-a8. Matemática Tutorial Nivel Avanzado. Guía global Geometría 12345678901234567890 M ate m ática Tutorial MT-a8 Matemática 2006 Tutorial Nivel Avanzado Guía global Geometría Matemática 2006 Tutorial Guía Global Geometría Ejercicios 1. Cuál de las siguientes opciones

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

n Por ejemplo, en un pentágono tenemos que saber que sus ángulos suman 540º y cada ángulo del pentágono son 108º.

n Por ejemplo, en un pentágono tenemos que saber que sus ángulos suman 540º y cada ángulo del pentágono son 108º. MATEMÁTICAS 3º ESO TEMA 10 PROBLEMAS MÉTRICOS EM EL PLANO- 1. ÁNGULOS EN LOS POLÍGONOS La suma de los ángulos de un polígono de n lados es: 180º (n-2) 180º(n - 2) La medida de cada ángulo de un polígono

Más detalles

Serie de ejercicios para el examen de Matemáticas II PAE-Periodo

Serie de ejercicios para el examen de Matemáticas II PAE-Periodo Serie de ejercicios para el examen de Matemáticas II PAE-Periodo 016-1 1- Se desea cercar un terreno de forma cuadrada que tiene una superficie de 400 m. Cuántos metros de tela de alambre se necesitan?

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

PERÍMETRO Y ÁREA DE UN POLÍGONO

PERÍMETRO Y ÁREA DE UN POLÍGONO PERÍMETRO Y ÁREA DE UN POLÍGONO - Área y perímetro del triángulo - Cálculo del perímetro Es la longitud de su contorno ó la suma de sus lados. P = a + b + c Recuerda: - El perímetro de un triángulo escaleno

Más detalles

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas

Más detalles

Demostración visual del Teorema de Pitágoras (en un sentido)

Demostración visual del Teorema de Pitágoras (en un sentido) Demostración visual del Teorema de Pitágoras (en un sentido) Queremos ver que en todo triángulo rectángulo la suma de las áreas de los cuadrados construidos sobre los dos catetos es igual al área del cuadrado

Más detalles

UNIDAD DIDÁCTICA CONTENIDO

UNIDAD DIDÁCTICA CONTENIDO UNIDAD DIDÁCTICA CONTENIDO TRIÁNGULOS CLASIFICACIÓN DE TRIÁNGULO - SEGÚN SUS LADOS - SEGÚN SUS ÁNGULOS ÁNGULOS INTERIORES Y EXTERIORES DE UN TRIÁNGULO 1 ANALIZA LAS SIGUIENTES FIGURAS: Son polígonos: No

Más detalles

Geometría 1 de Secundaria: I Trimestre. yanapa.com. Rayo. I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano

Geometría 1 de Secundaria: I Trimestre. yanapa.com. Rayo. I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano Rayo Segmento : Rayo de Origen O y que pasa por B : Rayo de Origen O y que pasa por A La Recta : Se lee Segmento AB : Se lee

Más detalles

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.

Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo

Más detalles

NOMBRE: Nº 1ºESO TEMA 2 - FORMAS POLIGONALES

NOMBRE: Nº 1ºESO TEMA 2 - FORMAS POLIGONALES TEMA 2 - FORMAS POLIGONALES Los ejercicios se deben delinear a lápiz, debiendo dejar todas las construcciones que sean necesarias para la resolución de los ejercicios. 2.7.1 Triángulos Rectas y puntos

Más detalles

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es

Más detalles

Clasificación de polígonos según sus lados

Clasificación de polígonos según sus lados POLÍGONOS Polígonos Un polígono es la región del plano limitada por tres o más segmentos. Elementos de un polígono Lados Son los segmentos que lo limitan. Vértices Son los puntos donde concurren dos lados.

Más detalles