VOLÚMENES DE POLIEDROS PRISMA:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "VOLÚMENES DE POLIEDROS PRISMA:"

Transcripción

1 VOLÚMENES DE POLIEDROS CONCEPTO: El volumen es la medida de la capacidad que posee un sólido. Todo sólido requiere tres dimensiones: largo, ancho y altura (profundidad ó espesor), es por ello que el volumen tiene unidades cúbicas. A continuación se enuncian las propiedades de los principales poliedros. PRISMA: CONCEPTO: Se denomina prisma a todo sólido que posee dos polígonos paralelos llamados bases y sus caras laterales son rectangulares. El área lateral del prisma es igual al perímetro de la base por su altura AL = P b.. H El área total del prisma es la suma del área lateral más el área de sus dos bases AT = AL + 2B Los prismas se clasifican según el polígono que haya en su base así: Triangular regular: Su base es un triángulo equilátero Cuadrangular regular: Su base es un cuadrado Pentagonal regular: Su base es un pentágono regular Hexagonal regular: Su base es un hexágono regular Es de tener en cuenta que esta misma clasificación se utiliza en la pirámide.

2 El volumen del prisma es el producto del área de la base por su altura Volumen del prisma = B. H PIRÁMIDE: CONCEPTO: Se denomina pirámide a todo sólido que posee como base un polígono, normalmente regular, y sus caras laterales son triángulos isósceles APOTEMA: Se llama apotema de todo polígono regular al segmento trazado perpendicularmente desde el centro de dicho polígono a uno de sus lados. La apotema de la pirámide es cualquiera de las alturas de una de las caras laterales que conforman el sólido. Existen varias relaciones en la pirámide, una de ellas está conformada por la altura de la pirámide, la apotema de la base y la apotema de la pirámide quienes forman un triángulo rectángulo. A P H A p 2 = H 2 + A b 2 A b

3 El área lateral de una pirámide regular es el producto del perímetro de la base por la apotema sobre dos AL = P b. A p 2 El área total de una pirámide regular es igual a la suma de las áreas. AT = AL + AB Recordemos que el área de la base está definida por el polígono que conforma la base del sólido en cuestión El volumen de una pirámide es la tercera parte del producto del área de la base por la altura: Volumen de la piramide = AB. H CILINDRO: CONCEPTO: Se denomina cilindro a todo sólido en el cual las bases son círculos y las caras laterales son circunferencias. Un cilindro se genera cuando un rectángulo gira alrededor de uno de sus lados.

4 El área de la base del cilindro es igual al producto del doble de pi por el radio al cuadrado Donde R es el radio de la base. AB = 2π. R 2 El área lateral del cilindro es igual al producto del doble de pi por la altura AL = 2π. H El área total se deduce de la siguiente expresión: AT = AL + B = 2πRH + 2πR 2 AT = 2πR(H + R) El volumen del cilindro es igual a pi por el radio al cuadrado por la altura Volumen del cilindro = πr 2 H CONO: CONCEPTO: Se denomina cono al sólido generado cuando un triángulo gira alrededor de uno de sus lados o alturas

5 H g Como se forma un triángulo rectángulo: g 2 = H 2 + R 2 R Donde: g = Generatriz R = Radio de la base H =Altura El área de la base del cono es igual al producto de pi por el radio al cuadrado AB = π. R 2 El área lateral del cono es igual al producto de pi por el radio por la generatriz El área total del cono es igual a: El volumen del cono es igual a: AL = π. R. g AT = π. R 2 + π. R. g AT = π. R(R + g) Volumen del cono = π. R2. H Al igual que en la pirámide, el volumen del cono es la tercera parte del cilindro que tenga las mismas dimensiones

6 ESFERA: CONCEPTO: Se denomina esfera al sólido generado por el giro completo de una semicircunferencia alrededor de su diámetro. El área de la esfera está dada por: El volumen de la esfera es: A Esf = 4π. R 2 Volumen de la esfera = 4π. R

7 EJEMPLOS: 1. La apotema de la base de una pirámide hexagonal regular mide 0 centímetros y una de las aristas laterales mide 50 centímetros. Calcule su volumen. Para resolver el problema sobre el volumen de la pirámide se requiere dibujar la base de ésta y una cara lateral, no la pirámide en si L ab L 2 Para el caso del hexágono regular la apotema de la base es la altura de uno de los triángulos equiláteros que lo conforman, esta también es una mediana y mediatriz. Por Pitágoras: L 2 = a b 2 + ( L 2 ) 2 L 2 = a b 2 + L2 4 a b 2 = L 2 L2 4 L2 4 = a b 2 L = 2a b Luego, L = 2.0 L = 20 Area del triángulo: 1 2 L a b

8 Reemplazando: Area del triángulo: Area del triángulo: 00 cm 2 El hexágono regular está conformado por 6 triángulos equiláteros, por lo tanto: Área del hexagono = 6 Área del triángulo Área del hexagono = B = 6.00 cm 2 AB = 1800 cm 2 Cara lateral a L a L = 50 Cm a p L = 0 Cm Por ser un triángulo isósceles, su altura ó apotema de la pirámide divide el lado de la base en dos partes iguales. Por Pitágoras: a 2 l = ( L 2 2 ) + a 2 p a p = a 2 l ( L 2 2 ) Reemplazando: a p = 50 2 (15 ) 2 a p = 5 7 cm

9 Utilizando la relación de la pirámide, para calcular la altura: a p H a b Por Pitágoras: a p 2 = a b 2 + H 2 H = a p 2 a b 2 Reemplazando: H = (5 7) H = H = 925 H = 5 7 Cm El volumen de la pirámide es: Volumen de la pirámide = AB. H Volumen de la pirámide = Volumen de la pirámide = Cm

10 2. Cuál es el volumen de un cono generado por un triángulo equilátero de 20 cm de lado, si gira alrededor de una de sus alturas? H L=g Por Pitágoras L 2 L 2 = ( L 2 ) 2 + H 2 H 2 = L 2 L2 4 H2 = L2 4 H = L2 4 H = L 2 H = 20 2 H = 10 Cm Luego, el volumen del cono es: Volumen del cono = π. R2. H Sustituyendo en la fórmula y operando: Volumen del cono = π(10cm2 ).10 Volumen del cono = 1000π Cm

11 EJERCICIO PROPUESTO N 0 1. Calcular el área lateral y el área total de un prisma hexagonal regular, si la apotema de la base mide 12 cm y la arista lateral mide 6 RESPUESTA:AL: 1728 Cm 2, AT204 cm 2 2. El área total de un paralelepípedo rectángulo es de 76 cm 2 Cuáles son sus dimensiones si están en la relación de,4 y 5. Calcular la arista de un prisma triangular regular, si su altura es igual al lado de la base y el área total es de 10 dm 2 4. Calcule el volumen de un prisma triangular regular si la altura de la base es de 6 cm y la altura del prisma es tres veces el lado de la base 5. La diagonal de la base de un prisma cuadrangular regular mide 12 dm y la arista lateral mide 40 dm. Cuál es su volumen en centímetros cúbicos? RESPUESTA: cm 6. Calcular el volumen, el área lateral, el área total y la diagonal de un cubo cuya arista mide 24 cm. 7. Cuánto pesa dentro del agua un cuerpo de 00 kg de forma cúbica, si su arista mide 60 cm? RESPUESTA 84 kg 8. La diagonal de un cubo mide 15 cm. Calcular su volumen RESPUESTA: 75 cm 9. Calcular el volumen de un prisma hexagonal regular, si la apotema de la base mide 9 cm y la altura del prisma es de 48 cm 10. La apotema de la base de una pirámide regular mide 18 cm, y la altura de la pirámide mide 24 cm. Calcular la apotema de la pirámide 11. Expresar en función de la arista el área lateral del tetraedro regular.

12 12. La apotema de una pirámide triangular regular mide 45 cm y la apotema de la base mide 27 cm. Calcular su volumen RESPUESTA: cm 1. Calcular el volumen de una pirámide triangular regular si el lado de la base mide 12 cm y la arista lateral mide 24 cm 14. Una pirámide regular tiene por caras laterales tres triángulos rectángulos isósceles; la hipotenusa de cada triángulo mide 18 cm. Calcular su volumen 15. La apotema de la base de una pirámide hexagonal regular mide 15 cm. Calcular su volumen si la altura de la pirámide es de 45 cm 16. Encuentre el volumen de un tetraedro regular cuya arista mide K. 17. Cuántos metros cúbicos de agua contiene un pozo cilíndrico de 6 m de profundidad y 2.5 m de diámetro, si su contenido solo llega a los 2/5? 18. Un recipiente cilíndrico de 1.8 m de altura tiene una capacidad de 180 litros. Calcular el radio de la base 19. El lado de un triángulo equilátero mide 8 cm. Calcular el área total y el volumen del cono generado por dicho triángulo, si gira alrededor de la altura. 20. Un cono tiene 0 cm de volumen. Calcular el área de la base, sabiendo que la altura del cono es dos veces el radio de la base. 21. Calcular el área de la superficie de una tienda de forma cilíndrica rematada por un cono, sabiendo que tanto la generatriz del cilindro como la generatriz del cono y el diámetro común miden 2.5 m c/u. 22. Se quiere construir un embudo de 12 cm de diámetro y 18 cm de generatriz. Cuánto costará el material para construirlo, si se paga a 0.80 dólares el dm 2? 2. Calcular el radio de la base de un cono de 12 cm de altura, si su volumen es igual al de una esfera de 8 cm de radio

13 24. Calcular la capacidad de una caldera cilíndrica rematada por dos hemisferios, sabiendo que el diámetro común y la generatriz del cilindro mide cada uno 2.5 m 25. Calcular el radio de una esfera de hierro que pesa Kg (Densidad del hierro 7.8 g/cm ) 26. El área de una esfera es de cm 2 Calcular el volumen de la esfera 27. La circunferencia exterior máxima de una esfera hueca tiene 6 cm y su espesor es de 2 cm. Calcular su capacidad y el volumen del espesor. 28. Una esfera hueca de cobre tiene 40 cm de diámetro. Calcular su peso sabiendo que su espesor es de cm (Densidad del cobre 8.9 g/cm )

ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA

ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS REGULARES ESFERA ESQUEMA GENERAL DE LA CLASIFICACIÓN DE LOS CUERPOS GEOMÉTRICOS POLIEDROS REGULARES Tetraedro ( 4 triángulos equiláteros) Hexaedro o cubo( 6 cuadrados) Octaedro( 8 triángulos equiláteros) Dodecaedro ( 12

Más detalles

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.

Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases

Más detalles

Programa Entrenamiento MT-22

Programa Entrenamiento MT-22 Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8

Más detalles

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS

SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA XII: POLIEDROS Y CUERPOS REDONDOS Poliedros: o Elementos. o Tipos. Poliedros regulares. Cubos. Prismas: elementos, clases. Pirámides: elementos, clases. Áreas laterales y

Más detalles

POLIEDROS, PRISMAS Y PIRÁMIDES

POLIEDROS, PRISMAS Y PIRÁMIDES POLIEDROS, PRISMAS Y PIRÁMIDES 1. Completa la siguiente tabla. 2. Indica si son verdaderas o falsas (V o F) las siguientes afirmaciones. a) La suma de las caras y los vértices del cubo es 12. b) El menor

Más detalles

Geometría del espacio

Geometría del espacio Áreas y volumenes de cuerpos geométricos Un poliedro es un cuerpo geométrico que está limitado por cuatro o más polígonos. Los elementos de un poliedro son: Caras del poliedro: son los polígonos que lo

Más detalles

Ámbito científico tecnológico

Ámbito científico tecnológico Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica

Más detalles

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas.

CUERPOS GEOMÉTRICOS. Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS CUERPOS GEOMÉTRICOS.- Los cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. Clasificamos, en el siguiente esquema, los cuerpos geométricos: POLIEDROS.-

Más detalles

IDEAS PREVIAS. 1. Planos paralelos. 2.Planos perpendiculares

IDEAS PREVIAS. 1. Planos paralelos. 2.Planos perpendiculares IDEAS PREVIAS 1. Planos paralelos..planos perpendiculares .Planos oblicuos. CUERPO GEOMÉTRICO Un Sólido o Cuerpo Geométrico es una figura geométrica de tres dimensiones (largo, ancho y alto), que ocupa

Más detalles

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008 TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Cuerpos geométricos GUICEN032MT22-A16V1 GUÍ DE EJERCITCIÓN VNZD Cuerpos geométricos Programa Entrenamiento Desafío GUICEN02MT22-16V1 Matemática Una semiesfera tiene un área total de 4π cm 2. Si se corta por la mitad, de manera de formar dos

Más detalles

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos.

Un poliedro es un cuerpo geométrico que tiene todas sus caras planas y formadas por polígonos. CUERPOS GEOMÉTRICOS Los cuerpos geométricos son figuras geométricas tridimensionales (tienen alto, ancho y largo) que ocupan un lugar en el espacio. 1. POLIEDROS. 1.1. DEFINICIÓN. Un poliedro es un cuerpo

Más detalles

14 CUERPOS GEOMÉTRICOS. VOLÚMENES

14 CUERPOS GEOMÉTRICOS. VOLÚMENES EJERCICIOS PARA ENTRENARSE Poliedros 14.33 Calcula la suma de los ángulos de las caras que concurren en un vértice de los poliedros regulares. Qué observas? TETRAEDO: En un vértice concurren tres triángulos

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS)

CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede

Más detalles

Elementos del cilindro

Elementos del cilindro Definición de cilindro Un cilindro es un cuerpo geométrico engendrado por un rectángulo que gira alrededor de uno de sus lados. Desarrollo del cilindro Elementos del cilindro Eje Es el lado fijo alrededor

Más detalles

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano

Más detalles

IES FONTEXERÍA MUROS. 14-II-2014 Nombre y apellidos:.

IES FONTEXERÍA MUROS. 14-II-2014 Nombre y apellidos:. IES FONTEXERÍA MUROS MATEMÁTICAS º E.S.O-A (Desdoble 1) 1º Examen (ª Evaluación) 14-II-014 Nombre y apellidos:. 1. Completa las siguientes definiciones: a) Un poliedro es un cuerpo geométrico tridimensional

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

1 Indica, en la ilustración, dos edificios que sean poliedros y tengan formas diferentes. PÁGINA 186

1 Indica, en la ilustración, dos edificios que sean poliedros y tengan formas diferentes. PÁGINA 186 PÁGINA 186 En la Casa de la Cultura se ha montado una exposición fotográfica. En ella se recogen modernos edificios en los que los poliedros y los cuerpos de revolución han sido elevados a la categoría

Más detalles

FICHA TEMA 9: CUERPOS GEOMETRICOS NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro:

FICHA TEMA 9: CUERPOS GEOMETRICOS NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro: FICHA TEMA 9: CUERPOS GEOMETRICOS CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº 2.- Cuáles de las siguientes figuras

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

SOLIDOS LOS POLIEDROS RECTOS

SOLIDOS LOS POLIEDROS RECTOS SOLIDOS Las invenciones de los objetos concretos al concepto abstracto de los griegos, sentaron las bases para la geometría Euclidea. Aquí apreciamos algunas formas que ellos derivaron y que aún hoy día

Más detalles

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio.

CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio. CUERPOS GEOMÉTRICOS 07 Comprende que son los cuerpos geométricos e identifica las partes que los componen. En Presentación de Contenidos recuerdan qué son los polígonos para comprender cómo se forman los

Más detalles

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras. CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina

Más detalles

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?

EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS

CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS CUERPOS GEOMÉTRICOS. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO 2º E.S.O. DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de puntos: DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de una recta:

Más detalles

Figura plana Área Ejemplo Cuadrado. Área =

Figura plana Área Ejemplo Cuadrado. Área = ersión: Septiembre 01 Áreas y volúmenes Por Sandra Elvia Pérez Márquez Áreas de figuras planas Las aplicaciones de las figuras planas requieren, por lo general, conocer (o calcular) dos características

Más detalles

MYP (MIDDLE YEARS PROGRAMME)

MYP (MIDDLE YEARS PROGRAMME) MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa

Más detalles

10 VOLUMEN DE CUERPOS GEOMÉTRICOS

10 VOLUMEN DE CUERPOS GEOMÉTRICOS 10 OLUMEN DE CUERPOS GEOMÉTRICOS 10.1.- OLUMEN DE UN CUERPO. OLUMEN, CAPACIDAD Y MASA. DENSIDAD DE UN CUERPO. 10.2.- OLUMEN DE UN ORTOEDRO Y DEL CUBO. 10..- OLUMEN DE PRISMAS Y CILINDROS. 10.4.- OLUMEN

Más detalles

OBJETIVO 1 CONOCER LOS POLIEDROS Y DIFERENCIAR LOS POLIEDROS REGULARES NOMBRE: CURSO: FECHA:

OBJETIVO 1 CONOCER LOS POLIEDROS Y DIFERENCIAR LOS POLIEDROS REGULARES NOMBRE: CURSO: FECHA: OJETIVO 1 CONOCER LOS POLIEDROS Y DIERENCIR LOS POLIEDROS REGULRES NOMRE: CURSO: ECH: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos del poliedro

Más detalles

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS UNIDAD DIDÁCTICA CUERPOS GEOMÉTRICOS 1. CUERPOS GEOMÉTRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos

Más detalles

EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO

EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO EJERCICIOS de ÁREAS y VOLÚMENES 3º ESO FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar

Más detalles

EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha

Más detalles

TALLER DE SOLIDOS. Ejemplo 1: Hallar la diagonal de un cubo cuya arista mide 3 cm. Solución:

TALLER DE SOLIDOS. Ejemplo 1: Hallar la diagonal de un cubo cuya arista mide 3 cm. Solución: 3 TALLER DE SOLIDOS Ejemplo 1: Hallar la diagonal de un cubo cuya arista mide 3 cm. D = d a ; pero d a a a D a a ; D 3a D a 3 D 3 3 cm. Ejemplo : Hallar el área lateral de un prisma recto octagonal regular

Más detalles

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS

INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS Sep. 18 de 2015 Señores Estudiantes grados Novenos El siguiente trabajo ya lo estamos realizando en clase, pero los datos que a continuación aparecen son refuerzo para terminar las figuras geométricas

Más detalles

Geometría. Cuerpos Geométricos. Trabajo

Geometría. Cuerpos Geométricos. Trabajo Geometría Cuerpos Geométricos Trabajo CUERPOS GEOMÉTRICOS 1. Clasifique los cuerpos geométricos. Dos grupos de sólidos geométricos del espacio presentan especial interés: 1.1. Poliedros: Aquellos cuerpos

Más detalles

PERÍMETROS ÁREAS - VOLÚMENES

PERÍMETROS ÁREAS - VOLÚMENES ERÍMETROS ÁREAS - VOLÚMENES 1.- OLÍGONOS olígono: arte del plano limitada por una línea poligonal cerrada. Lado: Segmento que une dos vértices consecutivos. En un polígono el número de lados y el número

Más detalles

Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso.

Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Matemáticas 3º Eso. Ecuaciones: Ejercicios de la 3º Evaluación -- Dtpo de Sistemas Ejercicios de a reas y volu menes I 1Calcula el volumen, en centímetros cúbicos, de una habitación que tiene 5 m de largo, 40 dm de ancho

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES

CONOCER Y DIFERENCIAR LOS POLIEDROS REGULARES OJETIVO 1 CONOCER Y DIERENCIR LOS POLIEDROS REGULRES NOMRE: CURSO: ECH: CONCEPTO DE POLIEDRO Vértice Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos del poliedro son: Caras:

Más detalles

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO

ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO ÁREAS Y VOLÚMENES DE CUERPOS EN EL ESPACIO 1. Área y volumen del ortoedro y del cubo. 1.1. Área y volumen del ortoedro. 1.2. Cálculo de la diagonal del ortoedro. 1.3. Área y volumen del cubo. 2. Área y

Más detalles

FIGURAS DEL ESPACIO. ÁREAS Y VOLÚMENES

FIGURAS DEL ESPACIO. ÁREAS Y VOLÚMENES POLIEDROS : Cuerpo sólido limitado por polígonos, llamados caras; en la que algunas de las caras confluyen en líneas rectas, llamadas aristas; y algunas de las aristas confluyen en puntos,llamados vértices.

Más detalles

Autor: 2º ciclo de E.P.

Autor: 2º ciclo de E.P. 1 Autor: 2º ciclo de E.P. Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas.

Más detalles

MATEMÁTICAS (GEOMETRÍA)

MATEMÁTICAS (GEOMETRÍA) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 8 / 07 / 15 Guía Didáctica 3-2 Desempeños: * Reconoce y clasifica

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

5to Parcial de Geometría Euclidiana. 2) Sea p un polígono tal que se puede descomponer en n polígonos simples

5to Parcial de Geometría Euclidiana. 2) Sea p un polígono tal que se puede descomponer en n polígonos simples 5to Parcial de Geometría Euclidiana AREAS y VOLUMENES Definición 55 (Área) Se define el área como una función A definida del conjunto de todos los polígonos P en R + (A : P R + ), con las siguientes propiedades:

Más detalles

Tema 10: Cuerpos geométricos y transformaciones geométricas

Tema 10: Cuerpos geométricos y transformaciones geométricas Tema 10: Cuerpos geométricos y transformaciones geométricas Regla. Escuadra. Cartabón. Compás. Transportador de ángulos. Calculadora Portaminas. Goma 10.1 Polígonos MATERIAL DE CLASE OBLIGATORIO PROBLEMAS

Más detalles

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc.

CUERPOS. Poliedros: Aquellos cuerpos geométricos totalmente limitados por polígonos, como por ejemplo, el prisma, la pirámide; etc. CUERPOS Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede calcular el volumen del mismo

Más detalles

Trabajo de Investigación Cuerpos Geométricos

Trabajo de Investigación Cuerpos Geométricos Saint George s College Área de Matemáticas y sus Aplicaciones Tercera Unidad Trabajo de Investigación Cuerpos Geométricos Integrantes: -Stefan Jercic -Ignacio Larrain -Cristian Majluf Curso: 10 E Profesora:

Más detalles

Cuerpos geométricos. Volúmenes

Cuerpos geométricos. Volúmenes 4 uerpos geométricos. Volúmenes. Poliedros Un poliedro es un cuerpo geométrico limitado por cuatro o más polígonos planos. Los elementos de un poliedro son: aras: son los polígonos que lo delimitan. ristas:

Más detalles

Área del rectángulo y del cuadrado

Área del rectángulo y del cuadrado 59 Área del rectángulo y del cuadrado El área del rectángulo es el producto de su base por su altura. El área del cuadrado es su lado elevado al cuadrado. 1. Mide con una regla y completa. Área del rectángulo:

Más detalles

Problemas geométricos

Problemas geométricos Problemas geométricos Contenidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores y segmentos 2. Cuerpos geométricos Prismas Pirámides Troncos de

Más detalles

CENTRO EDUCATIVO PAULO FREIRE TALLER

CENTRO EDUCATIVO PAULO FREIRE TALLER CENTRO EDUCATIVO PAULO FREIRE TALLER 1: Una plaza circular está limitada por una circunferencia de longitud 188,4m. Determinar el diámetro y el área de la plaza. 2: Si el área de un círculo es 144 cm 2,

Más detalles

11Soluciones a los ejercicios y problemas

11Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 9 Pág. P R A C T I C A D e s a r r o l l o s y á r e a s Dibuja el desarrollo plano y calcula el área total de los siguientes cuerpos geométricos: a) b) cm

Más detalles

PARA TENER EN CUENTA: 1000cc=1litro 1 pulgada=2,54 cm. Formula general de Simpson Cavalieri: H 6

PARA TENER EN CUENTA: 1000cc=1litro 1 pulgada=2,54 cm. Formula general de Simpson Cavalieri: H 6 PARA TENER EN CUENTA: 1000cc=1litro 1 pulgada=2,54 cm. Formula general de Simpson Cavalieri: H V= ( Si + Ss + 4Sm) 6 Ejercicios de aplicación. 1.-Se tiene un cubo de lado 10 cm. Calcule 1.1.- La superficie

Más detalles

POLIEDROS. ÁREAS Y VOLÚMENES.

POLIEDROS. ÁREAS Y VOLÚMENES. 7. POLIEDROS. ÁREAS Y VOLÚMENES. EN ESTA UNIDAD VAS A APRENDER CUERPOS GEOMÉTRICOS POLIEDROS POLIEDROS REGULARES PRISMAS PIRÁMIDES CARACTERÍSTICAS DEFINICIÓN ELEMENTOS DEFINICIÓN ELEMENTOS - Tetaedro.

Más detalles

Piden: Dato: Piden: Dato: Piden: Dato:

Piden: Dato: Piden: Dato: Piden: Dato: SEMANA 1 PRISMAS Y PIRÁMIDE 1. Calcule el número de caras de un prisma donde el número de vértices más el número de aristas es 50. A) 10 B) 0 C) 0 D) 1 E) 18 Sea n el número de lados de la base del prisma:

Más detalles

SeCrece, Inc. Matemáticas. Unidad: Geometría. Grupo: Tornasol

SeCrece, Inc. Matemáticas. Unidad: Geometría. Grupo: Tornasol SeCrece, Inc. Matemáticas Unidad: Geometría Grupo: Tornasol I. Propiedades Geométricas a. Tipos de Polígonos Nombres de Polígonos Nombre Lados Ángulos Triángulo 3 3 Cuadrilátero 4 4 Pentágono 5 5 Hexágono

Más detalles

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia

Más detalles

VOLUMENES DE CUERPOS GEOMETRICOS

VOLUMENES DE CUERPOS GEOMETRICOS PreUnAB VOLUMENES DE CUERPOS GEOMETRICOS Clase # 20 Octubre 2014 CONCEPTOS PREVIOS Volumen: El volumen es una magnitud definida como la extensión en tres dimensiones de un cuerpo en el espacio. Es, por

Más detalles

GEOMETRÍA DEL ESPACIO

GEOMETRÍA DEL ESPACIO GEOMETRÍA DEL ESPACIO Lic. Saúl Villamizar Valencia 33 1 GEOMETRÍA DEL ESPACIO Definición: Es la parte de la geometría que estudia las propiedades de las figuras y sólidos geométricos cuyos elementos

Más detalles

CUERPOS EN EL ESPACIO

CUERPOS EN EL ESPACIO CUERPOS EN EL ESPACIO 1. Poliedros. 2. Fórmula de Euler. 3. Prismas. 4. Paralelepípedos. Ortoedros. 5. Pirámides. 6. Cuerpos de revolución. 6.1. Cilindros. 6.2. Conos. 6.3. Esferas. 6.4. Coordenadas geográficas.

Más detalles

a 2 = b 2 + c 2 a = hipotenusa ; b, c = catetos

a 2 = b 2 + c 2 a = hipotenusa ; b, c = catetos TEMA 6.- GEOMETRÍA Y SEMEJANZA 1.- ÁNGULOS Y TRIÁNGULOS. Ángulo recto Ángulo llano Ángulo agudo Ángulo obtuso (mide 90º) (mide 180º) (mide menos de 90º) (mide más de 90º) Tipos de ángulos Ángulos complementarios

Más detalles

1 Resuelve utilizando el método de reducción el siguiente sistema de ecuaciones:

1 Resuelve utilizando el método de reducción el siguiente sistema de ecuaciones: 1 Resuelve utilizando el método de reducción el siguiente sistema de ecuaciones: x + y = 0 x y = 10 Multiplicando la 1ª ecuación por y sumando el resultado se obtiene: 6x + y = 0 x y = 10 x = 10 x = 5

Más detalles

Nombre del estudiante: Grupo:

Nombre del estudiante: Grupo: Página 1 de 8 Nombre del estudiante: Grupo: I) REALIZA LAS CONVERSIONES: A) 3758 m = Km B) 85 cm 2 = Dam 2 C) 0.0007 Hm 3 = m 3 D) 79 m 3 = litros E) 8 mm = Hm F) 49506 cm 3 = litros G) 5 Km 2 = dm 2 H)

Más detalles

ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES

ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES OBJETIVO 1 ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES NOMBRE: CURSO: ECHA: CONCEPTO DE POLIEDRO Vértice Arista Cara Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos

Más detalles

PROGRAMA DE REFUERZO 3º Evaluación

PROGRAMA DE REFUERZO 3º Evaluación COLEGIO INTERNACIONAL SEK EL CASTILLO DEPARTAMENTO DE MATEMÁTICAS PROGRAMA DE REFUERZO 3º Evaluación MATEMÁTICAS 3º de E.S.O. ALUMNO: Ref E3.doc3 Página 1 Matemáticas 3º ESO MATEMÁTICAS 3º E.S.O. (010/011)

Más detalles

2 Calcula la superficie total de cada cuerpo:

2 Calcula la superficie total de cada cuerpo: 8 Pág. Calcula la superficie total de cada cuerpo: A cm B C D cm A Área lateral πrh π,5 5π Área bases (πr ) π,5,5π Área total 5π +,5π 7,5π 86, B Área lateral πrg π 5 5π Área base πr π 9π Área total 5π

Más detalles

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS Se llaman poliedros todos los cuerpos geométricos que tienen todas sus caras planas. Los cuerpos redondos son aquellos que tienen alguna de sus superficies

Más detalles

MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN

MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN Concepto de Poliedro Definiremos como poliedro a un cuerpo geométrico tridimensional que encierra un espacio limitado. La palabra proviene de

Más detalles

Cuerpos geométricos POLIEDROS CUERPOS DE REVOLUCIÓN POLIEDROS PIRÁMIDES PRISMAS REGULARES ÁREA TOTAL ÁREA TOTAL. A T = P B h+2a B = ESFERA

Cuerpos geométricos POLIEDROS CUERPOS DE REVOLUCIÓN POLIEDROS PIRÁMIDES PRISMAS REGULARES ÁREA TOTAL ÁREA TOTAL. A T = P B h+2a B = ESFERA 11 Cuerpos geométricos POLIEDROS POLIEDROS REGULARES PRISMAS PIRÁMIDES ÁREA TOTAL A T = P B h+a B A T ÁREA TOTAL PB a PB a' = + CUERPOS DE REVOLUCIÓN CILINDRO CONO ESFERA ÁREA TOTAL A T = πrh+πr ÁREA TOTAL

Más detalles

Módulo Tres. Bloque 9 Tema 7

Módulo Tres. Bloque 9 Tema 7 Ámbito Científico y Tecnológico Módulo Tres. Bloque 9 Tema 7 Las formas y las medidas que nos rodean Educación Secundaria Para Adultos Ámbito Científico y Tecnológico Página 1 de 30 ÍNDICE Presentación

Más detalles

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida

congruentes es porque tienen la misma longitud AB = CD y, cuando dos ángulos DEF son congruentes es porque tienen la misma medida COLEGIO COLMBO BRITÁNICO DEPARTAMENTO DE MATEMÁTICAS GEOMETRÍA NOVENO GRADO PROFESORES: RAÚL MARTÍNEZ, JAVIER MURILLO Y JESÚS VARGAS CONGRUENCIA Y SEMEJANZA Cuando tenemos dos segmentos escribimos AB CD

Más detalles

PÁGINA 98. a) Tetraedro = 2 Cubo = 2 Octaedro = 2 Dodecaedro = 2 Icosaedro = 2

PÁGINA 98. a) Tetraedro = 2 Cubo = 2 Octaedro = 2 Dodecaedro = 2 Icosaedro = 2 PÁGINA 98 Pág. 1 1 Haz una tabla con el número de caras, vértices y aristas de los cinco poliedros regulares. a) Comprueba que los cinco cumplen la fórmula de Euler. [Recuerda: c + v = a + ]. b) Comprueba

Más detalles

A mi muy querida profesora que con ansias debe estar esperando mi trabajo. I. Introducción pag. 4

A mi muy querida profesora que con ansias debe estar esperando mi trabajo. I. Introducción pag. 4 MONOGRAFÍA NOMBRE : COLEGIO : GRADO : IVº B TEMA : Geometría del Espacio PROFESORA : FECHA : 30 de Noviembre DEDICATORIA A mi muy querida profesora que con ansias debe estar esperando mi trabajo índice

Más detalles

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0

Más detalles

601 EJERCICIOS. Temas de examen CN-FIUNA Teórico y Práctico. Años 1979/2014. Matemática II

601 EJERCICIOS. Temas de examen CN-FIUNA Teórico y Práctico. Años 1979/2014. Matemática II 601 EJERCICIOS Temas de examen CN-FIUNA Teórico y Práctico Años 1979/2014 Matemática II Año 1979 1) Por un punto P exterior a un circulo se traza una recta secante PAB a su circunferencia, tal que PB mide

Más detalles

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm 2 cm 5 cm 8 cm 2 a) b) 5 m 8 m 17 m 15 m 3 a) b) 5

Más detalles

GEOMETRÍA ESPACIAL Programación

GEOMETRÍA ESPACIAL Programación GEOMETRÍA ESPACIAL Programación En clase, con la ayuda del libro, se explicará la teoría y se realizarán ejercicios similares a los de las fichas, de modo que los ejercicios que realizan por la tarde les

Más detalles

TEMA 9: ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS UNIDADES DE ÁREA Y VOLUMEN Unidades de área o superficie Kilómetro cuadrado.

TEMA 9: ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS UNIDADES DE ÁREA Y VOLUMEN Unidades de área o superficie Kilómetro cuadrado. TEMA 9: ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS UNIDADES DE ÁREA Y VOLUMEN Unidades de área o superficie Kilómetro cuadrado Km 2 1.000.000 m 2 Hectómetro cuadrado hm 2 10.000 m 2 Decámetro cuadrado dam

Más detalles

Indicar y Justificar la verdad (V) o falsedad (F) de las siguientes afirmaciones:

Indicar y Justificar la verdad (V) o falsedad (F) de las siguientes afirmaciones: GEOMETRÍ DEL ESIO ompetencias: Reconoce a la recta y el plano en R. Describir las posiciones relativas entre dos planos y entre una recta y un lano. Describir el Teorema de las tres perpendiculares. Definir

Más detalles

Tipo de triángulo según sus ángulos Característica Dibujo

Tipo de triángulo según sus ángulos Característica Dibujo TEMA 7 - LUGARES GEOMÉTRICOS Y FIGURAS PLANAS 1º. Completa la tabla siguiente donde se indica la clasificación de los triángulos según sus ángulos y donde, además, aparezca un dibujo de cada tipo. Tipo

Más detalles

Nº caras. Nº vértices

Nº caras. Nº vértices Tipo De Caras (Ángulo Interior) Triángulo Equilátero (60º) Cuadrado (90º) Pentágono (108º) Hexágono (10º) Nº caras por vértice Suma de los ángulos de cada vértice Nº caras Nº vértices Nº aristas C + V

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS 10 FIGURAS Y CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 10.1 Indica cuál de estos poliedros es cóncavo y cuál es convexo. a) Cóncavo b) Convexo 10. Completa la siguiente tabla. Caras (C ) Vértices (V )

Más detalles

SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL

SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL G3D1: Sólidos convexos y cóncavos SÓLIDOS EN EL ESPACIO TRIDIMENSIONAL Pon tres ejemplos de objetos cotidianos que sean convexos: Pon tres ejemplos de objetos cotidianos que sean cóncavos: G3D2: Caracterización

Más detalles

SOLUCIONARIO Cuerpos redondos

SOLUCIONARIO Cuerpos redondos SOLUCIONARIO Cuerpos redondos SGUICEG07EM2-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Cuerpos redondos Ítem Alternativa 1 E 2 D A 4 C 5 C 6 D 7 B 8 D 9 B 10 D 11 B 12 C 1 B 14 B 15 A 16 C 17 A 18 E 19 D

Más detalles

Soluciones Primer Nivel - 5º Año de Escolaridad

Soluciones Primer Nivel - 5º Año de Escolaridad Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden

Más detalles

IES CUADERNO Nº 8 NOMBRE: FECHA: / / Cuerpos geométricos

IES CUADERNO Nº 8 NOMBRE: FECHA: / / Cuerpos geométricos Cuerpos geométricos Contenidos 1. Poliedros Definición Elementos de un poliedro 2. Tipos de poliedros Prismas Prismas regulares Desarrollo de un prisma recto Paralelepípedos Pirámides Pirámides regulares

Más detalles

TORNEOS GEOMÉTRICOS 2016 Primera Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres.. DNI Tu Escuela. Localidad Provincia

TORNEOS GEOMÉTRICOS 2016 Primera Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres.. DNI Tu Escuela. Localidad Provincia Primer Nivel - 5º Año de Escolaridad 1- En el triángulo rectángulo ABC cuyo ángulo en C mide 48º se trazan la bisectrices de los ángulos B y C, que se cortan en O. Calcula la medida de los ángulos del

Más detalles

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN...1 2. SUPERFICIES POLIÉDRICAS. POLIEDROS...1 3. FIGURAS DE REVOLUCIÓN...3 4. POLIEDROS

Más detalles

Geometría en el espacio

Geometría en el espacio Geometría en el espacio 3º E.S.O. PARTE TEÓRICA 1.- Define los siguientes conceptos: Poliedro: Vértice de un poliedro: Cara de un poliedro: Arista de un poliedro: Poliedro regular: 2.- Di cuáles son los

Más detalles

MODULO III - GEOMETRIA

MODULO III - GEOMETRIA PRIMERA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO III - GEOMETRIA ENCUENTRO NÚMERO SEIS Y SIETE Calculo de Áreas y volúmenes. 31 DE AGOSTO DE 2014 MANAGUA FINANCIADO

Más detalles

Figura en el espacio o cuerpo geométrico es el conjunto de puntos que no están contenidos en un mismo plano, es la porción de espacio limitado.

Figura en el espacio o cuerpo geométrico es el conjunto de puntos que no están contenidos en un mismo plano, es la porción de espacio limitado. Cuenca, 11 de noviembre de 2013 Clase 13 Geometría del espacio Figuras geométricas en el espacio Definiciones: Geometría del espacio: Rama de las matemáticas encargada de las propiedades y medida de las

Más detalles

Slide 1 / 139. Geometría 3-D

Slide 1 / 139. Geometría 3-D Slide 1 / 139 Geometría 3-D Tabla de Contenidos Sólidos 3-Dimensional Redes Volumen Prismas y Cilindros Pirámides, Conos y Esferas Área de la Superficie Prismas Pirámides Cilindros Esferas Más Práctica/Revisión

Más detalles

Untitled.notebook February 01, Geometría 3 D

Untitled.notebook February 01, Geometría 3 D Geometría 3 D Tabla de Contenidos Sólidos 3 Dimensional Redes Volumen Prismas y Cilindros Haga clic en el tema para ir a esa sección Pirámides, Conos y Esferas Área de la Superficie Prismas Pirámides Cilindros

Más detalles

CUERPOS DE REVOLUCIÓN

CUERPOS DE REVOLUCIÓN PROPÓSITOS: Identificar los cuerpos redondos o de revolución. Resolver problemas, donde se aplique el volumen y área de cuerpos de revolución. CUERPOS DE REVOLUCIÓN Existen cuerpos geométricos que no tienen

Más detalles