MODELOS Y MODELADO. Gilberto Gallopín.
|
|
|
- Blanca Sánchez Cáceres
- hace 8 años
- Vistas:
Transcripción
1 MODELOS Y MODELADO Gilberto Gallopín [email protected] Seminario Prospectiva y Pensamiento Estratégico INTA, IIPyPP, 2 al 6 de junio de 2014 C.A.B.A.
2 PROSPECTIVA Y MODELOS La Prospectiva es una disciplina muy amplia, que utiliza diferentes metodologías y técnicas. Aquí, enfocaré en una de las herramientas utilizadas para explorar el futuro: los Modelos, y específicamente los modelos matemáticos de simulación (más adelante hablaré sobre los Escenarios cualitativos, la otra gran herramienta)
3 DOS CONCEPTOS CENTRALES DE LA PROSPECTIVA Objetivo no es predecir el futuro, sino explorar futuros posibles (incluyendo futuros deseables) Hay modelos y escenarios exploratorios (qué podría pasar) y normativos (qué queremos que pase). El MML es un ejemplo de ambos, ya que se corrió en modo exploratorio, y también en modo normativo (optimizado)
4 ESCENARIOS & MODELOS: MODOS COMPLEMENTARIOS DE EXPLORAR EL FUTURO Escenario: una secuencia hipotética de eventos que resultan en una imagen del futuro, con el propósito de enfocar la atención en procesos causales, puntos de decisión, y bifurcaciones donde las acciones humanas podrían cambiar el curso de eventos
5 Modelo: una representación simplificada de la realidad donde se supone que existe algún tipo de correspondencia entre los elementos y relaciones del modelo y los de la realidad Modelos matemáticos: representan los elementos y relaciones como variables y relaciones matemáticas o funciones (determinísticas o estocásticas) que obedecen las leyes de las Matemáticas El MML es un claro ejemplo de modelo matemático de simulación dinámica y también de optimización. En prospectiva, se utilizan a veces otros tipos de modelos matemáticos (de agentes, de simulación espacial, etc.)
6
7
8 ESCENARIOS CUALITATIVOS Pueden incluir factores cuantificables y no cuantificables. Más comprehensivos que los modelos de simulación Transparentes (importante para la participación) Definitivamente no predictivos, sino exploratorios del futuro Capaces de incluir incertidumbre dura y verdadera novedad Siempre enfocados al futuro MODELOS DE SIMULATION Limitados a los factores y relaciones cuantificables. Son más precisos que los escenarios cualitativos Opacos a los usuarios no tecnicos Exploratorios ó (en algunos casos específicos) predictivos Pueden manejar la incertidumbre probabilística No todos son orientados al futuro. Cuando se usan para explorar futuros alternativos se suelen llamar escenarios cuantitativos
9 QUÉ ES UN MODELO? Una representación aproximada e idealizada de la realidad, donde los elementos o componentes del modelo se corresponden, de alguna manera, con ciertos elementos de la realidad (estrictamente, de la imagen de la realidad que tiene el que hace el modelo) y las interrelaciones entre elementos del modelo son de algún modo equivalentes a las interrelaciones entre los elementos correspondientes de la realidad
10 Cualquiera que usa un sistema A que no interactúa directa o indirectamente con un sistema B, está usando A como un modelo de B (Apostel) En última instancia, un modelo es la expresión de algo que queremos entender en términos de otro algo que creemos entender
11 MODELOS MATEMÁTICOS Un modelo matemático representa los elementos y las interrelaciones como variables y relaciones o funciones matemáticas (deterministas o estocásticas) que obedecen las leyes de las Matemáticas. Estáticos (ej. Modelo Digital del Mundo básico para SIG) o dinámicos (los valores de las variables cambian en el tiempo) Analíticos (con soluciones generales aplicando la herramienta matemática) o de simulación (con soluciones particulares aplicando algoritmos de computación).
12 MODELOS MATEMÁTICOS DE SIMULACIÓN Los modelos de simulación son, como los analíticos, de naturaleza lógico-matemática, pero en vez de describir directamente el comportamiento global del sistema describen la operación del sistema en términos de eventos individuales de los componentes elementales del sistema. La simulación divide la construcción del modelo en componentes menores y combina esas partes en su orden natural; la computadora puede calcular el efecto de la interacción entre partes, a partir de los valores iniciales de los componentes y sus interacciones, simulando la operación real del sistema y registrando su comportamiento agregado. Esto se puede repetir para varias configuraciones alternativas y valores de las entradas, y comparar los resultados.
13 Se aplican las ecuaciones (reglas de cambio) al "estado actual" para obtener el "nuevo estado", el que es a su vez el nuevo estado actual, para producir un segundo nuevo estado. El requerimiento principal para esto es que las reglas sean expresadas en términos del estado del sistema y sus entradas, y no en función directa del tiempo. La idea básica es muy sencilla, aunque los modelos puedan ser muy complicados.
14
15 Funcionamiento de un modelo de simulación digital I t I t+1 I t+2 s t s t+1 s t+2 O t O t+1 O t+2 t t+1 t+2 tiempo
16 MODELITO STELLA
17 E(t) = E(t - dt) + (growth - extraction - natural_reduction) * dt INIT E = 100 growth = beta*(e-t)*(k-e) extraction = extractive_plan natural_reduction = red_rate*e beta = 0.01 K = 120 red_rate = stock_to_extract = E/( + extraction+1) stock_to_threshold = E/ + T T = 10 extractive_plan = GRAPH(TIME) (0.00, 2.00), (1.00, 10.0), (2.00, 19.5), (3.00, 23.5), (4.00, 28.5), (5.00, 32.0), (6.00, 34.0), (7.00, 36.5), (8.00, 35.5), (9.00, 35.5), (10.0, 35.5), (11.0, 35.5), (12.0, 33.5)
18 Manejo de fauna - STELLA
19
20 FINALIZANDO El futuro ya no es lo que era, y la propspectiva a todas las escalas cobra mayor importancia. Hoy hay mejores herramientas, algunas amistosas con el usuario (ej. En modelado Vensim, Stella, y otras para modelos de agentes) Pero la complejidad (y su percepción) ha aumentado y hay nuevos desafíos Los sistemas educativos no han avanzado lo suficiente en la introducción del la ID y la visión integradora
21
MODELOS DE INVESTIGACION DE OPERACIONES
MODELOS DE INVESTIGACION DE OPERACIONES CARACTERÍSTICAS Los modelos se dividen en determinísticos (no probabilisticos) y estocásticos (probilisticos). Hay otros modelos híbridos porque incluyen las dos
de Operaciones Área Académica: Sistemas Computacionales Tema: Tipos de Modelos en Investigación Profesor: I.S.C. Guadalupe Hernández Coca
Área Académica: Sistemas Computacionales Tema: Tipos de Modelos en Investigación de Operaciones Profesor: I.S.C. Guadalupe Hernández Coca Periodo: Julio Diciembre 2011 Keywords: investigation of operations,
Breve introducción a la Investigación de Operaciones
Breve introducción a la Investigación de Operaciones Un poco de Historia Se inicia desde la revolución industrial, usualmente se dice que fue a partir de la segunda Guerra Mundial. La investigación de
Clasificación de sistemas
Capítulo 2 Clasificación de sistemas 2.1 Clasificación de sistemas La comprensión de la definición de sistema y la clasificación de los diversos sistemas, nos dan indicaciones sobre cual es la herramienta
Modelos, Simulación, y Optimización
Modelos, Simulación, y Optimización Aplicaciones en la industria, logística, y operaciones de negocios. Como ahorrar costos, reducir riesgos y obtener el máximo retorno de las inversiones Agenda Que es
José Alfonso Delgado Gutiérrez Análisis sistémico: Su aplicación a las comunidades humanas Madrid
José Alfonso Delgado Gutiérrez Análisis sistémico: Su aplicación a las comunidades humanas Madrid. 10.11.01 INDICE Presentación Primera parte (conceptos básicos) 1.- Introducción. Evolución del pensamiento
Diagramas De Casos De Uso
Estáticos Diagramas De Casos De Uso Los diagramas de casos de uso documentan el comportamiento de un sistema desde el punto de vista del usuario.. Por lo tanto los casos de uso determinan los requisitos
UML (Lenguaje de Modelado Unificado) y Diagramas de Casos de Uso
UML (Lenguaje de Modelado Unificado) y Diagramas de Casos de Uso Los sistemas orientados a objetos describen las entidades como objetos. Los objetos son parte de un concepto general denominado clases.
Métodos, Algoritmos y Herramientas
Modelado y Simulación de Sistemas Dinámicos: Métodos, Algoritmos y Herramientas Ernesto Kofman Laboratorio de Sistemas Dinámicos y Procesamiento de la Información FCEIA - Universidad Nacional de Rosario.
SISTEMAS INFORMÁTICOS PROGRAMACION I - Contenidos Analíticos Ing. Alejandro Guzmán M. TEMA 2. Diseño de Algoritmos
TEMA 2 Diseño de Algoritmos 7 2. DISEÑO DE ALGORITMOS 2.1. Concepto de Algoritmo En matemáticas, ciencias de la computación y disciplinas relacionadas, un algoritmo (del griego y latín, dixit algorithmus
Sílabo del curso Investigación Operativa II
Sílabo del curso Investigación Operativa II Marzo julio 2013 VI Ciclo Profesor Luis Miguel Sierra 1 I. Datos generales del curso Asignatura : Investigación Operativa II Código : 03145 Requisito : Investigación
2.3 Clasificación de modelos matemáticos.
2.3 Clasificación de modelos matemáticos. Qué es un modelo? Un modelo es una representación ideal de un sistema y la forma en que este opera. El objetivo es analizar el comportamiento del sistema o bien
TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES.
TEMA 1: SISTEMAS MODELADOS POR ECUACIONES DIFERENCIALES EN INGENIERÍA QUÍMICA. CLASIFICACIÓN. GENERALIDADES. 1. INTRODUCCIÓN. PLANTEAMIENTO DE PROBLEMAS EN INGENIERÍA QUÍMICA 2. PROBLEMAS EXPRESADOS MEDIANTE
Complejidad de los Algoritmos
Que es un Algoritmo? Complejidad de los Algoritmos Webster: cualquier método especial para resolver cierta clase de problemas. Horowitz: método preciso utilizable en una computadora para la solución de
Dar una introducción sobre la asignatura IO Familiarizar al estudiante con las características y aplicación del modelo de matriz de decisiones
I Unidad: Introducción a al Investigación de Operaciones. Contenidos: 1. Breve reseña histórica de la l. De O. 2. Concepto de la l. De O. 3. Objeto de Estudio de la l. De O. 4. Introducción a la teoría
Introducción a las RdP. Optimización basada en redes de Petri. Redes de Petri. Son objeto de estudio: RdP. Ejemplos:
Seminario sobre toma de decisiones en logística y cadenas de suministro Introducción a las RdP Optimización basada en redes de Petri https://belenus.unirioja.es/~emjimene/optimizacion/transparencias.pdf
Introducción. Alfonso Cubillos. Programa de Ing. Mecánica Universidad de Ibagué. Aplicaciones computacionales de la Mecánica de Materiales
Programa de Ing. Mecánica Universidad de Ibagué Aplicaciones computacionales de la Mecánica de Materiales Agosto 2007 Cuál es la definición de Mecánica? Cuál es la definición de Mecánica? La mecánica es
DIPLOMADO. Evaluación de la Calidad de la práctica docente para la implementación del Nuevo Modelo Educativo en Escuelas de Ingeniería del I.P.N.
DIPLOMADO Evaluación de la Calidad de la práctica docente para la implementación del Nuevo Modelo Educativo en Escuelas de Ingeniería del I.P.N. Trabajo Final Propuesta Metodológica del área de Ciencias
DIAGRAMAS UML ANDRÉS ESTEBAN MARTÍNEZ HUTA CICLO DE VIDA DEL SOFTWARE GLORIA CECILIA RÍOS MUÑOZ
DIAGRAMAS UML ANDRÉS ESTEBAN MARTÍNEZ HUTA CICLO DE VIDA DEL SOFTWARE 10 GLORIA CECILIA RÍOS MUÑOZ INSTITUCIÓN EDUCATIVA GABRIEL GARCÍA MÁRQUEZ MEDELLÍN 2013 DIAGRAMAS Un diagrama es una representación
Elementos Diagramas de Clases Clase:
Diagramas de Clases Un diagrama de clases o estructura estática muestra el conjunto de clases y objeto importantes que forman parte de un sistema, junto con las relaciones existentes entre clases y objetos.
Experiencia 2. Laboratorio de Redes 2010, UTFSM. Valparaíso, 25 de marzo de 2011
Experiencia 2 Laboratorio de Redes 2010, UTFSM Valparaíso, 25 de marzo de 2011 Índice 1. Simulación de Redes 3 1.1. Introducción.......................................... 3 1.2. Tipos de Simulación.....................................
EVALUACIÓN DE RIESGOS
EVALUACIÓN DE RIESGOS Introducción La, la primera de las fases del Análisis de Riesgos, se basa en hechos científicos para, de una forma sistemática, estimar la probabilidad de que ocurra un efecto adverso
CONSTRUCCIÓN E IMPLEMENTACIÓN DE ESCENARIOS
CONSTRUCCIÓN E IMPLEMENTACIÓN DE ESCENARIOS Qué es un escenario? CONCEPTOS Conjunto formado por la descripción de una situación futura y de la trayectoria de eventos que permiten pasar de una situación
Año Académico 2009 INGENIERÍA INDUSTRIAL E INGENIERÍA DE SISTEMAS
Año Académico 2009 INGENIERÍA INDUSTRIAL E INGENIERÍA DE SISTEMAS Investigación de operaciones I UNIDAD Unidad I: Programación lineal Conjuntos convexos, propiedades. Solución gráfica del problema bidimensional
TEMA 1. Introducción a las técnicas de modelado y simulación
TEMA 1. Introducción a las técnicas de modelado y simulación Objetivos Definir el concepto de simulación digital. Definir modelo matemático. Distinguir los diversos tipos de sistemas y modelos, desde el
28/08/2014-16:52:22 Página 1 de 5
- NIVELACION 1 MATEMATICA - NIVELACION FISICA - NIVELACION AMBIENTACION UNIVERSITARIA 1 - PRIMER SEMESTRE 71 REPRESENTACION GRAFICA 1 - PRIMER SEMESTRE 1 INTRODUCCION A LA INGENIERIA Para Cursarla debe
Nombre de la asignatura: Investigación de Operaciones II. Créditos: Aportación al perfil
Nombre de la asignatura: Investigación de Operaciones II Créditos: 2-2-4 Aportación al perfil Analizar, diseñar y gestionar sistemas productivos desde la provisión de insumos hasta la entrega de bienes
Curso de Simulación de. Sistemas
Curso de Simulación de Sistemas Introducción a la Modelación y Simulación de Sistemas MSc. Ing. Julio Rito Vargas Avilés I Cuatrimestre 2015 Bibliografía 2 /62 El desarrollo de nuevas tecnologías en el
Cristian Blanco
UNIDAD DIDÁCTICA 8. ANÁLISIS Y DISEÑO ORIENTADO A OBJETOS. DIAGRAMAS DE COMPORTAMIENTO En el siguiente enlace tienes una descripción y algunos ejemplos de todos los diagramas UML.: http://jms32.eresmas.net/tacticos/uml/umlindex.html
Algoritmos. Medios de expresión de un algoritmo. Diagrama de flujo
Algoritmos En general, no hay una definición formal de algoritmo. Muchos autores los señalan como listas de instrucciones para resolver un problema abstracto, es decir, que un número finito de pasos convierten
TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1
TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 CARACTERÍSTICAS DE LAS REACCIONES HOMOGÉNEAS Todas las sustancias reaccionantes se encuentran en una sola fase Velocidad de reacción: Objetivo principal
Especialidades en GII-TI
Especialidades en GII-TI José Luis Ruiz Reina (coordinador) Escuela Técnica Superior de Ingeniería Informática Mayo 2014 Qué especialidades tiene la Ingeniería Informática? Según las asociaciones científicas
ACTIVIDAD: Control de Lectura # 1: Benchmarking para Competir con Ventaja Por: Roberto J. Boxwell. MATERIA: Ingeniería de Software.
UNIVERSIDAD DON BOSCO FACULTAD DE INGENIERIA ESCUELA DE COMPUTACION CICLO II/2008 ACTIVIDAD: Control de Lectura # 1: Benchmarking para Competir con Ventaja Por: Roberto J. Boxwell MATERIA: Ingeniería de
CARRERA DE CIECNIAS DE LA COMPUTACIÓN PROGRAMA DE ESTUDIO. Teóricos: 2 Práctico: 1 Total 3
ARQUITECTURA DE COMPUTADORES CÓDIGO Y CCO301 Total 3 Las matemática aplicada a la computación es el modelado, simulación y optimización de procesos o fenómenos, para procesos complejos, costosos, riesgosos,
Conceptos básicos de procesos ambientales y químicos
Conceptos básicos de procesos ambientales y químicos Apellidos, nombre Departamento Centro Torregrosa López, Juan Ignacio ([email protected]) Ingeniería Química y Nuclear Universitat Politècnica de València
Complejidad computacional (Análisis de Algoritmos)
Definición. Complejidad computacional (Análisis de Algoritmos) Es la rama de las ciencias de la computación que estudia, de manera teórica, la optimización de los recursos requeridos durante la ejecución
LICENCIATURA EN RELACIONES INTERNACIONALES. Este programa educativo se ofrece en las siguientes sedes académicas de la UABC:
LICENCIATURA EN RELACIONES INTERNACIONALES Este programa educativo se ofrece en las siguientes sedes académicas de la UABC: Campus Campus Tijuana, Unidad Tijuana Campus Mexicali, Unidad Mexicali Unidad
Tema: Herramientas UML, Análisis y diseño UML
Programación II. Guía No.3 1 Facultad: Ingeniería Escuela: Computación Asignatura: Programación II Tema: Herramientas UML, Análisis y diseño UML Objetivos Conocer una herramienta de modelado para la solución
Tema: Herramientas UML, Análisis y diseño UML
Programación II. Guía 2 1 Facultad: Ingeniería Escuela: Computación Asignatura: Programación II Tema: Herramientas UML, Análisis y diseño UML Objetivo Conocer una herramienta de modelado para la solución
Diseño Estructurado de Algoritmos
Diseño Estructurado de Algoritmos 1 Sesión No. 1 Nombre: Conceptos de algoritmos Objetivo de la sesión: Al concluir la sesión el estudiante identificará los conceptos básicos sobre la definición de algoritmos
PROGRAMACION CONCURRENTE Y DISTRIBUIDA
PROGRAMACION CONCURRENTE Y DISTRIBUIDA V.2 Redes de Petri: Análisis y validación. J.M. Drake 1 Capacidad de modelado y capacidad de análisis El éxito de un método de modelado es consecuencia de su capacidad
CURSO: INTRODUCCION A VENSIM MODULO BASICO
MANAGEMENT CONSULTORES CURSO: INTRODUCCION A VENSIM MODULO BASICO Cnel. R.L. Falcón 1435 C1406GNC 35 Buenos Aires, Argentina Tel.: 054-11-5468-3369 Fax: 054-11-4433-4202 Mail: [email protected]
Análisis y Diseño de Sistemas
Análisis y Diseño de Sistemas Dpto. Ciencias e Ingeniería de la Computación Universidad Nacional del Sur Clase 10 Modelo Dinámico Lic. María Mercedes Vitturini [[email protected]] 1er. CUATRIMESTRE
Universidad Centroccidental Lisandro Alvarado. Decanato de Ciencias y Tecnología Departamento de Sistemas
Universidad Centroccidental Lisandro Alvarado Decanato de Ciencias y Tecnología Departamento de Sistemas PROGRAMA INSTRUCCIONAL PROGRAMA: ANALISIS DE SISTEMAS DEPARTAMENTO: SISTEMAS ASIGNATURA: INTRODUCCIÓN
CAPÍTULO 1. INTRODUCCIÓN. Las empresas de tipo comercial tienen como principal objetivo obtener ganancias. Si
CAPÍTULO 1. INTRODUCCIÓN Las empresas de tipo comercial tienen como principal objetivo obtener ganancias. Si suponemos un volumen constante en las ventas; una empresa de este tipo sólo cuenta con tres
11.4 REALIZAR EL ANÁLISIS CUANTITATIVO DE RIESGOS
11.4 REALIZAR EL ANÁLISIS CUANTITATIVO DE RIESGOS Dante Guerrero-Chanduví Piura, 2015 FACULTAD DE INGENIERÍA Área departamental de Ingeniería Industrial y de Sistemas 11.4 REALIZAR EL ANÁLISIS CUANTITATIVO
Ingeniería a de Software CC51A
Ingeniería a de Software CC51A Clase Auxiliar Auxiliar: Andrés s Neyem Oficina 418 de Doctorado [email protected] 19 de Marzo de 2007 Aspectos Generales Grupo CC51A Diseño Cliente Requisitos Usuario
Dentro la Ingeniería de Sistemas se tiene dos tendencias:
Tema 1 La Ingeniería de Sistemas Ingeniería de Sistemas Según Eduardo Arbones Malisani, la Ingeniería de Sistemas nace como consecuencia de la necesidad de planificar, operar y diseñar sistemas, cada día
TEMA 2.-INTRODUCCIÓN A LOS CONCEPTOS DE OFERTA Y DEMANDA: EL EQUILIBRIO DEL MERCADO
TEMA 2.-INTRODUCCIÓN A LOS CONCEPTOS DE OFERTA Y DEMANDA: EL EQUILIBRIO DEL MERCADO 2.0.- INTRODUCCIÓN 2.1.- FUNCIÓN DE DEMANDA Y MOVIMIENTOS 2.2.- FUNCIÓN DE OFERTA Y MOVIMIENTOS 2.3.- EL EQUILIBRIO DE
UNIVERSIDAD DE PLAYA ANCHA FACULTAD DE CIENCIAS. Vicerrectora Académica Dirección de Estudios, Innovación Curricular y Desarrollo Docente
UNIVERSIDAD DE PLAYA ANCHA FACULTAD DE CIENCIAS Vicerrectora Académica Dirección de Estudios, Innovación Curricular y Desarrollo Docente PROGRAMA FORMATIVO CARRERA DE FÍSICA MÓDULO: Cálculo diferencial
PROGRAMA DE ESTUDIO ANALITICO CARRERA INGENIERÍAS DE SISTEMAS
República Bolivariana de Venezuela. Ministerio Del Poder Popular para la Defensa. Universidad Nacional Experimental Politécnica de la fuerza Armada Bolivariana U.N.E.F.A PROGRAMA DE ESTUDIO ANALITICO CARRERA
Aprendizaje Automatizado
Aprendizaje Automatizado Aprendizaje Automatizado Programas que mejoran su comportamiento con la experiencia. Dos formas de adquirir experiencia: A partir de ejemplos suministrados por un usuario (un conjunto
Programa de estudios por competencias Métodos Matemáticos II. Fecha elaboración/modificación: Julio 2015 Clave de la asignatura:
Programa de estudios por competencias Métodos Matemáticos II 1. Identificación del curso Programa educativo: Ingeniería en Computación Unidad de aprendizaje: Métodos Matemáticos II Departamento de adscripción:
DIAGRAMAS DE UML DIAGRAMAS DE CASO DE USO
DIAGRAMAS DE UML DIAGRAMAS DE CASO DE USO Un diagrama de casos de uso es una especie de diagrama de comportamiento. Los diagramas de casos de uso son a menudo confundidos con los casos de uso. Mientras
GLOSARIO ESTADÍSTICO. Fuente: Murray R. Spiegel, Estadística, McGraw Hill.
GLOSARIO ESTADÍSTICO Fuente: Murray R. Spiegel, Estadística, McGraw Hill. CONCEPTOS Y DEFINICIONES ESPECIALES Es el estudio científico de los métodos para recoger, organizar, resumir y analizar los datos
La eficiencia de los programas
La eficiencia de los programas Jordi Linares Pellicer EPSA-DSIC Índice General 1 Introducción... 2 2 El coste temporal y espacial de los programas... 2 2.1 El coste temporal medido en función de tiempos
PRINCIPIOS DEL MODELAJE DE SISTEMAS
16 de Enero de 2012 PRINCIPIOS DEL MODELAJE DE SISTEMAS (Parte 2) Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Análisis y Diseño de Sistemas José Luis
4.1 CONGRUENCIA ENTRE LOS OBJETIVOS DEL PLAN DE ESTUDIOS Y EL PERFIL DE EGRESO CON LAS LGAC:
4.1 CONGRUENCIA ENTRE LOS OBJETIVOS DEL PLAN DE ESTUDIOS Y EL PERFIL DE EGRESO CON LAS LGAC: A continuación se muestran los objetivos así como los mapas funcionales según la línea de acentuación y la línea
UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS BASICAS, TECNOLOGIA E INGENIERIA
UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS BASICAS, TECNOLOGIA E INGENIERIA 299310 SIMULACION Wilson Almanza M. (Director Nacional) Protocolo Académico AÑO 2013 Director de curso: Ing.
1er Momento 2do Momento 3er Momento 4to Momento 178 MATEMATICA II (ADMINISTRACION) 2 09/01/2016 AM P 7 13/02/2016 AM P 12 19/03/2016 AM I
050 EDUCACION INICIAL 4 23/01/2016 PM I 9 27/02/2016 AM I 051 SALUD, ALTERACIONES Y PREVENCION EN EDUCA 50 12/12/2015 AM I 6 06/02/2016 PM I 052 DESARROLLO DEL NIÑO DE 0 A 3 AÑOS 3 16/01/2016 PM I 9 27/02/2016
CARTA DESCRIPTIVA (FORMATO MODELO EDUCATIVO UACJ VISIÓN 2020)
CARTA DESCRIPTIVA (FORMATO MODELO EDUCATIVO UACJ VISIÓN 2020) I. Identificadores de la asignatura Instituto: Departamento: Materia: Instituto de Ciencias Sociales y Administración Departamento de Ciencias
Ubicación de la asignatura. Propósito de la asignatura. Desarrollando proyectos. Asignaturas relacionadas. Una mirada hacia la optimización económica
EL CÁLCULO EN MI VIDA DIARIA OPTATIVAS ÁREA: MATEMÁTICAS Ubicación de la asignatura La asignatura El cálculo en mi vida diaria, se encuentra dentro del bloque de las asignaturas optativas del Bachillerato
COMPETENCIAS ASOCIADAS AL GRADO EN ECONOMÍA DE LA UNIVERSIDAD EUROPEA
COMPETENCIAS ASOCIADAS AL GRADO EN ECONOMÍA DE LA UNIVERSIDAD EUROPEA COMPETENCIAS GENERALES BÁSICAS: Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte
Algoritmos y programas. Algoritmos y Estructuras de Datos I
Algoritmos y programas Algoritmos y Estructuras de Datos I Primer cuatrimestre de 2012 Departamento de Computación - FCEyN - UBA Programación funcional - clase 1 Funciones Simples - Recursión - Tipos de
Carrera: INB Participantes. Representante de las academias de ingeniería industrial de. Academias Ingeniería Industrial.
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Investigación de Operaciones II Ingeniería Industrial INB-0412 4-0-8 2.- HISTORIA
Maestría en Ingeniería Énfasis en Sistemas y Computación
Maestría en Ingeniería Énfasis en Sistemas y Computación Facultad de Ingeniería Pontificia Universidad Javeriana Cali Abril de 2008 Contenido 1 Objetivos 2 3 4 Objetivos (1) Formar investigadores con habilidades
6. Diagramas de flujo.
Ingeniería de Control I Tema 6 Diagramas de flujo 1 6. Diagramas de flujo. Representación en DF Simplificaciones Fórmula de Mason Formas de Kalman Sistemas MIMO Diagramas de Flujo 2 1 Bibliografía Señales
INTRODUCCION A LA INVESTIGACION DE OPERACIONES
INTRODUCCION A LA INVESTIGACION DE OPERACIONES La ciencia de la administración (CA), una manera de abordar la toma de decisiones en la administración, ya que se basa en el método científico, utiliza ampliamente
Lenguaje de Modelamiento Unificado.
Lenguaje de Modelamiento Unificado. Pontificia Universidad Javeriana What can you Model with UML? 1. Structure Diagrams include: The Class Diagram Object Diagram Component Diagram Composite Structure Diagram
El Reto del Laberinto de Minecraft (https://youtu.be/dt1ycii3mre) Características
El Reto del Laberinto de Minecraft (https://youtu.be/dtycii3mre) Características Rango de Edad Rango de Cursos Tamaño Clase Tamaño Grupo 6 4 6 0 4 años Competencias 2 3 Diseñar un reto para entender la
LICENCIATURA EN ECONOMÍA. Este programa educativo se ofrece en las siguientes sedes académicas de la UABC:
LICENCIATURA EN ECONOMÍA Este programa educativo se ofrece en las siguientes sedes académicas de la UABC: Campus Campus Tijuana, Unidad Tijuana Campus Mexicali, Unidad Mexicali Unidad académica donde se
Capítulo 16. Diagrama de Clases UML
Capítulo 16. Diagrama de Clases UML Florentino TORRES M. CINVESTAV-Tamaulipas 15 de Oct del 2012 Florentino TORRES M. (CINVESTAV) 15 de Oct del 2012 1 / 70 1 Capítulo 16. Diagrama de Clases UML Aplicando
M D. Tipos de Asignaturas. El Programa. Año Básico
Diseño de Modas El objetivo de la carrera en Diseño de Modas es desarrollar la comprensión del diseño contemporáneo de vestimenta. Este programa ofrece al estudiante una visión amplia del proceso de creación
COMPETENCIA Procesar los datos recolectados de acuerdo con requerimientos del proyecto de investigación.
Procesar los datos recolectados de acuerdo con requerimientos del proyecto de investigación. Presentar informes a partir del desarrollo de lógica matemática y los métodos de inferencia estadística según
Métodos de Búsqueda para juegos humano-maquina. PROF: Lic. Ana María Huayna D.
Métodos de Búsqueda para juegos humano-maquina PROF: Lic. Ana María Huayna D. Tópicos 1. Introducción 2. Juegos 3. Estrategias de Juego 4. Algoritmo Minimax 5. Algoritmo Poda Alfa-Beta 1.- Introducción
Construcción de Gráficas en forma manual y con programados
Universidad de Puerto Rico en Aguadilla División de Educación Continua y Estudios Profesionales Proyecto CeCiMaT Segunda Generación Tercer Año Título II-B, Mathematics and Science Partnerships Construcción
DIPLOMADO EN PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS MINISTERIO DE DESARROLLO SOCIAL UNIVERSIDAD DE CHILE VERSIÓN 2016
DIPLOMADO EN PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS MINISTERIO DE DESARROLLO SOCIAL UNIVERSIDAD DE CHILE VERSIÓN 2016 Herramientas Cuantitativas Que los alumnos sean capaces de entender el concepto
CAPÍTULO 5: Pronósticos de las Operaciones Productivas
CAPÍTULO 5: Pronósticos de las Operaciones Productivas Un Enfoque en Procesos para la Gerencia Fernando A. D Alessio Ipinza 1 Contenido 1. Introducción 2. Tipos de pronósticos 3. Los pronósticos y el ciclo
UNIDAD 12: ESTADISTICA. OBJETIVOS
UNIDAD 12: ESTADISTICA. OBJETIVOS Conocer y manejar los términos básicos del lenguaje de la estadística descriptiva elemental. Conocer y manejar distintas técnicas de organización de datos estadísticos
Bodegas de Datos y OLAP. Introducción a la Bodegas de Datos
Bodegas de Datos y OLAP Introducción a la Bodegas de Datos Contenido SI-Definición y Clasificación MIS Vs DSS DSS-Definición y Características DW-Definición, Elementos, Características, Arquitectura, OLTP
CURSO BÁSICO DE SOLIDWORKS
CURSO BÁSICO DE SOLIDWORKS Cantidad de participantes: 8 personas máximo. Se recomienda curso personalizado. Requerimientos del aula de clase: laboratorio de computación con máquinas que cumplan los siguientes
Análisis Probabilístico de Riesgo en Proyectos de Exploración y Producción de Petróleo y Gas.
Análisis Probabilístico de Riesgo en Proyectos de Exploración y Producción de Petróleo y Gas. I.- Introducción: El Análisis de Riesgo, algunas veces llamado Análisis para la Toma de Decisiones, es la disciplina
SISTEMAS DE APOYO A LA TOMA DE DECISIONES : DSS y EIS
IIC3712 GESTIÓN de las TEC. de INFORMACIÓN SISTEMAS DE APOYO A LA TOMA DE DECISIONES : DSS y EIS Ignacio Casas R. Escuela de Ingeniería Pontificia Universidad Católica de Chile Mayo, 2002 Qué es la Toma
EL LENGUAJE DE LAS COMPUTADORAS
EL LENGUAJE DE LAS COMPUTADORAS AUTORÍA ANGEL MANUEL RUBIO ORTEGA TEMÁTICA ELECTRICIDAD, ELECTRÓNICA ETAPA ESO, BACHILLERATO Resumen Actualmente nos encontramos rodeados dispositivos digitales. Por ello
MÁSTER UNIVERSITARIO EN INGENIERÍA DE SISTEMAS Y DE CONTROL. Curso 2010/2011. (Código: )
INTRODUCCIÓNA LA PROGRAMACIÓNMATEMÁTICAMATEMÁTICA MÁSTER UNIVERSITARIO EN INGENIERÍA DE SISTEMAS Y DE CONTROL Curso 2010/2011 (Código: 31104021) 1 Conceptos generales sobre optimización matemática La optimización
Dar una introducción sobre la asignatura IO Familiarizar al estudiante con las características y aplicación del modelo de matriz de decisiones
I Unidad: Introducción a al Investigación de Operaciones. Contenidos: 1. Breve reseña histórica de la l. De O. 2. Concepto de la l. De O. 3. Objeto de Estudio de la l. De O. 4. Introducción a la teoría
1. Modelos Matemáticos y Experimentales 1
. Modelos Matemáticos y Experimentales. Modelos Matemáticos y Experimentales.. Definición.. Tipos de Procesos.3. Tipos de Modelos 3.4. Transformada de Laplace 4.5. Función de Transferencia 7.6. Función
INSTITUTO TECNOLÓGICO SUPERIOR DEL SUR DEL ESTADO DE YUCATAN SUBDIRECCIÓN ACADÉMICA DEPARTAMENTO DE INGENIERÍA INDUSTRIAL
Referencia a la Norma ISO 9001:008 7.1, 7..1, 7.5.1, 7.6, 8.1, 8..4 Página 1 de 18 INSTITUTO TECNOLÓGICO SUPERIOR DEL SUR DEL ESTADO DE YUCATAN SUBDIRECCIÓN ACADÉMICA DEPARTAMENTO DE INGENIERÍA INDUSTRIAL
UML Unifield Modeling Languaje
UML Unifield Modeling Languaje 1 Modelo: Representación abstracta de una especificación, un diseño o un sistema. Generalmente, basada en una visión particular y compuesta por uno o más diagramas. Lenguaje
EJERCICIOS DE CONTROL POR COMPUTADOR BOLETIN V: SISTEMAS DISCRETOS (I)
C. Determine el valor al que tenderá en régimen permanente la salida ante un escalón de amplitud 3 a la entrada del sistema discreto dado por: z.7 G( z) ( z.5) z C. a) Determinar la región del plano z
Algoritmos. Diagramas de Flujo. Informática IV. L. S. C. Heriberto Sánchez Costeira
Informática IV Algoritmos Diagramas de Flujo L. S. C. Heriberto Sánchez Costeira Algoritmos 1 Definición Es una serie finita de pasos o instrucciones que deben seguirse para resolver un problema. Es un
