TEMA 9: CUERPOS GEOMÉTRICOS
|
|
|
- Arturo Mendoza Ramos
- hace 7 años
- Vistas:
Transcripción
1 1 TEMA 9: CUERPOS GEOMÉTRICOS CUERPOS GEOMETRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos geométricos. A lo largo de todos los tiempos se han utilizado estos cuerpos en el arte y en la arquitectura. Cuerpos geométricos son porciones de espacio limitadas por superficies planas/curvas Clasificamos, en el siguiente esquema, los cuerpos geométricos: CUERPOS GEOMÉTRICOS POLIEDROS (cuerpos con caras Planas) CUERPOS REDONDOS (cuerpos con caras curvas) POLIEDROS REGULARES PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS C. ESFERICOS POLIEDROS Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los principales elementos de un poliedro son: Caras o polígonos que lo limitan. Aristas o lados de las caras. Vértices o puntos de corte de las aristas. Diagonales o segmentos que unen dos vértices de distintas caras.
2 2 Poliedros regulares Los poliedros regulares son aquellos cuyas caras son polígonos regulares iguales y en cada vértice concurren el mismo número de caras. Sólo existen cinco poliedros regulares. A continuación te mostramos cada uno de ellos con su definición: Tetraedro 4 caras triángulos equiláteros Hexaedro o cubo 6 caras cuadrados Octaedro 8 caras triángulos equiláteros Dodecaedro 12 caras pentágonos Icosaedro 20 caras triángulos equiláteros Prismas y pirámides Los prismas son poliedros cuyas bases, paralelas entre sí, son dos polígonos iguales y sus caras laterales son paralelogramos. Un elemento característico de los primas es la altura o segmento perpendicular a sus bases. Podemos clasificar los prismas de la siguiente manera: Según sean los polígonos de sus bases pueden ser triangulares, cuadrangulares, pentagonales, etc. Rectos y oblicuos, según que las aristas laterales sean perpendiculares u oblicuas a las bases. Regulares o irregulares. Son regulares aquellos prismas rectos cuyas bases son polígonos regulares; y son irregulares cuando falta alguna condición de regularidad. Paralelepípedos son prismas cuyas bases son paralelogramos, luego sus seis caras son paralelogramos. Los paralelepípedos rectos se denominan ortoedros, y son el ortoedro (o paralelepípedo rectángulo) y el cubo (o hexaedro).
3 3 Prisma pentagonal recto (regular) Base: pentágono regular Prisma cuadrangular oblicuo Base:cuadrado Paralelepípedos: Ortoedro o paralelepípedo rectángulo Todas sus caras son rectángulos Cubo o exaedro Todas sus caras son cuadrados Las pirámides son poliedros que tienen por base un polígono y sus caras laterales son triángulos que concurren en un vértice. Los elementos más característicos de la pirámide, además de los generales de los poliedros, son: Altura, h, o distancia del vértice al plano que contiene la base. Apotema lateral, al, es la altura de sus caras laterales. Apotema de la base, ab, es la apotema de la base. Pirámide pentagonal recta (regular)
4 Podemos clasificar las pirámides de la siguiente manera: Por los polígonos de sus bases pueden ser triangulares, cuadrangulares, pentagonales, etc. Rectas y oblicuas. Las pirámides rectas son aquellas que tienen por caras laterales triángulos isósceles. Si alguna cara lateral es un triángulo escaleno, la pirámide es oblicua. Regulares o irregulares. Son regulares aquellas pirámides rectas que tienen por base un polígono regular; y son irregulares cuando falta alguna condición de regularidad. 4 Pirámide pentagonal oblicua El tronco de pirámide es la parte de pirámide comprendida entre la base y la sección producida por un plano paralelo a la base. La altura del tronco es la distancia entre las bases y la apotema es la altura de la cara lateral (trapecio)
5 5 CUERPOS REDONDOS: CILINDRO, CONO Y ESFERA Los cuerpos redondos de revolución se obtienen al girar una figura plana alrededor de un eje. Los tres cuerpos de revolución más sencillos son el cilindro, el cono y la esfera. El cilindro es el cuerpo geométrico que se obtiene al girar un rectángulo alrededor de uno de sus lados. El cono es el cuerpo geométrico que se obtiene al girar un triángulo rectángulo alrededor de uno de sus catetos. La esfera es el cuerpo geométrico que se obtiene al girar un semicírculo alrededor de su diámetro. Detallamos a continuación los elementos más importantes de estos cuerpos. Cilindro Altura (h) es el segmento que une el centro de las dos bases. Es perpendicular a ambas bases. Radio (r) es el radio de cada uno de los círculos que forman sus bases. Generatriz (g) es el segmento que genera el cilindro. Su medida coincide con la de la altura. Cono Altura (h) es el segmento que une el vértice y el centro de la base. Es perpendicular a la base. Radio (r) es el radio del círculo que forma su base. Generatriz (g) es el segmento que genera el cono. Esfera Radio (r) es el segmento que une el centro con un punto cualquiera de la superficie que limita la esfera. Diámetro (d) es el segmento que une dos puntos de la superficie esférica pasando por el centro. Secciones de los cuerpos redondos Cuando se corta un cilindro o un cono por un plano paralelo a la base, la sección que se obtiene en cada caso es un círculo. En el caso del cilindro, el círculo que se obtiene es igual que el de la base. Al cortar un cono por un plano paralelo a la base se obtiene un cono menor y un tronco de cono que es la parte de cono comprendida entre la base y la sección producida por el plano. Al cortar una esfera por un plano se obtiene siempre un círculo. Si el plano pasa por el centro de la esfera se obtiene un círculo máximo (cuyo radio es el radio de la esfera). Si el plano no pasa por el centro se obtiene un círculo menor. Secciones circulares Tronco de cono Círculo máximo Círculo menor
6 6 Cálculo de h Cálculo de g Cálculo de g Cálculo de r EJERCICIOS 1. En los cuerpos siguientes, calcula la altura de la pirámide, el radio de la esfera y la generatriz del tronco de cono. ÁREAS DE POLIEDROS El área de un poliedro se obtiene sumando las áreas de todas las caras que lo forman. Para las pirámides y prismas se pueden obtener fórmulas sencillas que permitan calcular el área. Áreas de poliedros regulares Hallemos las áreas de los poliedros regulares en función de la arista a. Para aquellos cuyas caras son triángulos equiláteros (tetraedro, octaedro e ic osaedro) Recordaremos que el área de un triángulo equilátero de lado a es: A 2 a 4 3 Tetraedro (1) Hexaedro o cubo (2) Octaedro (3) Icosaedro (4) A= 4. A cara A = a 2 a 2 3 = a 2 3 A= 6.A cara =6a A= 8 A cara = 8 4 A = 6a 2 A = 2a 2 3 A= 20 A cara= 20 A = 5a 2 3 a 2 3 4
7 Áreas de prismas y pirámides rectas 7 El desarrollo de un prisma recto es un rectángulo (formado por las caras laterales) y los dos polígonos de las bases. Uno de los lados del rectángulo es el perímetro del polígono de la base (P B ) y el otro lado es la altura del prisma. Prisma recto y su desarrollo El área lateral es igual al perímetro de la base por la altura: A L = P B h El área total es igual al área lateral más el área de las dos bases: A T = A L + 2 A B Ejercicio: Una caja de galletas con forma de paralelepípedo mide lo mismo de largo que de alto y su ancho es doble que el largo. Si la diagonal de una de sus caras más grandes mide 20 cm, encuentra la cantidad de cartón necesaria para su construcción. El desarrollo de una pirámide recta lo forman varios triángulos isósceles (caras laterales) y el polígono de la base. Pirámide recta y su desarrollo El área lateral se obtiene sumando el área de todas las caras laterales: A L = suma de las áreas de las caras laterales El área total se obtiene sumando al área lateral el área de la base: A T = A L + A B
8 8 Ejercicio: La siguiente figura representa la torre de la iglesia de un pueblo. Sus dimensiones son las siguientes: la longitud de la arista básica del prisma hexagonal regular es de 6 m, la de su altura es de 9 7 m y la de la arista lateral de la pirámide hexagonal regular es de 13 m. Con estos datos, halla la superficie externa de la torre. El desarrollo de un tronco de pirámide son varios trapecios y los dos polígonos que forman las bases. El área de una cara lateral es el área de un trapecio y el área lateral la suma de las áreas de todas las caras laterales. Tronco de pirámide y su desarrollo El área lateral se obtiene sumando el área de todas las caras laterales: A L = suma de las áreas de las caras laterales El área total es igual al área lateral más la suma de las áreas de la base mayor y de la base menor: A T = A L + A B + A b EJERCICIOS 1 Calcula el área total de un prisma hexagonal regular cuya arista básica y altura miden ambas 8 cm. 2. Calcula el área lateral y el área total de una pirámide hexagonal regular de arista básica 6 cm y 4 cm de altura.
9 9 ÁREAS DE CILINDROS Y CONOS El desarrollo de un cilindro es un rectángulo y dos círculos. El rectángulo tiene por base la longitud de la circunferencia y por altura la generatriz. Cilindro y su desarrollo El área lateral es, por tanto: A L = 2 rh El área total es igual al área lateral más la suma de las áreas de los dos círculos: A T = 2 rh + 2 r 2 El desarrollo de un cono es un sector circular y un círculo. El arco del sector circular tiene de longitud 2 r, porque es la longitud de la circunferencia de la base. Cono y su desarrollo A T = rg + r 2 El desarrollo de un tronco de cono es un trapecio circular y dos círculos. El trapecio circular tiene por bases las longitudes de las circunferencias. Tronco de cono y su desarrollo El área lateral es: A L = g( R + r ) El área total es igual al área lateral más el área de los dos círculos: A T = g( R + r ) + r 2 + R 2 EJERCICIOS
10 1. Calcula el área lateral y el área total de un cilindro de 6 cm de diámetro y 8 cm de altura Calcula el área lateral y el área total de un cono de radio 7 cm y 24 cm de altura. 3. Calcula el área lateral y el área total de un tronco de cono cuyos radios miden 8 y 2 cm, respectivamente, y tiene una altura de 8 cm. PRINCIPIO DE CAVALIERI. VOLUMEN DE PRISMAS Y CILINDROS Volumen del ortoedro El volumen de un cuerpo expresa el número de veces que contiene al cubo unidad. Así decimos que el volumen del ortoedro del margen es: V= =24 u 3 (unidades cúbicas) El volumen del ortoedro se obtiene multiplicando sus tres dimensiones: Volumen del ortoedro= ancho. Largo. alto Como el ancho por el largo es el área de la base (AB), resulta: Volumen del ortoedro= área de la base. altura= A B. h En el caso particular del cubo, sus tres dimensiones son iguales, con lo que: Volumen del cubo= a. a. a= a 3 V cubo = a 3
11 11 Ejercicio: Calcula el volumen de piedra que encierra el monolito de la figura cuyas piezas tienen bases cuadradas de 40, 30 y 20 dm de lado, respectivamente, y sus alturas son 5, 10 y 50 dm. Principio de Cavalieri En la siguiente figura se observan dos montones de fichas que tienen el mismo área de la base (el área de una ficha) y la misma altura, pero tienen forma diferente. En la figura de la derecha hay dos prismas que tienen el mismo área de la base y la misma altura. En los dos casos (fichas y prismas), las secciones que resultan al cortar por planos paralelos a la base son iguales y, por tanto, tienen igual área. Las tres condiciones que cumplen los dos montones de fichas y los dos prismas (tener la base del mismo área tener la misma altura y tener el mismo área las secciones producidas por planos paralelos a la base) permiten afirmar que los dos montones de fichas y los dos prismas tienen el mismo volumen. Principio de Cavalieri Si dos o más cuerpos de igual área de la base y la misma altura se cortan por planos paralelos a la base, y las secciones producidas por cada plano en esos cuerpos tienen el mismo área, entonces esos cuerpos tienen el mismo volumen. Volumen de prismas y cilindros Vamos a calcular el volumen del prisma y el del cilindro a partir del volumen del ortoedro que ya conocemos. Para ello, consideremos un ortoedro en el que el área de la base es AB y la altura es h, luego su volumen es V = AB h.
12 12 Supongamos ahora que los dos prismas de la figura y el cilindro tienen la misma área de la base (AB) y la misma al- tura (h) que el ortoedro. Como los prismas y el cilindro tienen las bases de igual área y tienen la misma altura, las secciones producidas por un plano paralelo a las bases a la misma altura tienen igual área. Por el principio de Cavalieri resulta que los prismas y el cilindro tienen el mismo volumen que el ortoedro. Como el volumen del ortoedro es igual al área de la base (A B ) por la altura (h) se tiene: V prisma = área de la base. altura= A B h V cilindro = área de la base.altura= A B. h Para el cilindro de radio r y altura h, se tiene en particular: V cilindro = A B h= r 2 h El volumen de un prisma o de un cilindro es igual al área de la base por la altura: V prisma = A B V cilindro = A B h h = r 2 h EJERCICIOS 1. Calcula el volumen de un prisma triangular regular de 8 cm de altura y arista básica 5 cm. VOLUMEN DE PIRÁMIDES Y DE CONOS Volumen de pirámides En la siguiente figura se observa la descomposición de un prisma triangular en tres pirámides triangulares.
13 13 Las pirámides 1, 2 y 3 que resultan de la descomposición tienen el mismo volumen. Por lo tanto, el volumen de cada una de estas pirámides es el mismo y es la tercera parte del volumen del prisma. En consecuencia, el volumen de una pirámide triangular es igual es igual a un tercio del volumen del prisma de la misma base y altura Este resultado se puede generalizar a cualquier pirámide recta u oblicua. Así, deducimos que el volumen de una pirámide es igual a un tercio del área de la base por la altura. 1 V pirámide = 3 A B h Ejercicio: Calcula el volumen de una pirámide cuadrangular de 12 cm de arista básica y cuya apotema lateral mide 10 cm. Volumen de conos La pirámide y los conos de la siguiente ilustración tienen la misma altura (h) y sus bases tienen la misma área (AB). Llamemos H1, H2, H3 a las áreas de las secciones producidas por un plano trazado a una altura x del vértice. Como las secciones, en cada caso, son semejantes a la base, se tiene que la razón de las áreas de cada sección a la base correspondiente es igual al cuadrado de la razón de semejanza y por lo tanto las áreas de las secciones producidas por el plano son todas iguales. Aplicando el principio de Cavalieri, resulta:
14 14 Todas las pirámides y conos con el mismo área de la base e igual altura tienen el mismo volumen. En consecuencia, el volumen de un cono es igual a un tercio del área de la base por la altura. Para un cono de radio de la base r y altura h: 1 V cono = 3 A B h = 1 r 2 h 3 Volumen del tronco de pirámide y del tronco de cono Para calcular el volumen de los troncos de pirámides y de conos restamos el volumen del cono (pirámide) grande el del pequeño, utilizando criterios de semejanza : ABC ADE x x h r R A A b B 2 x x h EJERCICIOS 1. Calcula el volumen de un tronco de cono de altura 6 cm, cuyas bases tienen 4 y 2 cm, respectivamente, de radio. 2. Calcula el volumen de un tronco de pirámide cuyas bases son triángulos equiláteros de lados 8 y 4 cm, respectivamente, y tiene una altura de 10 cm.
15 15 VOLUMEN DE LA ESFERA Y ÁREA DE LA SUPERFICIE ESFÉRICA El volumen de la esfera se puede obtener a partir de la aplicación del principio de Cavalieri. Para ello, consideremos una semiesfera de radio r inscrita en un cilindro de altura y radio también r. El volumen de la semiesfera lo obtendríamos restando al volumen del cilindro el volumen del complemento (espacio entre el cilindro y la semiesfera): V semiesfera = V cilindro - V complemento Mediante el principio de Cavalieri se demuestra que el volumen del complemento es igual al volumen del cono de vértice O y base la del cilindro. 4 3 Deduciéndose que: V r 3 Mediante procedimientos que no es apropiado estudiar en este momento, también se deduce que el área de la superficie esférica viene dada por: S 4 r 2 EJERCICIOS 1. Halla el área y el volumen del siguiente cuerpo, cuyas medidas están dadas en centímetros.
16 16 EJERCICIOS PROPUESTOS 1. Indica a qué poliedro regular corresponde cada desarrollo. 2. Calcula el valor de la diagonal de un ortoedro de dimensiones 8 x 6 x 4 cm. Halla también el valor de la diagonal de un cubo de arista 4 cm. 3. En los cuerpos siguientes, calcula la altura de la pirámide, el radio de la esfera y la generatriz del tronco de cono. S:h = 12 cm S:R = 25 cm S:g = 5cm 4. Calcula el área total de un prisma hexagonal regular cuya arista básica y altura miden ambas 8 cm. 5. Calcula el área lateral y el área total de una pirámide hexagonal regular de arista básica 6 cm y 4 cm de altura. 6. Calcula el área lateral y el área total de un cilindro de 6 cm de diámetro y 8 cm de altura. 7. Calcula el área lateral y el área total de un cono de radio 7 cm y 24 cm de altura. 8. Calcula el área lateral y el área total de un tronco de cono cuyos radios miden 8 y 2 cm, respectivamente, y tiene una altura de 8 cm. 9. Calcula el área total de un cubo de arista 5 cm. 10. Calcula el área lateral y total de una habitación que tiene 5 m de largo, 40 dm de ancho y 2500 mm de alto. 11. Calcula el área lateral, total de una pirámide cuadrangular de 10 cm de arista básica y 12 cm de altura.
17 Calcula el área lateral, total y el volumen de una pirámide hexagonal de 16 cm de arista básica y 28 cm de arista lateral. 13. Enrollando una hoja de papel de 20 x 30 cm se forma un cilindro de 20 cm de altura. Se le añaden las dos bases circulares. Calcula la superficie total. 14. Calcula la cantidad de hojalata que se necesitará para hacer 10 botes de forma cilíndrica de 10 cm de diámetro y 20 cm de altura. 15. Calcula la generatriz y el área total de un cono cuya altura mide 4 cm y el radio de la base es de 3 cm. 16. Calcula la altura y el área total de un cono cuya generatriz mide 13 cm y el radio de la base es de 5 cm. 17. Calcula el área de una esfera de diámetro 20 cm. 18. Un depósito de acero para contener gases está formado un cilindro de 4 m de diámetro y 10 m de altura. La tapa superior ha sido sustituida por una semiesfera. Calcula su área total. 19. Un cubo tiene cm 2 de área total. Calcula su volumen. 20. Un cubo tiene 125 cm 3 de volumen. Calcula la longitud de su arista. 21. Calcula el volumen en cm 3 de un ortoedro de 0 5 m de largo, 2 dm de fondo y mm de alto. 22. Una caja de zapatos tiene 28 cm de largo, 12 de ancho y 10 de alto. Calcula su volumen en dm 3.
18 23. Calcula el volumen de un prisma de 12 cm de altura y cuya base es un cuadrado de 7 cm de lado Calcula el volumen de un cilindro de 18 cm de diámetro y 30 cm de altura. 25. Calcula el volumen de un cono cuya generatriz mide 13 cm y el radio de la base es de 5 cm. 26. Calcula el volumen en dm 3 de una esfera de 15 cm de radio. 27. En todas las siguientes figuras, el ancho y fondo del cubo y todos los diámetros miden 10 cm. Todas las alturas miden también 10 cm. Calcula los volúmenes.
Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS
UNIDAD DIDÁCTICA CUERPOS GEOMÉTRICOS 1. CUERPOS GEOMÉTRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos
CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.
CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-
ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA
ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS POLIEDROS REGULARES Tetraedro ( 4 triángulos equiláteros) Hexaedro o cubo( 6 cuadrados) Octaedro( 8 triángulos equiláteros) Dodecaedro ( 12
Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.
CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina
11 CONOCER LOS POLIEDROS Y DIFERENCIAR
REPASO Y APOYO OBJETIVO 1 11 CONOCER LOS POLIEDROS Y DIERENCIAR LOS POLIEDROS REGULARES Nombre: Curso: echa: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos.
MATEMÁTICAS 2º DE ESO LOE
MATEMÁTICAS º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS REDONDOS Poliedros: o Elementos. o Tipos. Poliedros regulares. Cubos. Prismas: elementos, clases. Pirámides: elementos, clases. Áreas laterales y
Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares
Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea
Figuras de tres dimensiones
Figuras de tres dimensiones Poliedros: cuerpos geométricos limitados por 4 o más superficies planas que son polígonos. Poliedros regulares: todas las caras de igual forma y tamaño. Solo existen 5. Prismas
CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS
CUERPOS GEOMÉTRICOS. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO 2º E.S.O. DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de puntos: DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de una recta:
TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS.
TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. LOS POLÍGONOS El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los vértices.
Elementos del cilindro
Definición de cilindro Un cilindro es un cuerpo geométrico engendrado por un rectángulo que gira alrededor de uno de sus lados. Desarrollo del cilindro Elementos del cilindro Eje Es el lado fijo alrededor
5to Parcial de Geometría Euclidiana. 2) Sea p un polígono tal que se puede descomponer en n polígonos simples
5to Parcial de Geometría Euclidiana AREAS y VOLUMENES Definición 55 (Área) Se define el área como una función A definida del conjunto de todos los polígonos P en R + (A : P R + ), con las siguientes propiedades:
Contenido. Tema 11. Geometría en el espacio. 1. Poliedros Regulares o sólidos Platónicos Teorema de Euler Prismas...
Tema 11. Geometría en el espacio Contenido 1. Poliedros Regulares o sólidos Platónicos... 2 2. Teorema de Euler... 3 3. Prismas... 3 4. Pirámides... 5 5. Cilindro... 7 6. Cono... 8 7. Esfera... 9 8. Coordenadas
CUERPOS EN EL ESPACIO
CUERPOS EN EL ESPACIO 1. Poliedros. 2. Fórmula de Euler. 3. Prismas. 4. Paralelepípedos. Ortoedros. 5. Pirámides. 6. Cuerpos de revolución. 6.1. Cilindros. 6.2. Conos. 6.3. Esferas. 6.4. Coordenadas geográficas.
Ámbito científico tecnológico
Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica
TEMA 5. Geometría. Teoría. Matemáticas
1 La Geometría trata sobre las formas y sus propiedades. A su vez, se puede dividir en: Geometría plana: trata de las figuras en el plano, (dos dimensiones) Geometría tridimensional: trata de figuras en
Cuerpos geométricos. Cuerpos redondos Cuerpos de revolución. Poliedros (más importantes)
Cuerpos geométricos Cuerpos redondos Cuerpos de revolución Poliedros (más importantes) Cuerpo geométrico limitado por caras que son polígonos Cuerpo geométrico que se obtiene a partir de una figura plana
POLIEDROS. ÁREAS Y VOLÚMENES.
7. POLIEDROS. ÁREAS Y VOLÚMENES. EN ESTA UNIDAD VAS A APRENDER CUERPOS GEOMÉTRICOS POLIEDROS POLIEDROS REGULARES PRISMAS PIRÁMIDES CARACTERÍSTICAS DEFINICIÓN ELEMENTOS DEFINICIÓN ELEMENTOS - Tetaedro.
TEMA 4. Geometría. Teoría. Matemáticas
1 1.- Rectas y ángulos La geometría se basa en tres conceptos fundamentales que forman parte del espacio geométrico, es decir, el conjunto formado por todos los puntos: El punto La recta El plano Partiendo
Un punto divide a una recta en dos semirrectas. Ese punto es el origen de ambas semirrectas.
Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas. Ese punto es el origen
Autor: 2º ciclo de E.P.
1 Autor: 2º ciclo de E.P. Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas.
2º. La diagonal de un cuadrado mide 1 metro. Cuántos centímetros mide el lado?
FIGURAS PLANAS. ÁREAS 1º. De las siguientes ternas de números, cuáles son pitagóricas? (Es decir cumplen el teorema de Pitágoras) a) 3, 4, 5 b) 4, 5, 6 c) 5, 12, 13 d) 6, 8, 14 e) 15, 20, 25 2º. La diagonal
Figura plana Área Ejemplo Cuadrado. Área =
ersión: Septiembre 01 Áreas y volúmenes Por Sandra Elvia Pérez Márquez Áreas de figuras planas Las aplicaciones de las figuras planas requieren, por lo general, conocer (o calcular) dos características
CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS)
CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede
FIGURAS DEL ESPACIO. ÁREAS Y VOLÚMENES
POLIEDROS : Cuerpo sólido limitado por polígonos, llamados caras; en la que algunas de las caras confluyen en líneas rectas, llamadas aristas; y algunas de las aristas confluyen en puntos,llamados vértices.
Geometría del espacio
Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo
CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc.
CUERPOS Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede calcular el volumen del mismo
14 CUERPOS GEOMÉTRICOS. VOLÚMENES
EJERCICIOS PARA ENTRENARSE Poliedros 14.33 Calcula la suma de los ángulos de las caras que concurren en un vértice de los poliedros regulares. Qué observas? TETRAEDO: En un vértice concurren tres triángulos
Tema 8: Cuerpos geométricos. Matemáticas Específicas para Maestros 1º Grado en Educación Primaria
Tema 8: Cuerpos geométricos Matemáticas Específicas para Maestros 1º Grado en Educación Primaria Definiciones Cuerpos geométricos Poliedros. Elementos. Clasificaciones: o Poliedros cóncavos y convexos.
Geometría. Cuerpos Geométricos. Trabajo
Geometría Cuerpos Geométricos Trabajo CUERPOS GEOMÉTRICOS 1. Clasifique los cuerpos geométricos. Dos grupos de sólidos geométricos del espacio presentan especial interés: 1.1. Poliedros: Aquellos cuerpos
MSC J. Fco. Jafet Pérez L. Conceptos Geométricos Objetos Básicos
Gráficos por Computadora MSC J. Fco. Jafet Pérez L. Conceptos Geométricos Objetos Básicos Objetos básicos Punto, Línea, Plano y Espacio Punto: Ubicación, sin longitud, anchura ni altura. (El punto representa
Cuerpos Geométricos. Volúmenes de Cuerpos Geométricos
Cuerpos Geométricos. Volúmenes de Cuerpos Geométricos Un cuerpo geométrico es un elemento que existe en la realidad o que somos capaces de concebir, llamado sólido, el cual ocupa un volumen en el espacio,
IDEAS PREVIAS. 1. Planos paralelos. 2.Planos perpendiculares
IDEAS PREVIAS 1. Planos paralelos..planos perpendiculares .Planos oblicuos. CUERPO GEOMÉTRICO Un Sólido o Cuerpo Geométrico es una figura geométrica de tres dimensiones (largo, ancho y alto), que ocupa
Los cuerpos geométricos en el entorno
Los cuerpos geométricos en el entorno Los prismas Concepto. Clasificación: según la base de los mismos. Elementos de los prismas. Base Caras laterales Aristas básicas Aristas laterales Vértices PRISMA
OBJETIVO 1 CONOCER LOS POLIEDROS Y DIFERENCIAR LOS POLIEDROS REGULARES NOMBRE: CURSO: FECHA:
OJETIVO 1 CONOCER LOS POLIEDROS Y DIERENCIR LOS POLIEDROS REGULRES NOMRE: CURSO: ECH: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos del poliedro
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo
GEOMETRIA DEL ESPACIO. Geometría del espacio, rama de la geometría que se ocupa de las. propiedades y medidas de figuras geométricas en el espacio
GEOMETRIA DEL ESPACIO Geometría del espacio, rama de la geometría que se ocupa de las propiedades y medidas de figuras geométricas en el espacio tridimensional. Entre estas figuras, también llamadas sólidos,
Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid
Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos
Geometría. Ángulos. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid
Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos
ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO
ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO 1. Área y volumen del ortoedro y del cubo. 1.1. Área y volumen del ortoedro. 1.2. Cálculo de la diagonal del ortoedro. 1.3. Área y volumen del cubo. 2. Área y
Perímetros, áreas y volúmenes de figuras y cuerpos geométricos.
Perímetros, áreas y volúmenes de figuras y cuerpos geométricos. Perímetros y áreas de polígonos Triángulo El triángulo es un polígono con tres lados P = b + c + d ( Perímetro es igual a la suma de las
TEMA 11. ÁREAS, PERÍMETROS Y VOLÚMENES.
TEMA 11. ÁREAS, PERÍMETROS Y VOLÚMENES. CONTENIDOS: 1. PERÍMETROS Y ÁREA DE CUADRILÁTEROS Y TRIÁNGULOS. 1.1. PERÍMETROS Y ÁREAS DE PARALELOGRAMOS. 1.2. PERÍMETRO Y ÁREAS DE TRIÁNGULOS. 1.3. PERÍMETRO Y
Cuerpos geométricos. Volúmenes
4 uerpos geométricos. Volúmenes. Poliedros Un poliedro es un cuerpo geométrico limitado por cuatro o más polígonos planos. Los elementos de un poliedro son: aras: son los polígonos que lo delimitan. ristas:
Trabajo de Investigación Cuerpos Geométricos
Saint George s College Área de Matemáticas y sus Aplicaciones Tercera Unidad Trabajo de Investigación Cuerpos Geométricos Integrantes: -Stefan Jercic -Ignacio Larrain -Cristian Majluf Curso: 10 E Profesora:
MYP (MIDDLE YEARS PROGRAMME)
MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa
IES FONTEXERÍA MUROS. 14-II-2014 Nombre y apellidos:.
IES FONTEXERÍA MUROS MATEMÁTICAS º E.S.O-A (Desdoble 1) 1º Examen (ª Evaluación) 14-II-014 Nombre y apellidos:. 1. Completa las siguientes definiciones: a) Un poliedro es un cuerpo geométrico tridimensional
a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.
POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,
PERÍMETROS ÁREAS - VOLÚMENES
ERÍMETROS ÁREAS - VOLÚMENES 1.- OLÍGONOS olígono: arte del plano limitada por una línea poligonal cerrada. Lado: Segmento que une dos vértices consecutivos. En un polígono el número de lados y el número
1.SISTEMAS DE MEDIDAS: longitud, superficie, volumen. Conversiones.
ÍNDICE DEL TEMA 1.SISTEMAS DE MEDIDAS: longitud, superficie, volumen. Conversiones. 2. FIGURAS PLANAS : 2.1. POLÍGONOS Triángulos Cuadriláteros Polígonos regulares 2.2. CIRCUNFERENCIA Y CÍRCULO: Elementos.
PRISMAS Y CILINDROS. Menú: - Poliedros - Teorema de Euler - Principio de Cavalieri - Prismas: área y volumen - Cilindros: área y volumen
PRISMAS Y CILINDROS OBJETIVO DE LA CLASE: ANALIZAR PRISMAS Y CILINDROS EN CUANTO A SU ÁREA Y VOLUMEN Menú: - Poliedros - Teorema de Euler - Principio de Cavalieri - Prismas: área y volumen - Cilindros:
CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio.
CUERPOS GEOMÉTRICOS 07 Comprende que son los cuerpos geométricos e identifica las partes que los componen. En Presentación de Contenidos recuerdan qué son los polígonos para comprender cómo se forman los
SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS
SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por
MATEMÁTICAS (GEOMETRÍA)
COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 8 / 07 / 15 Guía Didáctica 3-2 Desempeños: * Reconoce y clasifica
Volúmenes de cuerpos geométricos
Volúmenes de cuerpos geométricos TEORÍA Cuerpos geométricos En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos
ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES
OBJETIVO 1 ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES NOMBRE: CURSO: ECHA: CONCEPTO DE POLIEDRO Vértice Arista Cara Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos
TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales
TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano
PÁGINA 98. a) Tetraedro = 2 Cubo = 2 Octaedro = 2 Dodecaedro = 2 Icosaedro = 2
PÁGINA 98 Pág. 1 1 Haz una tabla con el número de caras, vértices y aristas de los cinco poliedros regulares. a) Comprueba que los cinco cumplen la fórmula de Euler. [Recuerda: c + v = a + ]. b) Comprueba
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #3
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #3 ÁREA Y PERÍMETRO DE FIGURAS PLANAS LINEA POLIGONAL: Se llama línea poligonal a la gura formada por la unión de segmentos de
POLIEDROS, PRISMAS Y PIRÁMIDES
POLIEDROS, PRISMAS Y PIRÁMIDES 1. Completa la siguiente tabla. 2. Indica si son verdaderas o falsas (V o F) las siguientes afirmaciones. a) La suma de las caras y los vértices del cubo es 12. b) El menor
a 2 = = 1600 ; a = 40 A = = 80. Iguales A = 361 1:150
uno es agudo y el otro es obtuso. Á = (48. 5 ) / 2 = 120 D 2 = 20 2 + 10 2 + 6 2 = 536 ; D = 23 15 V = V S + V c = 2 / 3. π 125 + 1 / 3. π 25. 3 = 325/3. π Área = lado x lado = l 2 Los paralelepípedos
Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos.
CUERPOS GEOMÉTRICOS Los cuerpos geométricos son figuras geométricas tridimensionales (tienen alto, ancho y largo) que ocupan un lugar en el espacio. 1. POLIEDROS. 1.1. DEFINICIÓN. Un poliedro es un cuerpo
CLASIFICAR POLIEDROS. Nombre: Curso: Fecha:
CLASIICAR POLIEDROS OBJETIVO 1 Nombre: Curso: eca: POLIEDROS Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los polígonos que limitan al poliedro se llaman caras. Los
FICHA TEMA 9: CUERPOS GEOMETRICOS NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro:
FICHA TEMA 9: CUERPOS GEOMETRICOS CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº 2.- Cuáles de las siguientes figuras
Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.
Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases
10- Los poliedros. Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos.
Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos. Impreso por Juan Carlos Vila Vilariño Centro PASTORIZA (Nº 3) Sumario 1 Los poliedros... 3 1.1
EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha
CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.
CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS
ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS BÁSICOS. POLIEDROS REGULARES Y NO REGULARES
ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS BÁSICOS. POLIEDROS REGULARES Y NO REGULARES 1º. Comprueba si se cumple o no la fórmula de Euler en este poliedro. 2º. Rellena la siguiente tabla: Poliedro Caras
CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES
OJETIVO 1 CONOCER Y DIERENCIR LOS POLIEDROS REGULRES NOMRE: CURSO: ECH: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos del poliedro son: Caras:
1 Indica, en la ilustración, dos edificios que sean poliedros y tengan formas diferentes. PÁGINA 186
PÁGINA 186 En la Casa de la Cultura se ha montado una exposición fotográfica. En ella se recogen modernos edificios en los que los poliedros y los cuerpos de revolución han sido elevados a la categoría
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS DE REDONDOS Poliedros. o Elementos de un poliedro y desarrollo plano. Prismas. o Elementos y tipos de prismas. Pirámides. o Elementos y tipos de
Figura en el espacio o cuerpo geométrico es el conjunto de puntos que no están contenidos en un mismo plano, es la porción de espacio limitado.
Cuenca, 11 de noviembre de 2013 Clase 13 Geometría del espacio Figuras geométricas en el espacio Definiciones: Geometría del espacio: Rama de las matemáticas encargada de las propiedades y medida de las
SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL
G3D1: Sólidos convexos y cóncavos SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL Pon tres ejemplos de objetos cotidianos que sean convexos: Pon tres ejemplos de objetos cotidianos que sean cóncavos: G3D2: Caracterización
Maquetería 02: Poliedros, cuerpos redondos y su construcción
Maquetería 02: Poliedros, cuerpos redondos y su construcción Concepto de Poliedro Definiremos como poliedro a un cuerpo geométrico tridimensional que encierra un espacio limitado. La palabra proviene de
VOLÚMENES DE POLIEDROS PRISMA:
VOLÚMENES DE POLIEDROS CONCEPTO: El volumen es la medida de la capacidad que posee un sólido. Todo sólido requiere tres dimensiones: largo, ancho y altura (profundidad ó espesor), es por ello que el volumen
Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1
GUÍ DE EJERCITCIÓN VNZD Cuerpos geométricos Programa Entrenamiento Desafío GUICEN02MT22-16V1 Matemática Una semiesfera tiene un área total de 4π cm 2. Si se corta por la mitad, de manera de formar dos
Maquetería 02: Poliedros, cuerpos redondos y su construcción
Maquetería 02: Poliedros, cuerpos redondos y su construcción Concepto de Poliedro Definiremos como poliedro a un cuerpo geométrico tridimensional que encierra un espacio limitado. La palabra proviene de
IES CUADERNO Nº 8 NOMBRE: FECHA: / / Cuerpos geométricos
Cuerpos geométricos Contenidos 1. Poliedros Definición Elementos de un poliedro 2. Tipos de poliedros Prismas Prismas regulares Desarrollo de un prisma recto Paralelepípedos Pirámides Pirámides regulares
MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN
MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN Concepto de Poliedro Definiremos como poliedro a un cuerpo geométrico tridimensional que encierra un espacio limitado. La palabra proviene de
MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes
MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos
Determina el nombre de los siguientes poliedros. Cuántas caras tienen? Y cuántas aristas? a) b)
Cuerpos geométricos EJERCICIOS 001 Determina el nombre de los siguientes poliedros. Cuántas caras tienen? Y cuántas aristas? a) b) a) Pirámide cuadrangular: 5 caras y 8 aristas. b) Prisma triangular: 5
Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso.
Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Sistemas Ejercicios de a reas y volu menes I 1Calcula el volumen, en centímetros cúbicos, de una habitación que tiene 5 m de largo, 40 dm de ancho
TEMA 9 CUERPOS GEOMÉTRICOS
Tel: 98 9 6 91 Fax: 98 1 89 96 TEMA 9 CUERPOS GEOMÉTRICOS Objetivos / Criterios de evaluación O.1.1 Conocer las fórmulas de áreas y volúmenes de figuras geométricas sencillas de D. O.1. Resolver problemas
RESUMEN BÁSICO DEL BLOQUE DE GEOMETRÍA Matemáticas 3º de ESO
RESUMEN ÁSICO DEL LOQUE DE GEOMETRÍA Matemáticas 3º de ESO 1-. Conceptos fundamentales. Punto Recta Plano Semirrecta: porción de recta limitada en un extremo por un punto Semiplano: es cada una de las
A mi muy querida profesora que con ansias debe estar esperando mi trabajo. I. Introducción pag. 4
MONOGRAFÍA NOMBRE : COLEGIO : GRADO : IVº B TEMA : Geometría del Espacio PROFESORA : FECHA : 30 de Noviembre DEDICATORIA A mi muy querida profesora que con ansias debe estar esperando mi trabajo índice
GEOMETRÍA DEL ESPACIO
GEOMETRÍA DEL ESPACIO Lic. Saúl Villamizar Valencia 33 1 GEOMETRÍA DEL ESPACIO Definición: Es la parte de la geometría que estudia las propiedades de las figuras y sólidos geométricos cuyos elementos
11Soluciones a los ejercicios y problemas
Soluciones a los ejercicios y problemas PÁGINA 9 Pág. P R A C T I C A D e s a r r o l l o s y á r e a s Dibuja el desarrollo plano y calcula el área total de los siguientes cuerpos geométricos: a) b) cm
EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA
1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.
INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS
Sep. 18 de 2015 Señores Estudiantes grados Novenos El siguiente trabajo ya lo estamos realizando en clase, pero los datos que a continuación aparecen son refuerzo para terminar las figuras geométricas
POLIEDROS. POLIEDROS Prof. Annabella Zapattini. Definición: Llamamos poliedro a la región del espacio limitada por polígonos planos.
POLIEDROS Definición: Llamamos poliedro a la región del espacio limitada por polígonos planos. Definiciones: Llamamos caras de un poliedro a los polígonos que lo definen. Llamamos aristas a los segmentos
Un punto carece de dimensiones, es sólo una posición en el espacio. Se acostumbra denotar los puntos por letras mayúsculas, por ejemplo.
Un punto carece de dimensiones, es sólo una posición en el espacio. Se acostumbra denotar los puntos por letras mayúsculas, por ejemplo. A: punto A. Una línea es una secuencia infinita de puntos. Las líneas
unidad 10 Cuerpos geométricos
unidad 10 Cuerpos geométricos Poliedros. Características Página 1 Poliedro es un cuerpo cerrado limitado por caras planas que son polígonos. Aristas son los lados de las caras. Cada dos caras contiguas
Problemas geométricos
Problemas geométricos Contenidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores y segmentos 2. Cuerpos geométricos Prismas Pirámides Troncos de
Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos
Ámbito Científico-Tecnológico Módulo IV Bloque 4 Unidad 4 Estamos rodeados de cuerpos. geométricos Cierto, mires por donde mires no podrás dejar de ver cuerpos geométricos de todo tipo. Por eso es importante
CENTRO EDUCATIVO PAULO FREIRE TALLER
CENTRO EDUCATIVO PAULO FREIRE TALLER 1: Una plaza circular está limitada por una circunferencia de longitud 188,4m. Determinar el diámetro y el área de la plaza. 2: Si el área de un círculo es 144 cm 2,
Conceptos geométricos II
Conceptos geométricos II Ángulo Ángulos Consecutivos Ángulos Alternos y Ángulos Correspondientes Polígono Polígono Regular Polígono Irregular Triángulo Cuadrilátero Superficie Círculo Superficie reglada
3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p
ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia
POLIEDROS. Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.
POLIEDROS Ejercicio nº 1.- De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,
Poliedros y cuerpos redondos para imprimir
Poliedros y cuerpos redondos para imprimir Nombre Curso: Fecha: Escribe en la parte derecha lo que falta. 1. Los cuerpos redondos. La geometría del espacio estudia los cuerpos que tienen tres dimensiones:
CUERPOS DE REVOLUCIÓN
PROPÓSITOS: Identificar los cuerpos redondos o de revolución. Resolver problemas, donde se aplique el volumen y área de cuerpos de revolución. CUERPOS DE REVOLUCIÓN Existen cuerpos geométricos que no tienen
