SOLUCIONARIO Cuerpos redondos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SOLUCIONARIO Cuerpos redondos"

Transcripción

1 SOLUCIONARIO Cuerpos redondos SGUICEG07EM2-A16V1 1

2 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Cuerpos redondos Ítem Alternativa 1 E 2 D A 4 C 5 C 6 D 7 B 8 D 9 B 10 D 11 B 12 C 1 B 14 B 15 A 16 C 17 A 18 E 19 D 20 B 21 D 22 C 2 E 24 C 25 D 2

3 1. La alternativa correcta es E. El área de un cilindro es igual a la suma de las áreas que lo limitan. Luego: Área cilindro = 2πr 2 + 2πrh = 2π π 4 6 = 2π + 48π = 80π cm 2 2. La alternativa correcta es D. El volumen de un cilindro es igual a Área de la base Altura. Luego, reemplazando: Volumen cilindro = πr 2 h = 2 π 5 = 45π cm. La alternativa correcta es A. Al rotar indefinidamente el rectángulo ABCD de la figura en torno al lado AD, se genera un cilindro de radio 11 cm y altura 7 cm. El volumen de un cilindro es igual a Área de la base Altura. Luego, reemplazando: Volumen cilindro = πr 2 h = 121π 7 = 847π cm 4. La alternativa correcta es C. Al rotar indefinidamente el rectángulo ABCD de la figura en torno al lado AB, se genera un cilindro de radio BC, y altura 0 cm, como se muestra en la figura. D A 0 C 15 B

4 Como AB: BC = 2: 1, entonces BC = 15 cm. Luego, al calcular el volumen del cilindro resulta: Volumen cilindro = πr 2 h = 225π 0 = 6.750π cm 5. La alternativa correcta es C. Al rotar indefinidamente el rectángulo ABCD de la figura en torno al lado AD, se genera un cilindro de radio 8 cm, y altura BC. Aplicando tríos pitagóricos, podemos determinar que BC = 6. Luego, calculemos el volumen de ese cilindro: Volumen cilindro = πr 2 h = 64π 6 = 84π cm 6. La alternativa correcta es D. El área de un cilindro se calcula como la suma de todas las áreas que lo limitan. Como el área de cada una de las dos bases mide π radio² y el área del manto mide 2π radio altura, entonces el área del cilindro es 2π radio (radio + altura). Si llamamos x al radio, entonces el diámetro mide 2x. Como el diámetro y la altura del cilindro tienen la misma medida, entonces la altura también mide 2x. Luego, Área total = 2π radio (radio + altura). Reemplazando resulta: = 2π x (x + 2x) 60 = 6πx² x² = Entonces, si el área del manto mide 2π radio altura, al reemplazar el valor del radio x resulta: 10 2π x 2x = 4π x² = 4π = 40 cm². Por lo tanto, el área del manto del cilindro mide 40 cm². 4

5 7. La alternativa correcta es B. El área total de un cilindro se calcula: Área total = 2π radio altura + 2π (radio) 2 (Reemplazando) 200π = 2π 5 altura + 2π 5 2 (Desarrollando) 200π = 10π altura + 2π π = 10π altura + 50π (Agrupando variables y constantes) 200π 50π = 10π altura 150π = 10π altura (Dividiendo por 10π) 150 π = altura (Simplificando) 10π 15 = altura Por lo tanto, su altura mide 15 cm. 8. La alternativa correcta es D. El rectángulo de la figura está formado por dos cuadrados congruentes. O sea, si el lado del cuadrado mide x cm, entonces el largo del rectángulo mide 2x cm y el ancho del rectángulo mide x cm. Cuando se hace girar un rectángulo en torno a uno de sus lados se forma un cilindro, cuyo volumen se calcula: Volumen = π (radio) 2 altura Cuando el rectángulo ABCD se hace girar indefinidamente en torno al lado AB, resulta el cilindro que se indica en la siguiente figura, con radio x cm y altura 2x cm. Por lo tanto, su volumen (que según el enunciado mide 2.000π cm ) se expresaría como: 5

6 Volumen = π (radio) 2 altura (Reemplazando) 2.000π = π x 2 2x 2.000π = 2π x (Dividiendo por 2π) = x (Aplicando raíz cúbica) 10 = x Luego, el largo del rectángulo mide (2x = 2 10) = 20 cm y el ancho del rectángulo mide 10 cm. Cuando el rectángulo ABCD se hace girar indefinidamente en torno al lado BC, resulta un cilindro como el de la siguiente figura, donde el radio mide 20 cm y la altura 10 cm. Por lo tanto, su volumen se calcula: Volumen = π (radio) 2 altura Volumen = π Volumen = π Volumen = 4.000π (Reemplazando) (Desarrollando las operaciones) Por lo tanto, al hacer girar indefinidamente el rectángulo ABCD en torno al lado BC se forma un cilindro cuyo volumen mide 4.000π cm. 6

7 9. La alternativa correcta es B. Para calcular la cantidad de vasos que se pueden llenar, se debe dividir el volumen del jarro por el volumen del vaso. El volumen de un cilindro se calcula: Volumen = π (radio) 2 altura. Como el jarro tiene 12 cm de diámetro, entonces tiene 6 cm de radio. Luego, calculando el volumen del jarro: Volumen = π (radio) 2 altura Volumen = π Volumen = 1.080π (Reemplazando) (Desarrollando las operaciones) Entonces, el jarro contiene 1.080π cm de jugo. Como cada vaso tiene un tercio del radio y la mitad de la altura del jarro, entonces tiene un radio de 2 cm y una altura de 15 cm. Luego, calculando el volumen de cada vaso: Volumen = π (radio) 2 altura Volumen = π Volumen = 60π (Reemplazando los valores conocidos) (Desarrollando las operaciones) Entonces, cada vaso tiene una capacidad de contener 60π cm de jugo. Luego, la cantidad de vasos que se pueden llenar con el contenido del jarro es: Volumen jarro Volumen vaso 1.080π = 18 60π Por lo tanto, se podrán servir 18 vasos si se llenan completamente. 7

8 10. La alternativa correcta es D. Aplicando tríos pitagóricos, tenemos que la generatriz es 5. El área de un cono es igual a la suma de las áreas que lo limitan. Luego: Área cono = πr 2 + πrg = π 2 + π 5 = 9π + 15π = 24π La alternativa correcta es B. Para determinar la altura del cono, se puede aplicar Pitágoras o considerando que un cateto mide la mitad de la hipotenusa considerar el triángulo rectángulo de hipotenusa 6 y cateto, como la mitad de un triángulo equilátero de lado 6. Luego, su altura sería h = 6 Por otro lado, como el volumen de un cono es igual a 1 (Área de la base Altura), entonces: r 2 h Volumen cono = = 9 = 9 8

9 12. La alternativa correcta es C. Aplicando tríos pitagóricos, AC = 5 cm. Al rotar indefinidamente el triángulo ABC en torno al lado AB, se genera un cono de radio de 5 cm y altura 12 cm. Como el volumen de un cono es igual a 1 (Área de la base Altura). Entonces: r 2 h Volumen cono = = = 100 cm 5 C A 1 12 B 1. La alternativa correcta es B. Para calcular el volumen NO cubierto debemos restar los volúmenes del cilindro y del cono. Aplicando teorema de Pitágoras, la altura del cono y del cilindro mide 8 cm. Luego, calculemos el volumen del cono y del cilindro 8 4 Volumen cilindro = r 2 π h = 4 2 π 8 = 128π Volumen cono = r 2 h = = Entonces, Volumen NO cubierto = 128π = cm Observación: En general, si un cilindro y un cono tienen el mismo radio y la misma altura, el volumen del cono es 1 del volumen del cilindro, y el volumen NO cubierto por el cono es 2 del volumen del cilindro. 9

10 14. La alternativa correcta es B. Si la generatriz del cono mide 10 cm y el radio 6 cm, entonces la altura del cono mide 8 cm. Luego, el volumen del cono es: 8 10 r 2 h Volumen cono = = 6 8 = 96 cm La alternativa correcta es A. Por trío pitagórico, AC = 12 cm. Al rotar indefinidamente el triángulo ABC en torno al lado AB, se genera un cono de radio 12 cm y altura 9 cm. Luego, el volumen del cono es: 12 cm C 15 cm r 2 h Volumen cono = = = 42 cm A 9cm B 16. La alternativa correcta es C. I) Verdadera, ya que la medida de la generatriz de un cono corresponde a la medida de la hipotenusa del triángulo rectángulo que originó al cono. Como este es isósceles de cateto 4 cm, entonces su hipotenusa mide 4 2 cm. 10

11 II) Falsa, ya que el volumen de un cono se calcula: Volumen = 1 π radio2 altura. Como los catetos del triángulo rectángulo isósceles miden 4 cm, entonces el radio y la altura del cono miden 4 cm. Entonces: Volumen = 1 π Volumen = π cm III) Verdadera, ya que el diámetro siempre es el doble del radio y, en este caso, el radio es igual a la altura. Entonces, el diámetro es el doble de la altura. Por lo tanto, solo las afirmaciones I y III son verdaderas. 17. La alternativa correcta es A. El volumen de un cubo se calcula como: Volumen = arista (Reemplazando el volumen) 216 = arista (Aplicando raíz cúbica) 6 = arista Luego, las aristas del cubo miden 6 cm. Como la base del cono está inscrita en la cara inferior del cubo, y el vértice del cono se encuentra en el centro de la cara superior del cubo, entonces la altura y el diámetro del cono miden 6 cm. Luego, el radio del cono mide cm. El volumen de un cono se calcula: Volumen = 1 π radio2 altura Volumen = 1 π 2 6 (Reemplazando) (Desarrollando las operaciones) Volumen = 1 π 9 6 Volumen = 1 π 54 Volumen = 18π Por lo tanto, el volumen del cono mide 18π cm. 11

12 18. La alternativa correcta es E. Si el radio de la esfera es 9 cm y entonces el área de la esfera es: Área esfera = 4πr 2 = 4π 9 2 = 24π Luego, el área mide 24π cm La alternativa correcta es D. Si el diámetro de la esfera es 6 cm, entonces el radio mide cm, y su volumen es: Volumen esfera = 4 r = = = 6 Luego, el volumen de la esfera es 6π cm 20. La alternativa correcta es B. Como el triángulo QPS es rectángulo en Q y el arco SR es un cuarto de circunferencia de centro Q y radio 6, entonces RQ = SQ = 6. Dado que RP = 18, entonces QP = 12. Al girar indefinidamente el arco SR en torno a RQ, se genera una semiesfera de radio 6. Luego, su volumen es radio = = 144π. 2 = 216 Al girar indefinidamente el triángulo QPS en torno a QP se genera un cono de radio 6 y altura 12. Luego, su volumen mide 1 radio 2 altura = = 144π. Por lo tanto, al girar indefinidamente la figura completa en torno a RP se genera un cuerpo cuyo volumen es (144π + 144π) = 288π. 12

13 21. La alternativa correcta es D. El volumen de una esfera se calcula como 24 Luego, radio = radio. El área de una esfera se calcula como 4π radio². Luego, Área = 4π Al desarrollar la raíz, resulta Por lo tanto, el área de la esfera mide (4π 12 ) = La alternativa correcta es C. El área de una esfera se calcula: Área = 4π (radio) 2. Como, en este caso, el área de la esfera mide.600π cm 2, entonces: Área = 4π (radio) 2.600π = 4π (radio) 2 (Dividiendo por 4π) 900 = (radio) 2 (Aplicando raíz cuadrada) 0 = radio Por lo tanto, el radio de la esfera mide 0 cm. Al cortar una esfera por la mitad, en dos partes iguales, dicho cuerpo geométrico está formado por dos superficies: un círculo y una semiesfera, como se muestra en la figura. Luego, el área total corresponderá a la suma de ambas superficies. Entonces: 1

14 Área total = área círculo + área semiesfera Área total = π (radio) π (radio) 2 Área total = π (radio) 2 + 2π (radio) 2 Área total = π (radio) 2 Área total = π 900 Área total = 2.700π (Reemplazando) Por lo tanto, el área total de cada una de las mitades de la esfera es 2.700π cm La alternativa correcta es E. ESE I) Verdadera, ya que la longitud que se midió en la pelota (24π cm) fue el perímetro de la circunferencia máxima, que está relacionada con el radio de la esfera. El perímetro de una circunferencia se calcula: Perímetro = 2π radio (Reemplazando el perímetro) 24π = 2π radio (Dividiendo por 2π) 12 = radio O sea, el radio de la pelota mide 12 cm. Luego, el diámetro de la pelota mide 24 cm. II) Verdadera, ya que la superficie (área) de una esfera se calcula: Área = 4π (radio) 2 Área = 4π 12 2 Área = 4π 144 Área = 576π (Reemplazando el radio) (Desarrollando las operaciones) Luego, la superficie de la pelota mide 576π cm 2. III) Verdadera, ya que el volumen de una esfera se calcula: Volumen = 4 π radio Volumen = 4 π 12 (Reemplazando el radio) (Desarrollando las operaciones) 14

15 4 Volumen = π Volumen = 2.04π Luego, el volumen de la pelota mide 2.04π cm. Por lo tanto, las afirmaciones I, II y III son verdaderas. 24. La alternativa correcta es C. (1) El perímetro de la base mide 12 cm. Con esta información, no es posible determinar el volumen de un cono, ya que se puede conocer el radio pero no la altura. (2) La altura del cono mide 9 cm. Con esta información, no es posible determinar el volumen de un cono, pues no se conoce el radio. Con ambas informaciones, sí es posible determinar el volumen del cono, ya que podemos determinar el radio y la altura es conocida. Por lo tanto, la respuesta es: Ambas juntas. 25. La alternativa correcta es D. (1) El radio de la esfera mide 9 cm. Con esta información, sí es posible determinar el área de una esfera, ya que solo reemplazamos en la fórmula. (2) El volumen de la esfera mide 972 cm. Con esta información, sí es posible determinar el área de una esfera, ya que podemos determinar el radio, y posteriormente aplicar la fórmula para determinar el área. Por lo tanto, la respuesta es: Cada una por sí sola. 15

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

El radio de un cilindro mide 4 cm y su altura mide 6 cm. Cuánto mide su área?

El radio de un cilindro mide 4 cm y su altura mide 6 cm. Cuánto mide su área? PROGRM EGRESDOS Guía: uerpos redondos 1. 2. GUIEG07EM2-16V1. Matemática Ejercicios PSU El radio de un cilindro mide 4 cm y su altura mide 6 cm. uánto mide su área? ) 40 cm2 D) 64 cm2 ) 48 cm2 E) 80 cm2

Más detalles

SOLUCIONARIO Ejercitación Área y volumen de sólidos

SOLUCIONARIO Ejercitación Área y volumen de sólidos SOLUCIONARIO Ejercitación Área y volumen de sólidos SGUICAC00MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN DE ÁREA Y VOLUMEN DE SÓLIDOS Ítem Alternativa 1 E B C 4 B 5 A Comprensión 6 D 7 E

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1 GUÍ DE EJERCITCIÓN VNZD Cuerpos geométricos Programa Entrenamiento Desafío GUICEN02MT22-16V1 Matemática Una semiesfera tiene un área total de 4π cm 2. Si se corta por la mitad, de manera de formar dos

Más detalles

Bloque 33 Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano SGUICEG047EM33-A17V1

Bloque 33 Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano SGUICEG047EM33-A17V1 SGUICEG047EM33-A17V1 Bloque 33 Guía: Ubicación de puntos, distancia longitudes en el plano cartesiano TABLA DE CORRECCIÓN UBICACIÓN DE PUNTOS, DISTANCIAS Y LONGITUDES EN EL PLANO CARTESIANO N Clave Dificultad

Más detalles

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2.

Llamamos área o superficie a la medida de la región interior de un polígono. Figura Geométrica Perímetro Área. p = a + b + c 2 2. GUÍA GEOMETRÍA PERÍMETRO Y AREA DE FIGURAS PLANAS Llamamos área o superficie a la medida de la región interior de un polígono. El perímetro corresponde a la suma de los lados del polígono. Figura Geométrica

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #3

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #3 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #3 ÁREA Y PERÍMETRO DE FIGURAS PLANAS LINEA POLIGONAL: Se llama línea poligonal a la gura formada por la unión de segmentos de

Más detalles

SGUICEG024MT22-A16V1. SOLUCIONARIO Ubicación de puntos, distancia y longitudes en el plano cartesiano

SGUICEG024MT22-A16V1. SOLUCIONARIO Ubicación de puntos, distancia y longitudes en el plano cartesiano SGUICEG04MT-A16V1 SOLUCIONARIO Ubicación de puntos, distancia longitudes en el plano cartesiano 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA UBICACIÓN DE PUNTOS, DISTANCIA Y LONGITUDES EN EL PLANO CARTESIANO Ítem

Más detalles

Triángulos (Parte 2)

Triángulos (Parte 2) Triángulos (Parte 2) APRENDIZAJES ESPERADOS Analizar en el triángulo rectángulo, los teoremas de Pitágoras y Euclides. Aplicar los diferentes teoremas y propiedades de los triángulos rectángulos, equiláteros

Más detalles

14 CUERPOS GEOMÉTRICOS. VOLÚMENES

14 CUERPOS GEOMÉTRICOS. VOLÚMENES EJERCICIOS PARA ENTRENARSE Poliedros 14.33 Calcula la suma de los ángulos de las caras que concurren en un vértice de los poliedros regulares. Qué observas? TETRAEDO: En un vértice concurren tres triángulos

Más detalles

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS REDONDOS Poliedros: o Elementos. o Tipos. Poliedros regulares. Cubos. Prismas: elementos, clases. Pirámides: elementos, clases. Áreas laterales y

Más detalles

1. Teoremas válidos para triángulos rectángulos

1. Teoremas válidos para triángulos rectángulos 1. Teoremas válidos para triángulos rectángulos Sea ABC triángulo rectángulo en C, entonces: El lado opuesto al ángulo recto, AB, es llamado HIPOTENUSA, y los lados AC y BC, CATETOS. cateto hipotenusa

Más detalles

Cuerpos geométricos. Cuerpos redondos Cuerpos de revolución. Poliedros (más importantes)

Cuerpos geométricos. Cuerpos redondos Cuerpos de revolución. Poliedros (más importantes) Cuerpos geométricos Cuerpos redondos Cuerpos de revolución Poliedros (más importantes) Cuerpo geométrico limitado por caras que son polígonos Cuerpo geométrico que se obtiene a partir de una figura plana

Más detalles

Mapa conceptual. Programa Acompañamiento CUERPOS GEOMÉTRICOS. Matemática

Mapa conceptual. Programa Acompañamiento CUERPOS GEOMÉTRICOS. Matemática Programa Acompañamiento Matemática Cuadernillo de ejercitación Ejercitación Área y volumen de sólidos Mapa conceptual Tienen CUERPOS GEOMÉTRICOS Figuras geométricas que ocupan un lugar en el espacio. Se

Más detalles

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-

Más detalles

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1

SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT22-A16V1 SOLUCIONARIO Ángulos en la circunferencia SCUACAC037MT-A16V1 1 TABLA DE CORRECCIÓN Ítem Alternativa 1 B E Comprensión 3 B 4 B 5 D 6 C 7 E 8 A 9 A 10 B 11 C 1 C 13 B 14 E 15 A 16 D 17 B 18 D Comprensión

Más detalles

ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA

ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS POLIEDROS REGULARES Tetraedro ( 4 triángulos equiláteros) Hexaedro o cubo( 6 cuadrados) Octaedro( 8 triángulos equiláteros) Dodecaedro ( 12

Más detalles

Teoremas del triángulo rectángulo

Teoremas del triángulo rectángulo Pre-universitario Manuel Guerrero Ceballos Clase N 07 MODULO COMPLEMENTARIO Teoremas del triángulo rectángulo Resumen de la clase anterior Triángulos Elementos Generalidades Clasificación primarios secundarios

Más detalles

TEMA 9: CUERPOS GEOMÉTRICOS

TEMA 9: CUERPOS GEOMÉTRICOS 1 TEMA 9: CUERPOS GEOMÉTRICOS CUERPOS GEOMETRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos geométricos.

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

Perímetros, áreas y volúmenes de figuras y cuerpos geométricos.

Perímetros, áreas y volúmenes de figuras y cuerpos geométricos. Perímetros, áreas y volúmenes de figuras y cuerpos geométricos. Perímetros y áreas de polígonos Triángulo El triángulo es un polígono con tres lados P = b + c + d ( Perímetro es igual a la suma de las

Más detalles

VOLÚMENES DE POLIEDROS PRISMA:

VOLÚMENES DE POLIEDROS PRISMA: VOLÚMENES DE POLIEDROS CONCEPTO: El volumen es la medida de la capacidad que posee un sólido. Todo sólido requiere tres dimensiones: largo, ancho y altura (profundidad ó espesor), es por ello que el volumen

Más detalles

Remedial Unidad N 3 Matemática Octavo Básico 2017

Remedial Unidad N 3 Matemática Octavo Básico 2017 Remedial Unidad N 3 Matemática Octavo Básico 2017 GUÍA DE TRABAJO REMEDIAL N 1 UNIDAD N 3 Nombre Curso 8 año básico Fecha Objetivo Comprender el Teorema de Pitágoras y lo aplica en la resolución de problemas

Más detalles

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS Sep. 18 de 2015 Señores Estudiantes grados Novenos El siguiente trabajo ya lo estamos realizando en clase, pero los datos que a continuación aparecen son refuerzo para terminar las figuras geométricas

Más detalles

EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por

Más detalles

PERIMETROS Y AREAS DE FIGURAS PLANAS

PERIMETROS Y AREAS DE FIGURAS PLANAS PreUnAB PERIMETROS Y AREAS DE FIGURAS PLANAS Clase # 19 Octubre 2014 PERÍMETROS Y ÁREAS DE FIGURAS PLANAS Definiciones: El perímetro P de una figura geométrica es la medida de su contorno. Área A, es la

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO 1. Área y volumen del ortoedro y del cubo. 1.1. Área y volumen del ortoedro. 1.2. Cálculo de la diagonal del ortoedro. 1.3. Área y volumen del cubo. 2. Área y

Más detalles

Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA

Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA Lic. Saúl Villamizar Valencia 53 SÓLIDOS DE REVOLUCIÓN Y ESFERA 54 Actualización Permanente en el Área Matemática 1. Cilindro Definiciones Se llama superficie cilíndrica la engendrada por una recta que

Más detalles

CUERPOS DE REVOLUCIÓN

CUERPOS DE REVOLUCIÓN PROPÓSITOS: Identificar los cuerpos redondos o de revolución. Resolver problemas, donde se aplique el volumen y área de cuerpos de revolución. CUERPOS DE REVOLUCIÓN Existen cuerpos geométricos que no tienen

Más detalles

Figuras de tres dimensiones

Figuras de tres dimensiones Figuras de tres dimensiones Poliedros: cuerpos geométricos limitados por 4 o más superficies planas que son polígonos. Poliedros regulares: todas las caras de igual forma y tamaño. Solo existen 5. Prismas

Más detalles

TEMA 5. Geometría. Teoría. Matemáticas

TEMA 5. Geometría. Teoría. Matemáticas 1 La Geometría trata sobre las formas y sus propiedades. A su vez, se puede dividir en: Geometría plana: trata de las figuras en el plano, (dos dimensiones) Geometría tridimensional: trata de figuras en

Más detalles

Geometría del espacio

Geometría del espacio Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo

Más detalles

11Soluciones a los ejercicios y problemas

11Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 9 Pág. P R A C T I C A D e s a r r o l l o s y á r e a s Dibuja el desarrollo plano y calcula el área total de los siguientes cuerpos geométricos: a) b) cm

Más detalles

E SAYO º 1 Geometría

E SAYO º 1 Geometría ᒬ 01) En el triángulo ABC de la figura AD = BD;

Más detalles

11 CONOCER LOS POLIEDROS Y DIFERENCIAR

11 CONOCER LOS POLIEDROS Y DIFERENCIAR REPASO Y APOYO OBJETIVO 1 11 CONOCER LOS POLIEDROS Y DIERENCIAR LOS POLIEDROS REGULARES Nombre: Curso: echa: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos.

Más detalles

Guía: Semejanza y congruencia de figuras. SGUIC3M049M311-A17V1

Guía: Semejanza y congruencia de figuras. SGUIC3M049M311-A17V1 Guía: Semejanza y congruencia de figuras. SGUIC3M049M311-A17V1 TABLA DE CORRECCIÓN SEMEJANZA Y CONGRUENCIA DE FIGURAS Ítem Alternativa Dificultad Estimada 1 C Aplicación Media A Aplicación Media 3 D Comprensión

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

RAZONAMIENTO GEOMÉTRICO

RAZONAMIENTO GEOMÉTRICO RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros

Más detalles

Tutorial MT-a8. Matemática Tutorial Nivel Avanzado. Guía global Geometría

Tutorial MT-a8. Matemática Tutorial Nivel Avanzado. Guía global Geometría 12345678901234567890 M ate m ática Tutorial MT-a8 Matemática 2006 Tutorial Nivel Avanzado Guía global Geometría Matemática 2006 Tutorial Guía Global Geometría Ejercicios 1. Cuál de las siguientes opciones

Más detalles

MATEMÁTICAS (GEOMETRÍA)

MATEMÁTICAS (GEOMETRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 8 / 07 / 15 Guía Didáctica 3-2 Desempeños: * Reconoce y clasifica

Más detalles

Determina el nombre de los siguientes poliedros. Cuántas caras tienen? Y cuántas aristas? a) b)

Determina el nombre de los siguientes poliedros. Cuántas caras tienen? Y cuántas aristas? a) b) Cuerpos geométricos EJERCICIOS 001 Determina el nombre de los siguientes poliedros. Cuántas caras tienen? Y cuántas aristas? a) b) a) Pirámide cuadrangular: 5 caras y 8 aristas. b) Prisma triangular: 5

Más detalles

Geometría. Cuerpos Geométricos. Trabajo

Geometría. Cuerpos Geométricos. Trabajo Geometría Cuerpos Geométricos Trabajo CUERPOS GEOMÉTRICOS 1. Clasifique los cuerpos geométricos. Dos grupos de sólidos geométricos del espacio presentan especial interés: 1.1. Poliedros: Aquellos cuerpos

Más detalles

Contenido. Tema 11. Geometría en el espacio. 1. Poliedros Regulares o sólidos Platónicos Teorema de Euler Prismas...

Contenido. Tema 11. Geometría en el espacio. 1. Poliedros Regulares o sólidos Platónicos Teorema de Euler Prismas... Tema 11. Geometría en el espacio Contenido 1. Poliedros Regulares o sólidos Platónicos... 2 2. Teorema de Euler... 3 3. Prismas... 3 4. Pirámides... 5 5. Cilindro... 7 6. Cono... 8 7. Esfera... 9 8. Coordenadas

Más detalles

2º. La diagonal de un cuadrado mide 1 metro. Cuántos centímetros mide el lado?

2º. La diagonal de un cuadrado mide 1 metro. Cuántos centímetros mide el lado? FIGURAS PLANAS. ÁREAS 1º. De las siguientes ternas de números, cuáles son pitagóricas? (Es decir cumplen el teorema de Pitágoras) a) 3, 4, 5 b) 4, 5, 6 c) 5, 12, 13 d) 6, 8, 14 e) 15, 20, 25 2º. La diagonal

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN ÁREA Y PERÍMETRO DE FIGURAS PLANAS Y TEOREMA DE PITÁGORAS ÁREA Y PERÍMETRO DE FIGURAS PLANAS LINEA POLIGONAL: Se llama línea poligonal

Más detalles

EGRESADOS. Matemática PROGRAMA. Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano. Ejercicios PSU

EGRESADOS. Matemática PROGRAMA. Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano. Ejercicios PSU PROGRAMA EGRESADOS Guía: Ubicación de puntos, distancia y longitudes en el plano cartesiano Ejercicios PSU 1. Si P(3, 4) y Q(8, 2), entonces el punto medio de PQ es A) (11, 2) D) (5, 2) B) ( 5 2, 3 ) E)

Más detalles

MATEMÁTICAS 2º ESO. Ejercicios de recuperación para Septiembre ESTOS EJERCICIOS DEBERÁN SER ENTREGADOS AL COMIENZO DEL EXÁMEN DE SEPTIEMBRE.

MATEMÁTICAS 2º ESO. Ejercicios de recuperación para Septiembre ESTOS EJERCICIOS DEBERÁN SER ENTREGADOS AL COMIENZO DEL EXÁMEN DE SEPTIEMBRE. MATEMÁTICAS º ESO Ejercicios de recuperación para Septiembre ESTOS EJERCICIOS DEBERÁN SER ENTREGADOS AL COMIENZO DEL EXÁMEN DE SEPTIEMBRE. SU PRESENTACIÓN SE VALORARÁ CON UN MAXIMO DE UN 10% DE LA NOTA

Más detalles

VOLUMENES DE CUERPOS GEOMETRICOS

VOLUMENES DE CUERPOS GEOMETRICOS PreUnAB VOLUMENES DE CUERPOS GEOMETRICOS Clase # 20 Octubre 2014 CONCEPTOS PREVIOS Volumen: El volumen es una magnitud definida como la extensión en tres dimensiones de un cuerpo en el espacio. Es, por

Más detalles

TEMA 7: ACTIVIDADES Y AUTOEVALUACIONES RESUELTAS

TEMA 7: ACTIVIDADES Y AUTOEVALUACIONES RESUELTAS MÓDULO - Ámbito Científico-Tecnológico TEMA 7: ACTIVIDADES Y AUTOEVALUACIONES RESUELTAS. REPASO A LAS FIGURAS PLANAS ELEMENTALES Actividad (p. 40). Calcula el área de un triángulo equilátero de lado m.

Más detalles

1Soluciones a los ejercicios y problemas

1Soluciones a los ejercicios y problemas PÁGINA 8 Pág. 8 0 Divide y simplifica. a) 7 : b) : c) : 6 a) 7 : = 7 : = 9 b) : = : = = c) : = : = = 6 6 7 Reduce a índice común y efectúa. a) 6 b) : 6 c) 0 : 0 d) ( ) : ( ) 6 6 a) = b) = 0 6 0 8 78 6

Más detalles

NOTA: Recuerda que para calcular la apotema de la pirámide (a), has de utilizar el teorema de Pitágoras.

NOTA: Recuerda que para calcular la apotema de la pirámide (a), has de utilizar el teorema de Pitágoras. CENTRO DE EDUCCIÓN DE PERSONS DULTS. Simienza Teléfono Fax: 96 51 39 9 RELCIÓN EJERCICIOS FIGURS EN EL ESPCIO. 1.Las dimensiones de un ortoedro son a 6 cm, b 6 cm y c 6 cm. Dibuja esquemáticamente su desarrollo

Más detalles

SGUIC3M043M311-A16V1 NÚMEROS ENTEROS Y RACIONALES GUÍA DE EJERCITACIÓN SEMEJANZA DE FIGURAS Y TEOREMA DE EUCLIDES

SGUIC3M043M311-A16V1 NÚMEROS ENTEROS Y RACIONALES GUÍA DE EJERCITACIÓN SEMEJANZA DE FIGURAS Y TEOREMA DE EUCLIDES SGUIC3M03M311-A16V1 NÚMEROS ENTEROS Y RACIONALES GUÍA DE EJERCITACIÓN SEMEJANZA DE FIGURAS Y TEOREMA DE EUCLIDES 1 TABLA DE CORRECCIÓN GUÍA DE EJERCITACIÓN SEMEJANZA DE FIGURAS Y TEOREMA DE EUCLIDES ÍTEM

Más detalles

SeCrece, Inc. Matemáticas. Unidad: Geometría. Grupo: Tornasol

SeCrece, Inc. Matemáticas. Unidad: Geometría. Grupo: Tornasol SeCrece, Inc. Matemáticas Unidad: Geometría Grupo: Tornasol I. Propiedades Geométricas a. Tipos de Polígonos Nombres de Polígonos Nombre Lados Ángulos Triángulo 3 3 Cuadrilátero 4 4 Pentágono 5 5 Hexágono

Más detalles

IDEAS PREVIAS. 1. Planos paralelos. 2.Planos perpendiculares

IDEAS PREVIAS. 1. Planos paralelos. 2.Planos perpendiculares IDEAS PREVIAS 1. Planos paralelos..planos perpendiculares .Planos oblicuos. CUERPO GEOMÉTRICO Un Sólido o Cuerpo Geométrico es una figura geométrica de tres dimensiones (largo, ancho y alto), que ocupa

Más detalles

Cuerpos geométricos. Volúmenes

Cuerpos geométricos. Volúmenes 4 uerpos geométricos. Volúmenes. Poliedros Un poliedro es un cuerpo geométrico limitado por cuatro o más polígonos planos. Los elementos de un poliedro son: aras: son los polígonos que lo delimitan. ristas:

Más detalles

FORMULARIO (ÁREAS DE FIGURAS PLANAS)

FORMULARIO (ÁREAS DE FIGURAS PLANAS) FORMULARIO (ÁREAS DE FIGURAS PLANAS) Rectángulo Triángulo Paralelogramo Cuadrado Cuadrilátero cuyos lados forman ángulos de 90º. Es la porción de plano limitada por tres segmentos de recta. Cuadrilátero

Más detalles

TEMA 4. Geometría. Teoría. Matemáticas

TEMA 4. Geometría. Teoría. Matemáticas 1 1.- Rectas y ángulos La geometría se basa en tres conceptos fundamentales que forman parte del espacio geométrico, es decir, el conjunto formado por todos los puntos: El punto La recta El plano Partiendo

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0

Más detalles

open green road Guía Matemática tutora: Jacky Moreno .co

open green road Guía Matemática tutora: Jacky Moreno .co Guía Matemática PERÍMETRO Y ÁREA tutora: Jacky Moreno.co 1. Perímetro y área de figuras planas Los registros más antiguos que se tienen del campo de la geometría corresponden a la cultura mesopotámica,

Más detalles

RECTAS, PLANOS EN EL ESPACIO.

RECTAS, PLANOS EN EL ESPACIO. COMUNICACIÓN MATEMÁTICA: Grafica rectas, planos y sólidos geométricos en el espacio RESOLUCIÓN DE PROBLEMAS Resuelve problemas geométricos que involucran rectas y planos en el espacio. Resuelve problemas

Más detalles

Trabajo de Investigación Cuerpos Geométricos

Trabajo de Investigación Cuerpos Geométricos Saint George s College Área de Matemáticas y sus Aplicaciones Tercera Unidad Trabajo de Investigación Cuerpos Geométricos Integrantes: -Stefan Jercic -Ignacio Larrain -Cristian Majluf Curso: 10 E Profesora:

Más detalles

MATEMÁTICAS EJERCICIOS DE RECUPERACIÓN 2º ESO

MATEMÁTICAS EJERCICIOS DE RECUPERACIÓN 2º ESO MATEMÁTICAS EJERCICIOS DE RECUPERACIÓN º ESO TEMA 06 - ECUACIONES DE PRIMER Y SEGUNDO GRADO 1º. De las siguientes expresiones, identifica las que sean ecuaciones o identidades. a) x - 5 = x - 1 x + 8 b)

Más detalles

Ámbito científico tecnológico

Ámbito científico tecnológico Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica

Más detalles

TEMA 6 SEMEJANZA. APLICACIONES -

TEMA 6 SEMEJANZA. APLICACIONES - TEMA 6 SEMEJANZA. APLICACIONES - 1. SEMEJANZA: ESCALAS LECCIÓN I ESCALA: es el cociente entre cada longitud de reproducción (mapa, plano, maqueta) y la correspondiente longitud en la realidad. Es, por

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

Areas y perímetros de triángulos.

Areas y perímetros de triángulos. Areas y perímetros de triángulos. Teorema de Pitágoras. Propiedades de las medidas de los lados de todo triángulo. Area de un triángulo rectángulo y cualquiera. Perímetro y semiperímetro de un triángulo

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

Geometría. Ángulos. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Ángulos. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

27.- La diferencia entre el lado de un triangulo equilátero y su altura es 12 cm. Cuanto mide el perímetro del triangulo?

27.- La diferencia entre el lado de un triangulo equilátero y su altura es 12 cm. Cuanto mide el perímetro del triangulo? EJERCICIOS 1.- Calcular la altura a la hipotenusa de un triángulo rectángulo cuyos catetos miden 6 y 8 cm. 5 2.- En un triángulo rectángulo, un cateto mide 15 cm., y la proyección del otro sobre la hipotenusa

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

Módulo diseñado por: Docente María Cristina Marín Valdés

Módulo diseñado por: Docente María Cristina Marín Valdés Módulo diseñado por: Docente María Cristina Marín Valdés I.E. Eduardo Fernández Botero Amalfi (Ant) 2018 CONTENIDOS CONTENIDO PÁGINA Concepto de poliedros. 3 Clases de poliedros 3 Teorema de Euler. 4 Áreas

Más detalles

TEMA 6 SEMEJANZA. APLICACIONES -

TEMA 6 SEMEJANZA. APLICACIONES - TEMA 6 SEMEJANZA. APLICACIONES - 1. SEMEJANZA: ESCALAS LECCIÓN I ESCALA: es el cociente entre cada longitud de reproducción (mapa, plano, maqueta) y la correspondiente longitud en la realidad. Es, por

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN Pág. ENUNCIADOS Se desea fabricar un tubo de 2 m de largo y 5 cm de diámetro soldando los dos bordes de un rectángulo. Cuáles deben ser las dimensiones del rectángulo si en las soldaduras se solapan 5

Más detalles

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud. 7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.

Más detalles

Tema 8: Cuerpos geométricos. Matemáticas Específicas para Maestros 1º Grado en Educación Primaria

Tema 8: Cuerpos geométricos. Matemáticas Específicas para Maestros 1º Grado en Educación Primaria Tema 8: Cuerpos geométricos Matemáticas Específicas para Maestros 1º Grado en Educación Primaria Definiciones Cuerpos geométricos Poliedros. Elementos. Clasificaciones: o Poliedros cóncavos y convexos.

Más detalles

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas

Más detalles

SGUICES028MT22-A16V1. SOLUCIONARIO Semejanza de triángulos

SGUICES028MT22-A16V1. SOLUCIONARIO Semejanza de triángulos SGUICES08MT-A16V1 SOLUCIONARIO Semejanza de triángulos 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA SEMEJANZA DE TRIANGULOS Ítem Alternativa 1 C Comprensión D 3 D 4 B 5 E 6 B 7 A 8 A 9 E 10 B 11 E 1 C 13 E Comprensión

Más detalles

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008 TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo

Más detalles

Elementos del cilindro

Elementos del cilindro Definición de cilindro Un cilindro es un cuerpo geométrico engendrado por un rectángulo que gira alrededor de uno de sus lados. Desarrollo del cilindro Elementos del cilindro Eje Es el lado fijo alrededor

Más detalles

Cuadratura. Cuadratura del Rectángulo

Cuadratura. Cuadratura del Rectángulo Denición 1. : en Geometría, determinación de un cuadrado equivalente en supercie a una gura geométrica dada. del Rectángulo Lema 1. el segmento CD de la gura es la media geométrica de AC y CB, es decir

Más detalles

ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES

ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES OBJETIVO 1 ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES NOMBRE: CURSO: ECHA: CONCEPTO DE POLIEDRO Vértice Arista Cara Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos

Más detalles

La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior llamado centro.

La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior llamado centro. Geometría y Trigonometría Circunferencia 6. CIRCUNFERENCIA 6.1 Definición y notación de una circunferencia La circunferencia es una curva plana y cerrada, cuyos puntos equidistan de otro punto interior

Más detalles

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es

Más detalles

Soluciones Primer Nivel - 5º Año de Escolaridad

Soluciones Primer Nivel - 5º Año de Escolaridad Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden

Más detalles

PERÍMETROS ÁREAS - VOLÚMENES

PERÍMETROS ÁREAS - VOLÚMENES ERÍMETROS ÁREAS - VOLÚMENES 1.- OLÍGONOS olígono: arte del plano limitada por una línea poligonal cerrada. Lado: Segmento que une dos vértices consecutivos. En un polígono el número de lados y el número

Más detalles

GEOMETRÍA. Convexos Llano (Plano) Cóncavo Giro. Consecutivos Adyacentes Diedro Complementario Suplementario

GEOMETRÍA. Convexos Llano (Plano) Cóncavo Giro. Consecutivos Adyacentes Diedro Complementario Suplementario GEOMETRÍA Angulo.- Es la abertura comprendida entre dos rectas que se encuentran en un punto. Estas rectas se llaman lados del ángulo, y el punto de encuentro se denomina vértice. Un ángulo suele designarse

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles

Autora: Jeanneth Galeano Peñaloza. 2 de abril de Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 1/1

Autora: Jeanneth Galeano Peñaloza. 2 de abril de Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 1/1 Autora: Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 2 de abril de 2013 1/1 Parte I Introducción a la geometría elemental 2/1 Nociones básicas Las

Más detalles

TALLER DE ENTRENAMIENTO PARA SEMIFINAL Sábado 6 de mayo y jueves 11 de mayo Elaborado por: Gustavo Meza García. Ángulos

TALLER DE ENTRENAMIENTO PARA SEMIFINAL Sábado 6 de mayo y jueves 11 de mayo Elaborado por: Gustavo Meza García. Ángulos Ángulos Ejercicios: 1) Si un triángulo tiene 2 ángulos que miden 25 y 75 Cuánto mide el tercer ángulo? 2) Cuánto suman los ángulos internos de un cuadrilátero cualquiera? Teorema: 1) La suma de los ángulos

Más detalles

Examen estandarizado A

Examen estandarizado A Examen estandarizado A Elección múltiple 1. Qué figura es un poliedro? A B 7. Halla el área de la superficie de la pirámide regular. A 300 pies 2 15 pulg B 340 pies 2 C D C 400 pies 2 D 700 pies 2 10 pulg

Más detalles

SOLUCIONARIO Sistema de inecuaciones de primer grado

SOLUCIONARIO Sistema de inecuaciones de primer grado SOLUCIONARIO Sistema de inecuaciones de primer grado SGUICEG032EM31-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Sistema de inecuaciones de primer grado Ítem Alternativa 1 C 2 A 3 E 4 D 5 C 6 A 7 E 8 C 9

Más detalles

FICHA TEMA 9: CUERPOS GEOMETRICOS NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro:

FICHA TEMA 9: CUERPOS GEOMETRICOS NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro: FICHA TEMA 9: CUERPOS GEOMETRICOS CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº 2.- Cuáles de las siguientes figuras

Más detalles

MATEMÁTICA N O 5. Santillana FASCÍCULO PSU N O 5 MATEMÁTICA. Santillana

MATEMÁTICA N O 5. Santillana FASCÍCULO PSU N O 5 MATEMÁTICA. Santillana FASCÍCULO PSU N O 5 MATEMÁTICA . =? 5 A) 5 B) 5 C) D) E) 5 5. El gráfico (figura) puede ser puede ser la representación de la función cuadrática: A) y = x + 5 B) y = x - 5 C) y = x + 5x D) y = x - 5x E)

Más detalles

INTERSECCIÓN Y UNIÓN DE ÁREAS Y VOLÚMENES

INTERSECCIÓN Y UNIÓN DE ÁREAS Y VOLÚMENES PreUnAB INTERSECCIÓN Y UNIÓN DE ÁREAS Y VOLÚMENES Clase # 23 Octubre 2014 ÁREAS SOMBREADAS (ACHURADAS): Corresponde esta clase al cálculo de áreas de diferentes figuras relacionadas entre sí, generando

Más detalles

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras. CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina

Más detalles

SGUICES023MT22-A16V1. SOLUCIONARIO Generalidades y Ángulos en la Circunferencia

SGUICES023MT22-A16V1. SOLUCIONARIO Generalidades y Ángulos en la Circunferencia SGUIES03MT-16V1 SLUINRI Generalidades y Ángulos en la 1 TL E RREIÓN GUÍ PRÁTI GENERLIES Y ÁNGULS EN L IRUNFERENI Ítem lternativa 1 SE E SE 3 4 5 6 7 omprensión 8 9 10 11 omprensión 1 13 14 15 E 16 17 18

Más detalles