Universidad de Navarra Nafarroako Unibertsitatea. Escuela Superior de Ingenieros Ingeniarien Goi Mailako Eskola ASIGNATURA GAIA: CIRCUITOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad de Navarra Nafarroako Unibertsitatea. Escuela Superior de Ingenieros Ingeniarien Goi Mailako Eskola ASIGNATURA GAIA: CIRCUITOS"

Transcripción

1 SIGNTU GI: CICUITOS CUSO KUTSO: 2º FECH DT: PIME PTE DEL EXMEN TEST Y TEOÍ Tiempo: 90 minutos UL Fila Columna NOMBE IZEN:

2 1ª PEGUNT ESPUEST El circuito de la figura está formado por 10 varillas conductoras de igual material y sección, con resistencia. La resistencia equivalente entre los terminales y B será igual a:. D. /2 B. 3/4 E. /4 C. 2/3 F. Diferente (Especifique) B 2ª PEGUNT ESPUEST Dos impedancias de distinto carácter están conectadas en paralelo y alimentadas con una tensión de 100 V. Una de ellas absorbe una corriente cuyo módulo es la mitad que el de la otra y la potencia compleja total es º. Las dos impedancias son:. 5 60º y 10-60º D. 5 30º y 10-30º B. 5 90º y 10-90º E. Es imposible C º y 5-90º F. Diferentes (Especifique) 3ª PEGUNT ESPUEST El circuito de la figura está funcionando desde hace mucho tiempo con el interruptor k abierto. En un instante determinado, que consideraremos origen de tiempos (t=0), cerramos k. i k i C En t=0 +, la corriente i L es: i L C 100 u(t) v L L B - 3 D. 2 B. 3 E. 0 C. - 2 F. Diferente (Especifique)

3 1ª PEGUNT 2ª PEGUNT 3ª PEGUNT

4 4ª PEGUNT ESPUEST Una impedancia está constituida por una resistencia, una inductancia y una capacidad conectadas en serie. Se alimenta con un generador de tensión senoidal de amplitud fija y frecuencia variable. La corriente absorbida por la impedancia a 500 y a 2000 rad/s es la misma en módulo. qué frecuencia será máximo el módulo de la corriente?. 500 rad/s D rad/s B rad/s E. Indeterminada C rad/s F. Diferente (Especifique) 5ª PEGUNT ESPUEST Cuando seis impedancias inductivas idénticas se conectan en estrella de manera que haya dos impedancias entre cada fase y el neutro, la potencia absorbida es de 800 W al alimentar el conjunto con un sistema trifásico de 100 V. Se hace una nueva conexión colocando las seis impedancias en serie: se conectan las fases 1 y 3 en los extremos y la fase 2 al punto medio de las seis; aplicando la misma alimentación, se absorbe una potencia de 800 Vr. La impedancia compleja de cada una será igual a:. 4-3j D. 3-4j B. 4+3j E. 5 0º C. 3+4j F. Diferente (Especifique) 6ª PEGUNT ESPUEST La carga trifásica de la figura absorbe 10 kv cuando se alimenta con un generador trifásico de 200 V. Está compuesta por tres impedancias de módulo, y ángulos de 0º, 60º y -60º, conectadas en triángulo. Los vatímetros están conectados según la configuración ron. La potencia activa absorbida por la carga es: W 1 W 2 /60º /-60º. 0 kw D. 5 3 kw B. 5 kw E kw C. 10 kw F. Diferente (Especifique)

5 4ª PEGUNT 5ª PEGUNT 6ª PEGUNT T: 30 min.

6 TEOÍ 1 epresentación de una inductancia en: El dominio temporal : El régimen permanente de CC : El régimen permanente de C (Dominio Complejo) : El estudio del transitorio (Dominio de la Frecuencia) : Cambios de estado : TEOÍ 2 Enumere los efectos que produce la existencia de inductancia en los circuitos: Positivos Negativos TEOÍ 3 Dada la siguiente forma de onda, que representa la corriente (escala en ) en una inductancia de valor 20 mh, obtenga la tensión que hay entre sus bornes, la potencia instantánea y la energía que almacena en función del tiempo (hágalo en la misma gráfica). i (t) L t (ms) -10 T: 15 min.

7 TEOÍ 4 Encuentre el Equivalente de Norton entre y B del circuito adjunto. Z 2Z J 2Z B Qué representa físicamente la admitancia equivalente de Norton? TEOÍ 5 Explique someramente cómo se aplica el Método de las Mallas para encontrar las ecuaciones de equilibrio de un circuito. En qué casos es preferible utilizar el Método de las Nudos? En qué dominios (temporal, frecuencia, etc.) puede utilizarse estos métodos? TEOÍ 6 En la red de dos puertas de la figura, calcule el valor de la ganancia de corriente de la puerta 1 a la puerta 2 con la 2 en cortocircuito. De qué tipo de parámetro de caracterización estamos hablando? 2Z Z Z T: 15 min.

8 TEOÍ 7 En el Método de los Tres Vatímetros para medida de potencia activa, indique lo que está midiendo cada vatímetro, así como la suma total esas medidas, cuando se conectan los terminales negativos de las tres bobinas voltimétricas al neutro del generador, en los siguientes casos: a) Corrientes equilibradas b) Neutros al mismo potencial c) Carga simétrica TEOÍ 8 Sea la forma de onda periódica de la figura. Se pide: 5 a) Expresión analítica en el tiempo t (ms) b) Expresión en código SPICE -10 c) Valor pico a pico, período, frecuencia y valor eficaz TEOÍ 9 Indique, en los dos casos que se indican, cómo colocaría la referencia y las sondas de un osciloscopio para medir el ángulo de las impedancias (hágalo sin usar un amperímetro). Dibuje, asimismo, las ondas de corriente y tensión en cada caso. La resistencia tiene igual módulo que la impedancia y el ángulo de ésta es de 60º. a) Impedancia entre y B b) Impedancia entre y C Z B C T: 15 min.

9 TEOÍ 10: TBJO + LBOTOIO + SPICE Esquemático de Spice Se quiere simular en Spice el circuito de la figura. Los valores de los parámetros son los siguientes: E o : Escalón de 100 V con retraso de 3 ms = 5 Ω; L = 20 mh; C = 20 µf α = 1, L = 50 Ω Eo + + v L L C I C - + v 1 B + α v 1 L Se pide: - epresentar el esquemático en Spice del circuito, colocando junto a cada elemento pasivo (, L, C ) su nombre y su valor (usando nomenclatura válida de Spice). Insertar las puntas de medida necesarias para simular la tensión en el nudo y la corriente en la inductancia L. Indique asimismo la nomenclatura en Spice del generador independiente. ESQUEMÁTICO GENEDO INDEPENDIENTE nálisis TN Identificar aproximadamente la expresión numérica de la ecuación característica (explicando cómo lo hace), si al realizar una simulación TN, la tensión en el nudo es la de la gráfica adjunta. Indique también la condición inicial en la capacidad y la forma de onda de la tensión del generador independiente (si es diferente a la de la pregunta anterior) V in Volt Time in sec. T: 15 min.

10 SIGNTU GI: CICUITOS CUSO KUTSO: 2º FECH DT: SEGUND PTE DEL EXMEN TNSITOIO Y ESPUEST EN FECUENCI Tiempo: 60 minutos UL Fila Columna NOMBE IZEN:

11 POBLEM 1_1 El circuito de la figura, alimentado con una tensión periódica, está funcionando con el interruptor cerrado desde hace mucho tiempo. En un momento determinado, el generador aporta 40 V y 4 (saliendo por el polo positivo) y la energía total almacenada en el circuito es de 80 mj. También se conoce que, en ese mismo instante, la corriente i C es de -2, siendo la tensión v L de -20 V. e(t) 50 i c t (ms) e(t) C v L L -50 Se abre el interruptor en el momento citado (considerado t=0). Se pide: 1ª Valor de la resistencia,, y de las condiciones iniciales (en C y en L) para el estado que comienza en el instante de apertura del interruptor. (2) 2ª Valor de la inductancia, L. (1) 3ª Expresión temporal de la onda del generador. Su período, frecuencia y valor eficaz. (2) T: 20 min.

12 POBLEM 1_2 El circuito de la figura está alimentado con un generador e(t)=e 0 u(t) con el interruptor en la posición 1 desde hace mucho tiempo. 1 L 2 e(t) C v(t) En un instante determinado se cambia el interruptor a la posición 2. Considerando este instante como origen de tiempos (t=0), se pide: 1ª Condiciones iniciales y circuito operacional equivalente (función de E 0,, L y C). (2) 2ª Expresión literal (función de E 0,, L y C) en el dominio de la frecuencia para la tensión en la capacidad, C. (3) T: 10 min.

13 POBLEM 1_3 En la resolución de un circuito en el dominio de la frecuencia, el valor de una tensión resulta tener la expresión siguiente: Calcule: V(s) = i0 E0 ω + + Cv 2 2 s (s + ω ) Ls Cs Ls 0 con 1 C = 4 L 2 = 4000 ; ω LC = 1 y v 0 = i 0 = 0.5E 1ª Tipo de excitación aplicada al circuito. azónelo. (1) 2ª espuesta a entrada nula y respuesta a estado cero. (2) 3ª Ecuación característica. Frecuencias naturales. Tipo de respuesta transitoria del circuito. (2) 4ª OPCIONL. epresente la forma de onda temporal de la tensión en el régimen permanente, indicando los puntos más importantes a la hora de dibujarla. (+2) 0 T: 15 min.

14 POBLEM 2 Un amplificador-filtro se puede construir mediante un amplificador operacional, tres resistencias y un condensador representado por su capacidad, 2 mf, tal como se puede ver en la figura de la derecha. C El amplificador operacional se considera ideal. v 1 v 2 Se pide: 1ª Expresión literal compleja de la ganancia, V 2/V 1. Halle también su módulo y su argumento. Qué tipo de filtro es? (3) 2ª Expresión literal de la frecuencia de corte. (1) 3ª l aplicar una tensión v 1 (t)=100 sen 1732 t, se obtiene en la salida una tensión v 2 (t)=25 sen (1732 t+j). Calcule la frecuencia de corte, w c, el valor de, y el ángulo de desfase, j. (2) 4ª OPCIONL. epresentación de las curvas de ganancia (V 2 /V 1 ) y defase entre salida y entrada indicando en ambas sus puntos característicos. (+2) T: 15 min.

15 SIGNTU GI: CICUITOS CUSO KUTSO: 2º FECH DT: TECE PTE DEL EXMEN COIENTE LTEN MONO Y TIFÁSIC Tiempo: 110 minutos UL Fila Columna NOMBE IZEN:

16 POBLEM 3_1 En el puente de la figura, Z (=r+jx) es inductiva y su parte imaginaria es doble que la real (x=2r) a una frecuencia determinada. El generador aplica una tensión de 240 V y la corriente I 1 es de 10. El voltímetro marca 60 2 V y el vatímetro indica una medida inferior a 2 kw. Tomando como origen de fases la tensión del generador, se pide: E W I I 1 B I 2 V C Z 1º Expresiones complejas de Ē e Ī 1. Valor de la D resistencia. (2) 2º Expresiones complejas de Ī, Ī 2 y V BC, en función de r. (3) 3º Valor de la impedancia Z. (2) 4º OPCIONL. Valor de la frecuencia angular w a la que el puente está en equilibrio. (+2) T: 20 min.

17 POBLEM 3_2 Una carga Z 1 (con argumento arctg 2) se conecta en paralelo con una batería de condensadores, -jx 2, y se alimentan a través de una línea, Z (=+jx), desde un enchufe monofásico, Ē. E I B I 2 W jx I 1 1 jx 1 -jx 2 V Los instrumentos miden: 8000 W, 200 V y 40, respectivamente. C demás, la potencia compleja suministrada por el generador es º. Se pide tomando como origen de fases la corriente Ī: 1ª Factor de potencia del conjunto carga+batería. (2) 2ª Expresiones complejas de las magnitudes V BC y Ē. (2) 3ª Potencias aparente, activa y reactiva del generador. Valores de y X. (3) 4ª Potencias aparente, activa y reactiva absorbidas por la carga y por la batería de condensadores. Valores de 1, X 1 y X 2. (3) T: 30 min.

18 E POBLEM 3_3 jx I I B C 2 D I 1 En el circuito de la figura las tres corrientes, I, I 1 e I 2 son 100, 40 5 y 20 5,respectivamente. El generador aporta una tensión sinusoidal de amplitud V y una potencia de 30 kw. También se ha usado un F osciloscopio mediante el que se obtienen dos medidas de tensión. Se ha conectado la referencia en C, la sonda 1 (S1) en el nudo B y la sonda 2 (S2) en el nudo F. Las ondas están tomadas en la misma escala de tensiones (5 2 V/div) y la atenuación es 10. -jx 2 Se pide, tomando como origen de fases la corriente Ī: 1 jx 1 E 2 1ª Dibuje la forma de onda de la tensión v CF (t) en la figura anterior. Calcule el valor de la resistencia e indique el ángulo de defase entre la tensión v CF (t) e i(t). (2) 2ª Impedancia equivalente, Z CF, entre C y F. Impedancia equivalente, Z F. (2) 3ª Expresiones complejas de las magnitudes V B, V BC, V CF, Ī, Ī 1 e Ī 2. (2) S1 S2 T: 20 min.

19 POBLEM 4_1 Una instalación equilibrada está compuesta por dos líneas trifásicas en serie que alimentan una carga. Una batería de condensadores se conecta en el mismo punto de la carga. El sistema se alimenta desde la acometida (1, 2, 3). Se pide: W 1 Línea I 1ª Esquema monofásico equivalente de la instalación. (2) 2ª elaciones entre las medidas de los vatímetros y las potencias de los consumos con la carga y la batería de condensadores conectadas. (4) 3ª azone por qué serían diferentes - si lo fueran - las potencias absorbidas por los consumos con y sin la batería de condensadores colocada. (2) W 2 Línea II 1' 2' 3' 1'' 2'' BTEÍ V 3'' K 1 K 2 CG T: 20 min.

20 POBLEM 4_2 La tensión nominal de la instalación trifásica de la figura es V. Los elementos de medida son ideales y el amperímetro proporciona la siguiente indicación con la batería conectada: I = 225 / Línea 1' 2' V 3' K CG SN=121.5 kv cos ϕ=0.8 Se pide: BTEÍ QN=72.9 kvr 1ª Impedancia equivalente por fase de la batería y la carga. (2) 2ª Esquema monofásico equivalente de la instalación. (1) 3ª Tensión del voltímetro y potencias activa, reactiva y aparente absorbidas por la batería y la carga cuando la batería está conectada. (3) T: 20 min.

EXAMEN DE CIRCUITOS NOMBRE: TEST DE TRANSITORIO Y CORRIENTE ALTERNA 1ª PREGUNTA RESPUESTA

EXAMEN DE CIRCUITOS NOMBRE: TEST DE TRANSITORIO Y CORRIENTE ALTERNA 1ª PREGUNTA RESPUESTA EXAMEN DE CICUITOS NOMBE: TEST DE TANSITOIO Y COIENTE ALTENA 1ª PEGUNTA ESPUESTA 2 Ω ri I 10 Ω 100 V A En el circuito de la figura, la corriente del generador Equivalente de Norton del circuito entre los

Más detalles

ALTERNA (III) TRIFÁSICA: Problemas de aplicación

ALTERNA (III) TRIFÁSICA: Problemas de aplicación ALTERNA (III) TRIFÁSICA: Problemas de aplicación 1º.- Determinar la tensión compuesta que corresponde a un sistema trifásico que posee una tensión simple de 127 V. Solución: 220 V 2º.- Si la tensión de

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBS DE CCESO L UNIERSIDD L.O.G.S.E CURSO 2004-2005 - CONOCTORI: ELECTROTECNI EL LUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico

Más detalles

BLOQUE III CIRCUITOS ELÉCTRICOS EN CA

BLOQUE III CIRCUITOS ELÉCTRICOS EN CA 1.- Una tensión viene dada por la expresión es de: v(t)=240 sen( t+30). Si se aplica la tensión v(t) a un receptor puramente inductivo cuya impedancia es de j2 2 Ω, hallar el valor de la intensidad instantánea

Más detalles

EXAMENES ELECTROTECNIA TEORIA

EXAMENES ELECTROTECNIA TEORIA EXAMENES En este archivo presento el tipo de exámenes propuesto en la asignatura de Electrotecnia en la fecha indicada, con las puntuaciones indicadas sobre un total de diez puntos. Según la guía académica

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO

CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO CAMPOS ELECTROMAGNÉTICOS DEPENDIENTES DEL TIEMPO PROBLEMAS PROPUESTOS 1:.Se coloca una bobina de 200 vueltas y 0,1 m de radio perpendicular a un campo magnético uniforme de 0,2 T. Encontrar la fem inducida

Más detalles

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser

FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,

Más detalles

MEDIDA DE POTENCIA EN TRIFÁSICA MÉTODO DE LOS DOS VATÍMETROS

MEDIDA DE POTENCIA EN TRIFÁSICA MÉTODO DE LOS DOS VATÍMETROS Práctica Nº 6 MEDID DE POTENI EN TRIFÁSI MÉTODO DE OS DOS VTÍMETROS 1. Objetivos a) Medida de la potencia activa, reactiva y el factor de potencia, en una red trifásica a tres hilos (sin neutro), utilizando

Más detalles

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA.

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA. PRÁCTCA NÚMERO 6. ESTUDO DE UN CRCUTO RLC EN CORRENTE ALTERNA. 6.. Análisis Teórico del Circuito. En las prácticas anteriores se ha analizado el comportamiento del circuito RLC cuando este es alimentado

Más detalles

9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3

9. En la siguiente conexión: a) V L = V f b) V f = V L / 3 c) I L = I f / 3 d) ninguna de las anteriores es cierta. b) V f 3= V L c) I f = I L / 3 1. Un alternador a) es una maquina rotativa de corriente continua b) es una máquina estática de corriente alterna c) es una máquina rotativa de corriente alterna d) ninguna de las anteriores es correcta

Más detalles

PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. PRIMERA PARTE

PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. PRIMERA PARTE PROBLEMAS DE FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA. PRIMERA PARTE GRADO EN INGENIERÍA ELÉCTRICA GRADO EN INGENIERÍA ELECTRÓNICA INDUSTRIAL Y AUTOMÁTICA GRADO EN INGENIERÍA MECÁNICA GRADO EN INGENIERÍA QUÍMICA

Más detalles

RESOLUCIÓN DE CIRCUITOS CON IMPEDANCIAS EN SERIE

RESOLUCIÓN DE CIRCUITOS CON IMPEDANCIAS EN SERIE 6.5.3.- RESOLCÓN DE CRCTOS CON MPEDNCS EN SERE Supongamos un circuito con tres elementos pasivos en serie, al cual le aplicamos una intensidad alterna senoidal, vamos a calcular la tensión en los bornes

Más detalles

Estudio de fallas asimétricas

Estudio de fallas asimétricas Departamento de Ingeniería Eléctrica Universidad Nacional de Mar del Plata Área Electrotecnia Estudio de fallas asimétricas Autor: Ingeniero Gustavo L. Ferro Prof. Adjunto Electrotecnia EDICION 2012 1.

Más detalles

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / Materia: ELECTROTECNIA INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015 / 2016 Materia: ELECTROTECNIA 1. COMENTARIOS Y/O ACOTACIONES RESPECTO AL TEMARIO EN RELACIÓN CON LA PAU: Indicaciones

Más detalles

Calidad en el Servicio Eléctrico

Calidad en el Servicio Eléctrico magnitud de -Cargas y no David Llanos Rodríguez dllanosr@eia.udg.es Girona, Febrero 18 de 2003 magnitud de -Cargas y no Introducción: Uso racional de la energía eléctrica quiere decir obtener el máximo

Más detalles

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 2002-2003 CONVOCATORIA SEPTIEMBRE ELECTROTÉCNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro

Más detalles

Ejercicios corriente alterna

Ejercicios corriente alterna Ejercicios corriente alterna 1. EJERCICIO 2. (2.5 puntos) A una resistencia de 15Ω en serie con una bobina de 200 mh y un condensador de 100µF se aplica una tensión alterna de 127 V, 50 Hz. Hallar: a)

Más detalles

UNIDAD DIDACTICA. Conceptos en trifásica. Sumario

UNIDAD DIDACTICA. Conceptos en trifásica. Sumario UDAD DDACTCA 7 1 3 x 400/230 V 2 3 1 2 3 4 Conceptos en trifásica. Sumario 1. ntensidades y potencias en trifásica. 2. La caída de tensión en trifásica. Ejercicios y actividades. Al término de esta Unidad

Más detalles

TEORIA DE CIRCUITOS. CURSO PRÁCTICA 4. RESPUESTA FRECUENCIAL EN REGIMEN PERMANENTE SENOIDAL

TEORIA DE CIRCUITOS. CURSO PRÁCTICA 4. RESPUESTA FRECUENCIAL EN REGIMEN PERMANENTE SENOIDAL 1 INGENIERIA TENIA INDUSTRIAL. ELETRONIA INDUSTRIAL TEORIA DE IRUITOS. URSO 2003-2004 PRÁTIA 4. RESPUESTA FREUENIAL EN REGIMEN PERMANENTE SENOIDAL PRIMERA PARTE: SIMULAIÓN EN PSPIE INTRODUIÓN El objetivo

Más detalles

Circuitos Eléctricos Trifásicos. Introducción.

Circuitos Eléctricos Trifásicos. Introducción. Circuitos Eléctricos Trifásicos. Introducción. La mayor parte de la generación, transmisión, distribución y utilización de la energía eléctrica se efectúa por medio de sistemas polifásicos; por razones

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA

UNIVERSIDAD NACIONAL DEL SANTA UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 3 CURSO: SISTEMAS ELECTRICOS DE POTENCIA PROFESOR : MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA INGENIERO MECANICO ELECTRICISTA

Más detalles

Unidad 3. Análisis de circuitos en corriente continua

Unidad 3. Análisis de circuitos en corriente continua Unidad 3. Análisis de circuitos en corriente continua Actividades 1. Explica cómo conectarías un polímetro, en el esquema de la Figura 3.6, para medir la tensión en R 2 y cómo medirías la intensidad que

Más detalles

Tema II: Régimen transitorio

Tema II: Régimen transitorio Tema II: égimen transitorio egímenes permanente y transitorio... 35 Notación del régimen transitorio... 36 Elementos pasivos en régimen transitorio... 37 Cálculo de condiciones iniciales y finales... 38

Más detalles

ELECTRÓNICA Y CIRCUITOS

ELECTRÓNICA Y CIRCUITOS ELECTRÓNICA Y CIRCUITOS EJERCICIOS TEMA 1 1.- Dado el dispositivo de la figura, en el que = V, obtener el valor de su parámetro, R, para que la corriente que lo atraviesa tenga un valor =0 ma. Resolver

Más detalles

Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura.

Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura. EJEMPLO Obtener el circuito equivalente Thevenin del circuito de la figura, mediante transformaciones Thevenin-Norton RESOLUCIÓN: Para agrupar los generadores de tensión V 1 y V 2 se aplica la transformación

Más detalles

Ejercicio Nº 601: En el siguiente circuito calcular las tensiones, corrientes y dibujar en escala el diagrama fasorial de corrientes y tensiones.

Ejercicio Nº 601: En el siguiente circuito calcular las tensiones, corrientes y dibujar en escala el diagrama fasorial de corrientes y tensiones. UNIDAD EAICA 06: IEA IFÁICO DE ENIONE ALENA ENOIDALE Ejercicio Nº 601: En el siguiente circuito calcular las tensiones, corrientes y dibujar en escala el I 10 60 ecuencia directa I I 10 60 10 60 Ejercicio

Más detalles

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V.

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V. 1. En el circuito regulador de tensión de la figura: a) La tensión de alimentación es de 300V y la tensión del diodo de avalancha de 200V. La corriente que pasa por el diodo es de 10 ma y por la carga

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUES DE ESO L UNIVERSIDD L.O.G.S.E URSO 005-006 ONVOTORI SEPTIEMRE ELETROTENI EL LUMNO ELEGIRÁ UNO DE LOS DOS MODELOS riterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y

Más detalles

ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO

ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO EL OSCILOSCOPIO DIGITAL Circuitos. Estudio del Régimen Transitorio.

Más detalles

Asignatura: Teoría de Circuitos

Asignatura: Teoría de Circuitos Asignatura: Teoría de Circuitos Titulación: Ingeniero Técnico Industrial Especialidad: Electrónica Industrial Profesor(es) responsable(s): María Josefa Martínez Lorente Curso:2º Departamento: Ingeniería

Más detalles

E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO

E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO Tema: El amplificador operacional. Objetivo: TRABAJO PRÁCTICO Determinar las limitaciones prácticas de un amplificador operacional. Comprender las diferencias entre un amplificador operacional ideal y

Más detalles

Potencia Eléctrica en C.A.

Potencia Eléctrica en C.A. Potencia Eléctrica en C.A. Potencia Eléctrica en Circuitos Puramente Resistivos (o en Circuitos con C.C.) Si se aplica una diferencia de potencial a un circuito, éste será recorrido por una determinada

Más detalles

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424

CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico Electricista CIP 67424 21/11/2013 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA AGROINDUSTRIAL MODULO SEMANA 8 CURSO: CIRCUITOS Y MAQUINAS ELECTRICAS Profesor del Curso : Ms.Sc. César L. López Aguilar Ingeniero Mecánico

Más detalles

Práctica de Laboratorio. Tema: Medición de Potencia Activa en Sistemas Trifásicos.

Práctica de Laboratorio. Tema: Medición de Potencia Activa en Sistemas Trifásicos. Universidad Nacional de Mar del lata. ráctica de Laboratorio Tema: Medición de otencia Activa en Sistemas Trifásicos. Cátedra: Medidas Eléctricas I º año de la carrera de Ingeniería Eléctrica. Área Medidas

Más detalles

Trabajo y potencia. Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J).

Trabajo y potencia. Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J). Tema 21.6 Trabajo y potencia Trabajo mecánico: Energía consumida al desplazar un cuerpo. Se mide en julios (J). Trabajo = Fuerza espacio 1 J (1 julio) = 1 N m (newton metro) 1 cal (caloría) = 4,187 J 1

Más detalles

INDICE 1 Introducción 2 Circuitos resistivos 3 Fuentes dependientes y amplificadores operacionales (OP AMPS) 4 Métodos de análisis

INDICE 1 Introducción 2 Circuitos resistivos 3 Fuentes dependientes y amplificadores operacionales (OP AMPS) 4 Métodos de análisis INDICE 1 Introducción 1 1.1. Definiciones y unidades 2 1.2. Carga y corriente 5 1.3. Voltaje, energía y potencia 9 1.4. Elementos activos y pasivos 12 1.5. Análisis de circuitos y diseño 15 16 Problemas

Más detalles

TEMA No 1 RECTIFICADORES TRIFASICOS NO CONTROLADOS CON CARGA RESISTIVA

TEMA No 1 RECTIFICADORES TRIFASICOS NO CONTROLADOS CON CARGA RESISTIVA ELECTRONCA DE POTENCA TEMA No 1 RECTFCADORES TRFASCOS NO CONTROLADOS CON CARGA RESSTA 1.1.- ntroducción.- La rectificación trifásica surge de la necesidad de alimentar con cc una carga cuyo consumo es

Más detalles

MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA

MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA CIRCUITOS Y SISTEMAS EN CORRIENTE CONTINUA MOD. MCM1/EV EB 15 CIRCUITOS Y SISTEMAS EN CORRIENTE ALTERNADA MOD. MCM2/EV EB 16 CIRCUITOS Y SISTEMAS TRIFASICOS

Más detalles

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos:

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos: Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia Fecha: 20-12-2011 Nombre y apellidos: Duración: 2h DNI: Elegir la opción correcta

Más detalles

Objetivo: -Medir la potencia activa trifásica mediante el método de los dos vatímetros (Método de Aarón).

Objetivo: -Medir la potencia activa trifásica mediante el método de los dos vatímetros (Método de Aarón). Objetivo: -Medir la potencia activa trifásica mediante el método de los dos vatímetros (Método de Aarón).. Medida de la otencia La potencia demandada por una carga trifásica es igual a la suma de las potencias

Más detalles

E 1 =24 V E 2 =24 V R 1 =10 E 3 =24 V R 3 =10 R 2 =10 R 4 = V v. 50 V. R 1 =20 R=5 Ω R 2. Ejercicios corriente continua 1-66

E 1 =24 V E 2 =24 V R 1 =10 E 3 =24 V R 3 =10 R 2 =10 R 4 = V v. 50 V. R 1 =20 R=5 Ω R 2. Ejercicios corriente continua 1-66 Ejercicios corriente continua 1-66 1. En el circuito de la figura, se sabe que con k abierto, el amperímetro indica una lectura de 5 amperios. Hallar: a) Tensión U AB b) Potencia disipada en la resistencia

Más detalles

C.A. : Circuito con Resistencia R

C.A. : Circuito con Resistencia R Teoría sobre c.a obtenida de la página web - 1 - C.A. : Circuito con Resistencia R Intensidad Instantánea i(t) e Intensidad Eficaz I v(t) = V sen t) V I = ----- R V = R I i(t) = I sen t) V R = ----- I

Más detalles

COLECCIÓN DE PROBLEMAS II. Asociación de resistencias

COLECCIÓN DE PROBLEMAS II. Asociación de resistencias COLECCIÓN DE PROBLEMAS II Asociación de resistencias 1. Qué resistencia debe conectarse en paralelo con otra de 40Ω para que la resistencia equivalente de la asociación valga 24Ω? R=60Ω 2. Si se aplica

Más detalles

LABORATORIO NO. 3 CONEXIÓN TRIÁNGULO DE CARGAS EQUILIBRADAS

LABORATORIO NO. 3 CONEXIÓN TRIÁNGULO DE CARGAS EQUILIBRADAS LABORATORIO NO. 3 CONEXIÓN TRIÁNGULO DE CARGAS EQUILIBRADAS 1.1. OBJETIVO DEL LABORATORIO. 1.1.1. OBJETIVO GENERAL. Conocer las características de operación de la Conexión Triángulo y la derivada Delta

Más detalles

W 1 Z 2 W 2 FIGURA 9.1

W 1 Z 2 W 2 FIGURA 9.1 OBJETIVOS: 1.- Medir la potencia a una carga trifásica balanceada utilizando el método de los dos wáttmetros. 2.- Determinar las potencias activa y reactiva, así como el factor de potencia de un sistema

Más detalles

Práctica 6. Circuitos de Corriente Continua

Práctica 6. Circuitos de Corriente Continua Práctica 6. Circuitos de Corriente Continua OBJETIOS Estudiar las asociaciones básicas de elementos resistivos en corriente continua: conexiones en serie y en paralelo. Comprobar experimentalmente las

Más detalles

Determinación de la Secuencia de Fases en un Sistema Trifásico

Determinación de la Secuencia de Fases en un Sistema Trifásico Determinación de la Secuencia de Fases en un Sistema Trifásico En algunos casos es necesario conocer la secuencia de fases de un sistema trifilar antes de conectar una carga, condición a veces necesaria

Más detalles

SISTELEC - Sistemas Eléctricos

SISTELEC - Sistemas Eléctricos Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2016 840 - EUPMT - Escuela Universitaria Politécnica de Mataró 840 - EUPMT - Escuela Universitaria Politécnica de Mataró GRADO

Más detalles

En un instante determinado el generador está generando 500 kw y consumiendo 400 KVAr, y la tensión en bornas es 680 V.

En un instante determinado el generador está generando 500 kw y consumiendo 400 KVAr, y la tensión en bornas es 680 V. n generador de un parque eólico de 690 V se conecta a las líneas interiores del parque a través de un transformador dy de 1.000 kva y relación de transformación 690/15.500 V. Dicho transformador tiene

Más detalles

MÁSTER OFICIAL EN SISTEMAS ELECTRÓNICOS AVANZADOS, SISTEMAS INTELIGENTES. Asignatura: Convertidores Avanzados de Potencia.

MÁSTER OFICIAL EN SISTEMAS ELECTRÓNICOS AVANZADOS, SISTEMAS INTELIGENTES. Asignatura: Convertidores Avanzados de Potencia. MÁSTER OFICIAL EN SISTEMAS ELECTRÓNICOS AVANZADOS, SISTEMAS INTELIGENTES Asignatura: Convertidores Avanzados de Potencia Práctica 0 Introducción al Matlab/SIMULINK y análisis de potencia 1.- OBJETIVOS.

Más detalles

APLICACIÓN DE LA LEY DE OHM (II)

APLICACIÓN DE LA LEY DE OHM (II) APLICACIÓN DE LA LEY DE OHM (II) MEDIDA DE RESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA RESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad

Más detalles

Tema 2 El Amplificador Operacional

Tema 2 El Amplificador Operacional CICUITOS ANALÓGICOS (SEGUNDO CUSO) Tema El Amplificador Operacional Sebastián López y José Fco. López Instituto de Microelectrónica Aplicada (IUMA) Universidad de Las Palmas de Gran Canaria 3507 - Las

Más detalles

Parcial_2_Curso.2012_2013

Parcial_2_Curso.2012_2013 Parcial_2_Curso.2012_2013 1. La función de transferencia que corresponde al diagrama de Bode de la figura es: a) b) c) d) Ninguna de ellas. w (rad/s) w (rad/s) 2. Dado el circuito de la figura, indique

Más detalles

TEMA 1 DISPOSITIVOS ELECTRONICOS ANALISIS DE CIRCUITOS

TEMA 1 DISPOSITIVOS ELECTRONICOS ANALISIS DE CIRCUITOS Tema. Dispositivos Electrónicos. Análisis de Circuitos. rev TEMA DSPOSTVOS ELECTONCOS ANALSS DE CCUTOS Profesores: Germán Villalba Madrid Miguel A. Zamora zquierdo Tema. Dispositivos Electrónicos. Análisis

Más detalles

Electrónica de potencia e instalaciones eléctricas: Sistemas trifásicos

Electrónica de potencia e instalaciones eléctricas: Sistemas trifásicos Electrónica de potencia e instalaciones eléctricas: Sistemas trifásicos Desde que Emilio ha empezado a estudiar la electricidad, cada vez está más sorprendido. Primero fue la corriente continua, después

Más detalles

Trifásica: Apuntes de Electrotecnia para Grados de Ingeniería. Autor: Ovidio Rabaza Castillo

Trifásica: Apuntes de Electrotecnia para Grados de Ingeniería. Autor: Ovidio Rabaza Castillo rifásica: puntes de Electrotecnia para Grados de ngeniería utor: Ovidio abaza astillo DE ema: ircuitos trifásicos - istemas polifásicos - Generación de sistemas trifásicos ema : istemas equilibrados -

Más detalles

Análisis de circuitos trifásicos. Primera parte

Análisis de circuitos trifásicos. Primera parte Análisis de circuitos trifásicos. Primera parte Objetivos 1. Mencionar el principio de funcionamiento de los generadores trifásicos. 2. Establecer los tipos básicos de conexiones de circuitos trifásicos

Más detalles

Glosario Electrotecnia de Tecnología de la Producción Hortofrutícola

Glosario Electrotecnia de Tecnología de la Producción Hortofrutícola Universidad Politécnica de Cartagena Escuela Técnica Superior de Ingeniería Agronómica Glosario Electrotecnia de Tecnología de la Producción Hortofrutícola Cartagena 2015 Cartagena 2015 Jorge Cerezo Martínez

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en

Más detalles

SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C.

SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C. SESION 9.2: EXCITACIÓN DE LAS MAQUINAS DE C.C. 1. INTRODUCCION La forma como se produce el flujo magnético en las máquinas de corriente contínua (cc), estas máquinas se clasifican en: EXCITACIÓN INDEPENDIENTE

Más detalles

BJT como amplificador en configuración de emisor común con resistencia de emisor

BJT como amplificador en configuración de emisor común con resistencia de emisor Práctica 9 BJT como amplificador en configuración de emisor común con resistencia de emisor Índice General 9.1. Objetivos................................ 73 9.2. Introducción teórica..........................

Más detalles

CORRIENTE ALTERNA. Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados.

CORRIENTE ALTERNA. Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados. CORRIENTE ALTERNA Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados. Generalidades sobre la c. alterna. Respuesta de los elementos pasivos básicos

Más detalles

Tema 3: Criterios serie paralelo y mixto. Resolución de problemas.

Tema 3: Criterios serie paralelo y mixto. Resolución de problemas. Tema 3. Circuitos serie paralelo y mixto. Resolución de problemas En el tema anterior viste como se comportaban las resistencias, bobinas y condensadores cuando se conectaban a un circuito de corriente

Más detalles

CAPITULO XIII RECTIFICADORES CON FILTROS

CAPITULO XIII RECTIFICADORES CON FILTROS CAPITULO XIII RECTIFICADORES CON FILTROS 13.1 INTRODUCCION En este Capítulo vamos a centrar nuestra atención en uno de los circuitos más importantes para el funcionamiento de los sistemas electrónicos:

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores El análisis de potencia es de suma importancia. La potencia es la cantidad más relevante en sistemas de suministro de electricidad,

Más detalles

PRÁCTICA Nro. 9 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS BALANCEADOS CON CARGAS RESISTIVAS, CAPACITIVAS E INDUCTIVAS

PRÁCTICA Nro. 9 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS BALANCEADOS CON CARGAS RESISTIVAS, CAPACITIVAS E INDUCTIVAS PRÁCTICA Nro. 9 MEDICIÓN DE POTENCIA Y FACTOR DE POTENCIA EN SISTEMAS TRIFÁSICOS BALANCEADOS CON CARGAS RESISTIVAS, CAPACITIVAS E INDUCTIVAS A. OBJETIVOS: 1. Determinar en forma teórica y experimentalmente;

Más detalles

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua.

Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: Resistencias y Circuitos de Corriente Continua. Electricidad y Magnetismo UEUQ Cursada 2004 Trabajo Práctico N 6: esistencias y Circuitos de Corriente Continua. 1) a) Sobre un resistor de 10 Ω se mantiene una corriente de 5 A durante 4 minutos. Cuánta

Más detalles

PRÁCTICAS DE LABORATORIO DE SONIDO

PRÁCTICAS DE LABORATORIO DE SONIDO PRÁCTICAS DE LABORATORIO DE SONIDO Diseño y montaje de una etapa de potencia con un TDA 1554 Esquema del circuito Para conocer las características de este amplificador deberemos de mirar en el catálogo

Más detalles

COMPORTAMIENTO DE LOS CIRCUITOS EN CORRIENTE CONTINUA Como Corriente Continua se define una corriente que no varía en el tiempo ni de magnitud ni de sentido. Siempre que la carga insertada en el circuito

Más detalles

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE.

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. CAPITULO 5 Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. Inductor o bobina Un inductor o bobina es un elemento que se opone a los cambios de variación de

Más detalles

PROCEDIMIENTOS PARA LABORATORIO DE ELECTRÓNICA.

PROCEDIMIENTOS PARA LABORATORIO DE ELECTRÓNICA. PROCEDIMIENTOS PARA LABORATORIO DE ELECTRÓNICA. Abreviaturas usadas: V p -> tensión pico. V pp -> tensión pico-pico. V pc -> tensión parcial usada para desenmarañar el aspecto de algunas ecuaciones. J.

Más detalles

Item Cantidad Descripción. 1 1 Fuente de energía ST S. 2 1 Amplificador de separación LM Osciloscopio con puntas de medición

Item Cantidad Descripción. 1 1 Fuente de energía ST S. 2 1 Amplificador de separación LM Osciloscopio con puntas de medición Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas eléctricos lineales II Tema: Sistemas Polifásicos y Medición de Potencia Contenidos ❿ Voltaje RMS. ❿ Voltaje máximo. ❿ Desfase de

Más detalles

CURSO TALLER ACTIVIDAD 3 PROTOBOARD MULTÍMETRO MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE DIRECTA

CURSO TALLER ACTIVIDAD 3 PROTOBOARD MULTÍMETRO MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE DIRECTA CUSO TALLE ACTIIDAD 3 POTOBOAD MULTÍMETO MEDICIÓN DE OLTAJES Y COIENTES DE COIENTE DIECTA FUENTE DE OLTAJE DE COIENTE DIECTA Como su nombre lo dice, una fuente de voltaje de corriente directa (C.D) es

Más detalles

EXAMEN DE ELECTRÓNICA ANALÓGICA.- CONVOCATORIA º CURSO DE INGENIERÍA TÉCNICA EN ELECTRÓNICA INDUSTRIAL

EXAMEN DE ELECTRÓNICA ANALÓGICA.- CONVOCATORIA º CURSO DE INGENIERÍA TÉCNICA EN ELECTRÓNICA INDUSTRIAL 1 a PARTE DEL EXAMEN: PREGUNTAS DE TEORÍA: 1.- AMPLIFICADORES OPERACIONALES. Efectos de 2º orden 1.1) Respuesta frecuencial del amplificador operacional en lazo abierto, considerándolo como un sistema

Más detalles

TECNUN MEDIDA DE POTENCIA EN CORRIENTE ALTERNA

TECNUN MEDIDA DE POTENCIA EN CORRIENTE ALTERNA EUE UEROR DE NGENERO DE N EBTÁN TENUN UNERDD DE NRR ráctica de aboratorio MEDD DE OTEN EN ORRENTE TERN ircuitos. Medida de otencia en orriente lterna. OBJETO DE RÁT a determinación de la potencia en corriente

Más detalles

TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS

TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS PRÁCTICA DE LABORATORIO II-09 TRANSIENTES EN CIRCUITOS RC y SU APLICACION A LA MEDIDA DE CAPACITANClAS OBJETIVOS Estudiar los fenómenos transientes que se producen en circuitos RC de corriente directa.

Más detalles

1.7 LA SERIE DE FOURIER Y LAS REDES ELECTRICAS

1.7 LA SERIE DE FOURIER Y LAS REDES ELECTRICAS ARMONICAS 1.6 DEFINICIONES Elemento lineal: es aquel elemento de redes eléctricas cuyo valor permanece constante independientemente del valor de la corriente que circula por él o del voltaje que se le

Más detalles

ESTUDIO DE CIRCUITOS ELÉCTRICOS EN CORRIENTE CONTINUA

ESTUDIO DE CIRCUITOS ELÉCTRICOS EN CORRIENTE CONTINUA ESTUDIO DE CIRCUITOS ELÉCTRICOS EN CORRIENTE CONTINUA OBJETIO Aprender a utilizar equipos eléctricos en corriente continua, estudiar la distribución de corriente y energía en un circuito eléctrico, hacer

Más detalles

CURSO: ELECTROTECNIA II UNIDAD 1 SISTEMAS POLIFÁSICOS CONTENIDO

CURSO: ELECTROTECNIA II UNIDAD 1 SISTEMAS POLIFÁSICOS CONTENIDO CURSO: ELECTROTECNI II UNIDD 1 SISTEMS POLIFÁSICOS CONTENIDO 1.1 INTRODUCCIÓN 1.2 CIRCUITO MONOFÁSICO IFILR 1.3 CIRCUITO MONOFÁSICO TRIFILR 1.4 CIRCUITO IFÁSICO TRIFILR 1.5 CIRCUITO IFÁSICO TRIFILR PRTIR

Más detalles

Electrotecnia. Tema 7. Problemas. R-R -N oro

Electrotecnia. Tema 7. Problemas. R-R -N oro R-R -N oro R 22 0^3 22000 (+-) 00 Ohmios Problema.- Calcular el valor de la resistencia equivalente de un cubo cuyas aristas poseen todas una resistencia de 20 Ω si se conecta a una tensión los dos vértices

Más detalles

PROBLEMAS DE EXAMEN. 1.- La figura representa un convertidor alterna/alterna con control por fase bidireccional con carga resistiva:

PROBLEMAS DE EXAMEN. 1.- La figura representa un convertidor alterna/alterna con control por fase bidireccional con carga resistiva: POBLEMAS DE EXAMEN 1.- La figura representa un convertidor alterna/alterna con control por fase bidireccional con carga resistiva: 1 V in = 2 V s sen(wt) i in 2 a) Explicar brevemente el funcionamiento

Más detalles

TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS.

TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS. TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS. 9.. Potencias en sistemas equilibrados y simétricos en tensiones Un sistema trifásico puede considerarse como circuitos monofásicos, por lo que la potencia total

Más detalles

Capítulo 1 SEMANA 7. Capítulo 2 POTENCIA EN CORRIENTE ALTERNA

Capítulo 1 SEMANA 7. Capítulo 2 POTENCIA EN CORRIENTE ALTERNA Capítulo 1 SEMANA 7 Capítulo 2 POTENCIA EN CORRIENTE ALTERNA Potencia instantánea 1 : Esta definida como la potencia entregada a un dispositivo (carga) en cualquier instante de tiempo. Es el producto de

Más detalles

SIMULACIONES INTERACTIVAS DE FUNDAMENTOS DE CIRCUITOS

SIMULACIONES INTERACTIVAS DE FUNDAMENTOS DE CIRCUITOS SIMULACIONES INTERACTIVAS DE FUNDAMENTOS DE CIRCUITOS ANTONIO JOSE SALAZAR GOMEZ UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA DEPARTAMENTO DE INGENIERIA ELECTRICA Y ELECTRONICA TABLA DE CONTENIDO 1.

Más detalles

Ejercicios propuestos para el tercer parcial. Figura 1. Figura 2

Ejercicios propuestos para el tercer parcial. Figura 1. Figura 2 Ejercicios propuestos para el tercer parcial. 1) Qué función cumple la resistencia R ubicada entre la compuerta y el cátodo mostrada en la figura 1, y cómo afecta a la activación del SCR? Figura 1. 2)

Más detalles

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA

CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA www.ceduvirt.com CURSO: Circuitos Eléctricos UNIDAD IV: CORRIENTE ALTERNA - TEORÍA EJEMPLO 1: Cinco ciclos de una señal ocurren en un tiempo de 25 msg. Hallar el periodo y la frecuencia. Solución Si

Más detalles

5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta

5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta Tema 4. El Transistor de Unión Bipolar (BJT). 1.- En un circuito en emisor común la distorsión por saturación recorta a) la tensión colector-emisor por la parte inferior b) la corriente de colector por

Más detalles

1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones. Tabla 1.1. Materiales y equipo.

1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones. Tabla 1.1. Materiales y equipo. Contenido Facultad: Estudios Tecnologicos Escuela: Electronica y Biomedica Asignatura: Electrónica de Potencia Curvas de Operación y Funcionamiento del GTO. Objetivos Específicos Visualizar las formas

Más detalles

PROGRAMA DE TECNOLOGIA ELECTRICA UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 7:

PROGRAMA DE TECNOLOGIA ELECTRICA UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 7: PROGRAMA DE TECNOLOGIA ELECTRICA UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 7: MANEJO DEL OSCILOSCOPIO - MEDIDA DE ANGULOS DE FASE Y MEDIDA DE PARAMETROS DE UNA BOBINA 1. OBJETIVOS Adquirir conocimientos

Más detalles

APLICACIÓN DE LA LEY DE OHM (I) Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad de conductores metálicos.

APLICACIÓN DE LA LEY DE OHM (I) Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad de conductores metálicos. APLICACIÓN DE LA LEY DE OHM (I) MEDIDA DE ESISTENCIAS / PUENTE DE WHEATSTONE / MEDIDA DE LA ESISTIVIDAD 1. OBJETIVO Comprobación experimental de las leyes de Kirchhoff. Estudio experimental de la resistividad

Más detalles

Práctica N 1 Puente rectificador trifásico doble vía con diodos Instructivo

Práctica N 1 Puente rectificador trifásico doble vía con diodos Instructivo 1 Objetivo. Práctica N 1 Puente rectificador trifásico doble vía con diodos Instructivo Practica Nº 1 omprender el funcionamiento de un puente rectificador, incluyendo el fenómeno de la conmutación y el

Más detalles

Corriente Directa. La batería se define como fuente de fem

Corriente Directa. La batería se define como fuente de fem Capítulo 28 Circuitos de Corriente Directa Corriente Directa Cuando la corriente en un circuito tiene una magnitud y una dirección ambas constantes, la corriente se llama corriente directa Como la diferencia

Más detalles

CAPITULO III COMPENSACION REACTIVA

CAPITULO III COMPENSACION REACTIVA CAPITULO III COMPENSACION REACTIA 1. GENERALIDADES DE COMPENSACION REACTIA 1.1 FACTOR DE POTENCIA Factor de potencia es el nombre dado a la relación entre la potencia activa (kw) usada en un sistema y

Más detalles

CAPITULO XI EL VATIMETRO. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito

CAPITULO XI EL VATIMETRO. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito CAPIULO XI EL VAIMERO. INRODUCCION. El vatímetro es un instrumento capaz de medir la potencia promedio consumida en un circuito Según la definición de potencia, un vatímetro debe ser un instrumento que

Más detalles

1º- CORRIENTE ALTERNA

1º- CORRIENTE ALTERNA º- CORRIENTE ALTERNA Se denomina corriente alterna a toda corriente eléctrica que cambia de polaridad periódicamente, pero en la práctica toma este nombre la corriente alterna de tipo senoidal: e Voltaje

Más detalles

PRÁCTICA 4: RESPUESTA EN FRECUENCIA Y COMPENSACION P P T T T. 1.-Objetivos.

PRÁCTICA 4: RESPUESTA EN FRECUENCIA Y COMPENSACION P P T T T. 1.-Objetivos. PRÁCTICA 4: RESPUESTA E FRECUECIA Y COMPESACIO 1.-Objetivos. P P P P Medir y conocer la respuesta en frecuencia de los amplificadores. Medir correctamente la ganancia de tensión de un amplificador, en

Más detalles

Bloque II: 5- Motores de corriente alterna (Motores trifásicos)

Bloque II: 5- Motores de corriente alterna (Motores trifásicos) Bloque II: 5- Motores de corriente alterna (Motores trifásicos) 1.- Introducción: Corriente alterna y red trifásica Se denomina corriente alterna a la corriente eléctrica en la que la magnitud y dirección

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. Tema: Aplicaciones prácticas de circuitos magnéticos. I. Objetivos. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Teoría Electromagnética. Analizar la relación del número de vueltas en los

Más detalles