Inversas Aproximadas usando el producto escalar de Frobenius

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Inversas Aproximadas usando el producto escalar de Frobenius"

Transcripción

1 Inversas Aproximadas usando el producto escalar de Frobenius E Flórez, MD García, L González, G Montero Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería Universidad de Las Palmas de Gran Canaria CMCE4 p9

2 Contenido Introducción Inversa aproximada Inversa aproximada sparse Efecto de la reordenación Experimentos Numéricos Conclusiones CMCE4 p9

3 Introducción Resolver: Métodos de Krylov Métodos de Métodos de Métodos basados en ortogonalización biortogonalización la Ecuación Normal ORTHOMIN Vinsome 76 BiCG Fletcher 76 CGN Hestenes & Stiefel 5 ORTHORES Young & Jea 8 CGS Sonneveld 89 CGNE Craig 55 ORTHODIR Young & Jea 8 BiCGSTAB Van der Vorst 9 LSQR Paige & Saunders 8 FOM Saad 8 QMR Freund & Nachtigal 9 GMRES Saad & Schultz 86 TFQMR Freund 93 FGMRES Saad 93 QMRCGSTAB Chan et al 94 VGMRES Galán et al 94 CMCE4 p39

4 Introducción Formas de precondicionamiento Técnicas de Precondicionamiento Por la izquierda Por la derecha Por ambos lados Precondicionadores Implícitos Explícitos Diagonal SSOR ILUT ILU Inversa Aproximada sparse Inversa Aproximada sparse SPAI, Grote Inversa Aproximada Factorizada AINV, Benzi Generalización de la SPAI Flórez Diagonal Óptimo CMCE4 p49

5 Introducción 3 Técnicas de Reordenación Objetivo: Mejorar el efecto del precondicionamiento en métodos iterativos Referencias Efecto de la reordenación Otros algoritmos de reordenación en el precondicionamiento Laura Dutto Michelle Benzi Lewis Galán Elizabeth Flórez CMCE4 p59

6 -,, CMCE4 p69 Inversa Aproximada Definición Problema de minimización: Norma Frobenius: Razones teóricas: #" % #" &%! escalar producto un de proviene ie prehilbertiana es + -, - Producto escalar de Frobenius #" % #" &%! - - Razones computacionales: 4 3 " %

7 Inversa aproximada Problema de Minimización Teoría de Aproximación en espacios prehilbertianos Teorema de existencia y unicidad de la mejor aproximación en conjuntos convexos y cerrados Subespacio de dimensión finita Teorema de la proyección ortogonal Sea ie Además, Sea ie Además, CMCE4 p79

8 Inversa Aproximada 3 Proyección ortogonal en espacios prehilbertianos % viene dada por, entonces, y Sea Sea con " % será, al subespacio y la mínima distancia de " &% Teorema &% Sea Sea Entonces, la solución al problema de minimización es, &%! y! " &% " % CMCE4 p89

9 Inversa Aproximada 4 Teorema de base una % y Sea Sea Entonces, la solución al problema de minimización es, y " &% " % CMCE4 p99

10 Inversa Aproximada 5 Teorema 3 Sea Sea % y Sea Entonces, la solución al problema de minimización es, % % % % de % base la para Teorema del los son y donde, % % CMCE4 p9

11 Inversa Aproximada 6 Precondicionador con sparsidad dada Sea, cuya única entrada no nula es Sea Entonces, la solución al problema de minimización es, " % " " % " son los del Teorema para la base de % donde y CMCE4 p9

12 Inversa aproximada 7 Análisis de la eficiencia del precondicionador Concentración de valores singulares " % Número de condición Concentración de valores propios #" % Desviación de la normalidad " % CMCE4 p9

13 Inversa Aproximada sparse Precondicionador Inversa Aproximada sparse Partiendo de, " % Problema de minimización Sea {entradas llenas de } {entradas llenas de } {posiciones candidatas a llenar en Para cada posición candidata se calcula, } " % con donde,,, respecto al producto escalar euclídeo, la matriz es la matriz de Gram de las columnas de con es la matriz que resulta de reemplazar la última fila de, con por CMCE4 p39

14 ! Inversa Aproximada sparse Precondicionador Inversa Aproximada sparse Se selecciona el índice que minimiza el valor de se busca en el conjunto, " % donde es el vector con entradas no nulas Cada una de ellas se obtiene evaluando el determinante correspondiente que resulta de reemplazar la última fila de por, con CMCE4 p49

15 Inversa aproximada sparse 3 Experimentos numéricos convdifhor: matriz obtenida de un problema convección-difusión en dos dimensiones resuelto mediante elementos finitos con una malla adaptativa refinada, de tamaño y entradas no nulas oilgen: matriz de simulación de una reserva de petróleo para una malla completa de tamaño y, sherman: simulador del almacenamiento de petróleo en medio con paredes de lajas, con malla, de tamaño y pores: matriz no simétrica de tamaño y isla: matriz de tamaño y, obtenida en un problema de convección - difusión en un dominio bidimensional definido en la costa de la isla de Gran Canaria, resuelto mediante el método de elementos finitos, usando una malla adaptativa CMCE4 p59

16 Inversa aproximada sparse 4 convdifhor 44 max Resultados de convergencia para convdifhor con BiCGSTAB precondicionado por la izquierda CMCE4 p69

17 Inversa aproximada sparse 5 convdifhor 44 - "Unprec" "ILU" "Tol=5_nz=" "Tol=5" "Tol=" "Tol=3" "Tol=4" "Tol=5" log r b Number of iterations Comportamiento de los precondicionadores con BiCGSTAB para convdifhor, CMCE4 p79

18 Inversa aproximada sparse 6 convdifhor 44 Patrón de sparsidad de e inversas aproximadas para convdifhor, CMCE4 p89

19 Inversa Aproximada sparse 7!! Orsreg Orsirr Orsirr Pores Pores Sherman Sherman Sherman Sherman Sherman Coste computacional del precondicionador inversa aproximada y resultados de convergencia CMCE4 p99

20 Efecto de la reordenación Reordenación: con matriz de permutación del algoritmo de reordenación y Resolver con tolerancia de SPAI entonces, donde y subespacios de matrices con igual cantidad de entradas no nulas Sea subespacio cualquiera con igual cantidad de entradas no nulas que y entonces, Conclusión: Para una tolerancia de la SPAI, la cantidad de entradas no nulas de SPAI reordenada es menor o igual que las de SPAI sin reordenar CMCE4 p9

21 Efecto de la reordenación Análisis de eficiencia de SPAI reordenada : Concentración de valores singulares " % Número de condición Concentración de valores propios " % Desviación de la normalidad #" % CMCE4 p9

22 Efecto de la reordenación 3 ALGORITMO DE GRADO MÍNIMO MDG - Construir el grafo asociado a la matriz,, donde es el conjunto de nodos y - Mientras : - Elegir un nodo de grado mínimo en y reordenar como nodo siguiente - Definir: Siendo, el conjunto de nodos conectados a en el grafo y Hacer y 3 - Fin CMCE4 p9

23 Efecto de la reordenación 4 ALGORITMO DE MÍNIMO VECINO MN - Construir el grafo asociado a la matriz,, donde es el conjunto de nodos y - Mientras : - Elegir un nodo de grado mínimo en y reordenar como nodo siguiente - Definir: y Hacer y 3 - Fin CMCE4 p39

24 Efecto de la reordenación 5 ALGORITMO DE CUTHILL-MCKEE INVERSO RCM - Construir el grafo asociado a la matriz,, siendo el conjunto de nodos y - Determinar un nodo inicial pseudo-periférico y renumerarlo como 3 - Renumerar los nodos conectados a 4 - Efectuar el ordenamiento inverso 5 - Fin en orden ascendente de grado CMCE4 p49

25 Efecto de la reordenación 6 ALGORITMO DE GEORGE PARA LA BÚSQUEDA DE NODOS PSEUDO-PERIFÉRICOS - Elegir un nodo arbitrario de Generar una estructura con niveles enraizada en siendo 3 - Elegir un nodo de grado mínimo en, 4 Generar una estructura con niveles enraizada en 5 - Si, establecer, en un grafo : distancia entre dos nodos : longitud de la trayectoria más corta que une ambos nodos excentricidad de un nodo : e y volver al paso Caso contrario tomamos 7 - Fin como nodo inicial CMCE4 p59

26 Efecto de la reordenación 7 Cuaref 75 Patrón de sparsidad de la matriz SPAI3 con diferentes reordenaciones para cuaref, CMCE4 p69

27 Efecto de la reordenación 8 cuaref: Matriz correspondiente a un paso de refinamiento de una malla no estructurada de elementos finitos con y 5 entradas no nulas Precondicionador OO Iter MDG Iter RCM Iter MN Iter Sin Precondicionar SPAI ILU Resultados de convergencia para cuaref con diferentes renumeraciones y BiCGSTAB precondicionado por la izquierda CMCE4 p79

28 Efecto de la reordenación 9 Cuaref 75 SPAI SPAI-mdg SPAI-rcm SPAI-mn - Logerror Iterations Comparación del comportamiento de BiCGSTAB-SPAI con reordenación para cuaref, CMCE4 p89

29 Conclusiones Se desarrollan expresiones explícitas para el cálculo de la mejor inversa aproximada en cualquier subespacio de matrices cuadradas reales y Se aplican los resultados anteriores al caso de los precondicionadores sparse obteniéndose expresiones cuyos cálculos son inherentemente paralelos, donde el patrón de sparsidad del precondicionador se captura automáticamente Se demuestra de forma teórica y práctica la eficacia de el precondicionador SPAI en la mejora de la convergencia de ls Métodos iterativos Los experimentos numéricos muestran que la renumeración reduce, o al menos no aumenta, el número de entradas no nulas del precondicionador inversa aproximada CMCE4 p99

Estrategias para la resolución de grandes sistemas de ecuaciones lineales. Métodos de Cuasi-Mínimo Residuo Modificados.

Estrategias para la resolución de grandes sistemas de ecuaciones lineales. Métodos de Cuasi-Mínimo Residuo Modificados. Universidad de Las Palmas de Gran Canaria Departamento de Matemáticas Tesis Doctoral Estrategias para la resolución de grandes sistemas de ecuaciones lineales. Métodos de Cuasi-Mínimo Residuo Modificados.

Más detalles

Universidad de Las Palmas de Gran Canaria Departamento de Matemáticas. Tesis Doctoral

Universidad de Las Palmas de Gran Canaria Departamento de Matemáticas. Tesis Doctoral Universidad de Las Palmas de Gran Canaria Departamento de Matemáticas Tesis Doctoral Construcción de inversas aproximadas tipo sparse basada en la proyección ortogonal de Frobenius para el precondicionamiento

Más detalles

Resolución numérica de sistemas de ecuaciones. Introducción

Resolución numérica de sistemas de ecuaciones. Introducción Resolución numérica de sistemas de ecuaciones. Introducción Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Spain) http://www-lacan.upc.es

Más detalles

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar.

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar. UNIDAD 03: MATRICES Y DETERMINANTES. 3.1 Conceptos de Matrices. 3.1.1 Definición de matriz. Definición: Se lama matriz de orden m x n a un arreglo rectangular de números dispuestos en m renglones y n columnas.

Más detalles

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II) Métodos numéricos para sistemas lineales Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Sistemas de Ecuaciones. Lineales I

Sistemas de Ecuaciones. Lineales I Sistemas de Ecuaciones Lineales I Preliminares: Expresión matricial. Dificultades numéricas. 521230-1 - DIM Universidad de Concepción Expresión matricial Todo sistema de ecuaciones lineales puede escribirse

Más detalles

Instituto Tecnológico Autónomo de México. 1. At =..

Instituto Tecnológico Autónomo de México. 1. At =.. Instituto Tecnológico Autónomo de México TRANSPUESTA DE UNA MATRIZ DEFINICION : Transpuesta Sea A = (a ij ) una matriz de mxn Entonces la transpuesta de A, que se escribe A t, es la matriz de nxm obtenida

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1 Matrices José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 1- Matrices 1 Introducción Por qué estudiar las matrices? Son muchas las situaciones de la vida real en las que

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

1. ESPACIOS DE HILBERT Y OPERADORES

1. ESPACIOS DE HILBERT Y OPERADORES 1. ESPACIOS DE HILBERT Y OPERADORES 1. DEFINICIÓN, PROPIEDADES Y EJEMPLOS Definición. Sea H un espacio vectorial sobre el cuerpo C de los números complejos, un producto escalar sobre H es una aplicación

Más detalles

1 ÁLGEBRA DE MATRICES

1 ÁLGEBRA DE MATRICES 1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa

Más detalles

Objetivos formativos de Álgebra

Objetivos formativos de Álgebra Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Matrices 1 Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se

Más detalles

Cálculo numérico. Sistemas de ecuaciones lineales.

Cálculo numérico. Sistemas de ecuaciones lineales. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2010. Las raíces de x 2 bx + c = 0. r = b ± b 2 4c 2 b = 3.6778, c = 0.0020798 r 1 = 3.67723441190... r 2 = 0.00056558809...

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno

Más detalles

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a

Más detalles

Matemá'cas generales

Matemá'cas generales Matemá'cas generales Matrices y Sistemas Patricia Gómez García José Antonio Álvarez García DPTO. DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN Este tema se publica bajo Licencia: Crea've Commons

Más detalles

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I?

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? MATRICES Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I? La multiplicación de matrices cuadradas, tiene la propiedad conmutativa?

Más detalles

PLAN DE CURSO PC-01 FO-TESE-DA-09 DIRECCIÓN ACADÉMICA DIVISIÓN DE INGENIERÍA ELECTRÓNICA. Según Corresponda CALCULO INTEGRAL TURNO: 1201/1 251

PLAN DE CURSO PC-01 FO-TESE-DA-09 DIRECCIÓN ACADÉMICA DIVISIÓN DE INGENIERÍA ELECTRÓNICA. Según Corresponda CALCULO INTEGRAL TURNO: 1201/1 251 No. DE EMPLEADO: SEMANA: 5 NO. DE ALUMNOS: O PROPOSITO GENERAL DE LA 1. Teorema fundamental del cálculo. - Contextualizar el concepto de - Visualizar la relación entre cálculo diferencial y el cálculo

Más detalles

Programación NO Lineal (PNL) Optimización sin restricciones

Programación NO Lineal (PNL) Optimización sin restricciones Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

Matrices y sistemas de ecuaciones lineales

Matrices y sistemas de ecuaciones lineales Matrices y sistemas de ecuaciones lineales Problemas para examen Antes de resolver un problema en el caso general, se recomienda considerar casos particulares (por ejemplo, n = 4 y n = 50). En el caso

Más detalles

Métodos iterativos para sistemas de ecuaciones lineales

Métodos iterativos para sistemas de ecuaciones lineales Métodos iterativos para sistemas de ecuaciones lineales Natalia Boal - Manuel Palacios - Sergio Serrano Departamento de Matemática Aplicada Obetivos Trabaar con los métodos iterativos habituales (Jacobi,

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

Técnicas de precondicionamiento para problemas de punto de silla

Técnicas de precondicionamiento para problemas de punto de silla Rev. Int. Mét. Num. Cálc. Dis. Ing. Vol. 24, 3, 217-226 2008) Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería Técnicas de precondicionamiento para problemas de punto de silla

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A = Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente

Más detalles

OPTIMIZACIÓN VECTORIAL

OPTIMIZACIÓN VECTORIAL OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R.

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA U.N.R. PROGRAMA ANALÍTICO DE LA ASIGNATURA: ALGEBRA LINEAL Código L2.07.1 PLAN DE ESTUDIOS: 2002 CARRERA: Licenciatura en Matemática DEPARTAMENTO:

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

Grafos. Suponiendo que e = [u, v]. Entonces los nodos u y v se llaman extremos de e y u y v se dice que son nodos adyacentes o vecinos.

Grafos. Suponiendo que e = [u, v]. Entonces los nodos u y v se llaman extremos de e y u y v se dice que son nodos adyacentes o vecinos. Grafos Los grafos son estructuras que constan de vértices o nodos y de aristas o arcos que conectan los vértices entre sí. Un grafo G consiste en dos cosas: 1. Un conjunto V de elementos llamados nodos

Más detalles

Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse.

Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse. Definición de matriz Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse. Una matriz es un cuadrado o tabla de números ordenados. Se llama matriz

Más detalles

UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS

UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS Sistemas de dos ecuaciones con dos incógnitas. Método de igualación. Método de reducción. Método de sustitución Método de eliminación Gaussiana.

Más detalles

Proyectos de trabajos para Matemáticas

Proyectos de trabajos para Matemáticas Proyectos de trabajos para Matemáticas 14 de julio de 2011 Resumen En cada uno de los Proyectos elegidos, los estudiantes deberán completar las etapas siguientes: Comprender el problema. Tomarse el tiempo

Más detalles

Teoría de grafos y optimización en redes

Teoría de grafos y optimización en redes Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,

Más detalles

Complejidad de los Algoritmos

Complejidad de los Algoritmos Que es un Algoritmo? Complejidad de los Algoritmos Webster: cualquier método especial para resolver cierta clase de problemas. Horowitz: método preciso utilizable en una computadora para la solución de

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

PROGRAMA INSTRUCCIONAL ALGEBRA LINEAL

PROGRAMA INSTRUCCIONAL ALGEBRA LINEAL UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE COMPUTACIÓN PROGRAMA INSTRUCCIONAL ALGEBRA LINEAL CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A THS/SEM

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

Teoría Tema 8 Determinante de una matriz cuadrada de orden 1, 2 y 3

Teoría Tema 8 Determinante de una matriz cuadrada de orden 1, 2 y 3 página 1/5 Teoría Tema 8 Determinante de una matriz cuadrada de orden 1, 2 y 3 Índice de contenido Qué es un determinante de una matriz cuadrada y que aplicación tendrá?...2 Determinante de una matriz

Más detalles

TEMA 5: INTERPOLACION NUMERICA

TEMA 5: INTERPOLACION NUMERICA Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 5: INTERPOLACION NUMERICA 1 EL PROBLEMA GENERAL DE INTER- POLACION En ocasiones se plantea el problema de que se conoce una tabla de valores de una

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

DISEÑO CURRICULAR ALGEBRA LINEAL

DISEÑO CURRICULAR ALGEBRA LINEAL DISEÑO CURRICULAR ALGEBRA LINEAL FACULTAD (ES) CARRERA (S) Ingeniería Computación y Sistemas CÓDIGO HORAS TEÓRICAS HORAS PRÁCTICAS UNIDADES DE CRÉDITO SEMESTRE 122443 02 02 03 II PRE-REQUISITO ELABORADO

Más detalles

Algebra lineal de dimensión finita

Algebra lineal de dimensión finita Algebra lineal de dimensión finita Métodos para calcular autovalores Pseudoinversa Algebra lineal númerica 1 Teorema:[Teorema 1.6] Sea A es una matriz real simétrica. Si Q(x) =< Ax, x > entonces: λ 1 =

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

como el número real que resulta del producto matricial y se nota por:

como el número real que resulta del producto matricial y se nota por: Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

Sistemas de ecuaciones no lineales

Sistemas de ecuaciones no lineales Práctica 6 Sistemas de ecuaciones no lineales En esta práctica revisaremos algunos métodos básicos para la resolución numérica de sistemas de ecuaciones no lineales 61 Método iterativo del punto fijo Partimos

Más detalles

TEMARIO PARA EL EXAMEN DE ACCESO A LA ESPECIALIDAD MATEMÁTICAS PARA E.S.O. Y BACHILLERATO DEL MÁSTER DE SECUNDARIA

TEMARIO PARA EL EXAMEN DE ACCESO A LA ESPECIALIDAD MATEMÁTICAS PARA E.S.O. Y BACHILLERATO DEL MÁSTER DE SECUNDARIA TEMARIO PARA EL EXAMEN DE ACCESO A LA ESPECIALIDAD MATEMÁTICAS PARA E.S.O. Y BACHILLERATO DEL MÁSTER DE SECUNDARIA 1. Números naturales, enteros y racionales. Principio de inducción. Divisibilidad y algoritmo

Más detalles

4.1. Determinante de una matriz cuadrada de orden 2. , entonces el determinante de A es a 21 a 22 a 11 a 12 = a 11a 22 a 12 a 21

4.1. Determinante de una matriz cuadrada de orden 2. , entonces el determinante de A es a 21 a 22 a 11 a 12 = a 11a 22 a 12 a 21 Capítulo 4 Determinante Los determinantes se calculan para matrices cuadradas. Se usan para saber cuando una matriz tiene inversa, en el cálculo de autovalores y también para resolver sistemas de ecuaciones

Más detalles

Solución de sistemas de ecuaciones lineales: Métodos de Jácobi y Gauss-Seidel

Solución de sistemas de ecuaciones lineales: Métodos de Jácobi y Gauss-Seidel Solución de sistemas de ecuaciones lineales: Métodos de Jácobi y Gauss-Seidel Ing Jesús Javier Cortés Rosas M en A Miguel Eduardo González Cárdenas M en A Víctor D Pinilla Morán Facultad de Ingeniería,

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

Menor, cofactor y comatriz

Menor, cofactor y comatriz Menor, cofactor y comatriz Sea A una matriz cuadrada de orden n. Al quitarle la línea i y la columna j se obtiene una submatriz de orden n-1, que se denota habitualmente A i,j. Por ejemplo, con n = 4,

Más detalles

UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA INGENIERÍA DE SISTEMAS BÚSQUEDA PRIMERO EL MEJOR

UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA INGENIERÍA DE SISTEMAS BÚSQUEDA PRIMERO EL MEJOR UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA INGENIERÍA DE SISTEMAS BÚSQUEDA PRIMERO EL MEJOR INTEGRANTES: Caricari Cala Aquilardo Villarroel Fernandez Fructuoso DOCENTE: Lic. Garcia

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012 Cálculo numérico Métodos de factorización para resolver sistemas de ecuaciones lineales 22 de agosto, 2012 1 Factorización LU Considera el siguiente ejemplo de factorización LU de una matriz en un sistema

Más detalles

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular.

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. 3.1. Introducción El Método de los Elementos de Contorno (MEC) se ha implantado firmemente en numerosos campos de la ingeniería

Más detalles

Algebra Lineal XX: Determinantes.

Algebra Lineal XX: Determinantes. Algebra Lineal XX: Determinantes. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamanca.ugto.mx

Más detalles

Nombre de la asignatura : Matemáticas III (Algebra Lineal) Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : ACM-9303

Nombre de la asignatura : Matemáticas III (Algebra Lineal) Carrera : Ingeniería en Sistemas Computacionales. Clave de la asignatura : ACM-9303 1. D A T O S D E L A A S I G N A T U R A Nombre de la asignatura : Matemáticas III (Algebra Lineal) Carrera : Ingeniería en Sistemas Computacionales Clave de la asignatura : ACM-9303 Horas teoría-horas

Más detalles

Factorización de matrices

Factorización de matrices CAPÍTULO Factorización de matrices En este capítulo se estudian algunas de las técnicas más utilizadas para factorizar matrices, es decir, técnicas que permiten escribir una matriz como producto de dos

Más detalles

Tema 8: Aplicaciones. Ecuaciones en. diferencias: modelos en tiempo discreto. 1 Modelo de crecimiento exponencial. 2 Sucesión de Fibonacci

Tema 8: Aplicaciones. Ecuaciones en. diferencias: modelos en tiempo discreto. 1 Modelo de crecimiento exponencial. 2 Sucesión de Fibonacci 8 de diciembre de 20 Contexto: Bloque de Álgebra Lineal Tema 6. Sistemas de ecuaciones lineales y matrices. Tema 7. Valores y vectores propios. Tema 8. Aplicaciones del cálculo de los valores y vectores

Más detalles

CORPORACIÓN UNIVERSITARIA REMINGTON

CORPORACIÓN UNIVERSITARIA REMINGTON 1 Programa: Asignatura: Contaduría Pública. Algebra Lineal. Nivel: 03 Créditos: 3 OBJETIVOS - Estudiar la representación matricial del modelo lineal para optimizar el manejo operativo del mismo. - Analizar

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Algebra Lineal XXVI: La Regla de Cramer.

Algebra Lineal XXVI: La Regla de Cramer. Algebra Lineal XXVI: La Regla de Cramer José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

ACTIVIDADES SELECTIVIDAD MATRICES

ACTIVIDADES SELECTIVIDAD MATRICES ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden

Más detalles

Tema 2: Determinantes

Tema 2: Determinantes Tema 2: Determinantes 1. Introducción En este tema vamos a asignar a cada matriz cuadrada de orden, un número real que llamaremos su determinante y escribiremos. Vamos a ver cómo se calcula. Consideremos

Más detalles

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 1

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 1 Temas: Ambiente de trabajo MATLAB. Creación de matrices y vectores. Matrices pre-definidas. Operador dos puntos. Operaciones con matrices y vectores. Direccionamiento de elementos de matrices y vectores.

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE:

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE: GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA PROGRAMA: ALGEBRA LINEAL CÓDIGO ASIGNATURA: 1272-521 PRE-REQUISITO: 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE: 90-II UNIDADES DE CRÉDITO:

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... TEMA : MATRICES Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas a a a... a n a a a... an A... am am am... amn A los números reales a ij se les llama elementos

Más detalles

PAIEP. Complemento Ortogonal

PAIEP. Complemento Ortogonal Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Complemento Ortogonal Veamos ahora una aplicación de los vectores ortogonales a la caracterización de subespacios

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ... MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones

Más detalles

Operaciones con matrices

Operaciones con matrices Operaciones con matrices Problemas teóricos En todos los problemas de esta lista se supone que F es un campo (cuerpo). Si no conoce bien el concepto de campo, entonces puede pensar que F = R. Operaciones

Más detalles

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. TEMA 1.- MATRICES 1.-Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo:

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo: Mapa conceptual Determinante de segundo orden Dada una matriz cuadrada de segundo orden: a a 11 12 A = a a 21 22 se llama determinante de A al número real: det (A)= A = a11 a 12 = a a a a a21 a22 11 22

Más detalles

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Algebra Lineal Prof: J. Solano 2012-I Introduccion Aqui trabjaremos con operaciones basicas con matrices, tales como solucion

Más detalles

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Dr. Gonzalo Hernández Oliva UChile - Departamento de Ingeniería Matemática 07 de Mayo 2006 Abstract En este apunte veremos

Más detalles

Matriz inversa generalizada y descomposición del valor singular

Matriz inversa generalizada y descomposición del valor singular Matriz inversa generalizada y descomposición del valor singular Divulgación Fernando Velasco Luna y Jesús Hernández Suárez Laboratorio de Investigación y Asesoría Estadística, Facultad de Estadística e

Más detalles

PROGRAMA INSTRUCCIONAL

PROGRAMA INSTRUCCIONAL UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA PROGRAMA INSTRUCCIONAL DATOS BÁSICOS DE LA ASIGNATURA Nombre de la asignatura: Código Semestre U.C. Pre- Requisito ALGEBRA LINEAL

Más detalles

CAPÍTULO 4 RESULTADOS Y DISCUSIÓN

CAPÍTULO 4 RESULTADOS Y DISCUSIÓN CAPÍTULO 4 RESULTADOS Y DISCUSIÓN 4.1 Verificación del código numérico Para verificar el código numérico, el cual simula la convección natural en una cavidad abierta considerando propiedades variables,

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)

Más detalles

ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012. Guía de Estudio y Ejercitación propuesta

ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012. Guía de Estudio y Ejercitación propuesta ALGEBRA Y GEOMETRÍA II 2º semestre Año: 2012 1 Guía de Estudio y Ejercitación propuesta Esta selección de Temas y Ejercicios están extraídos del texto FUNDAMENTOS DE ALGEBRA LINEAL de R. Larson y D. Falvo.

Más detalles

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles