5 Variables aleatorias contínuas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "5 Variables aleatorias contínuas"

Transcripción

1 5 Variables aleatorias contínuas Año 202 Una variable aleatoria continua puede tomar cualquier valor en un intervalo de números reales.. Función de densidad. La función de densidad de una variable aleatoria continua es una función f que cumple f(x) 0; Z f(x)dx = : (3) (comparar con (8)) y para todo a < b F (b) F (a) = P (a < X b) = Z b a f(x)dx: (4) Entonces es evidente que para una variable aleatoria continua: P (a < X < b) = P (a X b) La relación entre la función de densidad y la función de distribución está dada por: F (x) = P (X x) = Z x f(y)dy; de donde se deduce que la función de distribución de una variable aleatoria continua, es una función continua en todas partes; y que la función de densidad es la derivada de la función de distribución, en todos los puntos en los que esta última sea derivable: f(x) = df (x) dx : 5. Esperanza de una variable aleatoria continua La esperanza o media de una variable continua con función de densidad f; es EX = Z xf(x)dx: 28

2 cuando esta integral está de nida. Si X es una variable aleatoria continua con densidad f y h es una función cualquiera, h(x) es una variable aleatoria cuya esperanza se calcula como: Eh(X) = Z h(x)f(x)dx cuando esta integral está de nida. La propiedad de linealidad del valor esperado también vale para variables aleatorias continuas, así como la de nición y propiedades de la varianza, y de la desviación típica. Para variables aleatorias continuas se de nen los cuantiles de la siguiente forma, para cualquier 0 < < ; el cuantil-, es el valor x(); tal que F (x()) = P (X x()) = Z x() f(x)dx = En particular, el cuantil-0:5 se llama mediana y es el valor e, tal que: F (e) = Z e f(x)dx = =2 Ejemplo 5. Sea X una v. a. con densidad dada por: f(x) = Obtener F (x) Gra car f(x) y F (x) Calcular F ( ), F (0) y F () Calcular P (0 X 0:5) 0:2 si x 0 0:2 + cx si 0 < x 0 en caso contrario Ejemplo 5.2 Sea X una v.a. con la siguiente función de distribución: F (x) = 0 si x < 0 x=8 si 0 x < 2 x 2 =6 si 2 x 4 si x > 4 29

3 Obtener la función de densidad para X Calcular P ( X 3) Calcular P (X :5) Realice los ejercicios de a Distribución uniforme Veamos un ejemplo muy simple: supongamos que una persona toma un colectivo para ir al trabajo, que pasa exactamente cada 5 minutos. Si sale de su casa sin tener en cuenta la hora, el tiempo X, que tiene que esperar en la parada es una variable aleatoria que puede tomar cualquier valor en el intervalo [0; 5], la función de densidad para esta variable es: =5 si x [0; 5] f(x) = 0 en otro caso Es evidente que f(x) 0, para todo x; y que el área total bajo f(x) es igual a. La probabilidad de que tenga que esperar entre y 3 minutos es: P ( X 3) = R 3 dx = Se dice que esta variable aleatoria tiene distribución uniforme en el intervalo [0,5] En general se dice que una variable aleatoria tiene distribución uniforme en el intervalo [a,b] (X s U[a; b]), si su función de densidad está dada por: f(x) = si x[a; b] b a 0 en otro caso esta función cumple: f(x) 0 para todo x; y R f(x)dx =. Calculemos la media y varianza de una variable aleatoria con distribución uniforme en [a,b]. EX = Z xf(x)dx = Z b a x b a dx = b 2 a 2 b a 2 = b + a 2 entonces la media de una distribución uniforme es el punto medio del intervalo. Para calcular la varianza, calculamos primero EX 2 = Z x 2 f(x)dx = Z b a x 2 b a dx = b 3 a 3 b a 3 30 = a2 + ab + b 2 3

4 entonces var(x) = EX 2 (EX) 2 = a2 + ab + b 2 3 (b + a) 2 4 = (b a)2 2 La función de distribución está dada por: 0 si x < a F (x) = x a si x[a; b] b a si x > b Para calcular la mediana e; podemos hacer: y despejando: F (e) = e a b a = =2 med(x) = e = b + a 2 en este caso la mediana y la media coinciden. Esto ocurre siempre que la distribución es simétrica. 5.3 Distribución exponencial Veamos otro ejemplo de variable aleatoria continua. Pensemos en un proceso temporal de Poisson, y consideramos el tiempo T transcurrido entre la presentación de dos eventos sucesivos. Ese tiempo T, es una variable aleatoria que puede tomar cualquier valor no negativo, y puede demostrarse que tiene función de densidad dada por: f(x) = e x si x > 0 0 si x 0 y se dice que tiene distribución exponencial con parámetro (X ()), donde es el valor medio del número de eventos por unidad de tiempo. Su función de distribución está dada por: F (t) = Z t f(x)dx = e t si t > 0 0 si t 0 3

5 Ejemplo 5.3 Supongase que se reciben llamadas en una línea telefónica de emergencias las 24 hs del día, según un proceso de Poisson con una tasa 0.5 llamadas por hora. Cuál es la probabilidad de que transcurran más de dos horas entre dos llamadas sucesivas? La variable aleatoria T; el tiempo (medido en horas) entre dos llamados sucesivos, tiene distribución exponencial con = 0:5. Entonces: P (T > 2) = P (T 2) = ( e 0:52 ) = 0:3679 La media y varianza de una variable exponencial están dadas por: ET = ; var(t ) = 2 luego Para calcular la mediana e F (e) = e e = =2 med(t ) = e = ln 2 en este caso puede verse que la mediana es menor que la media. Realice los ejercicios de 6 a La distribución normal La distribución normal típica (o normal N(0; )) tiene densidad '(z) = p 2 e z2 =2 se puede ver que esta función es simétrica respecto de 0 Si Z tiene esta distribución, entonces se prueba que EZ = 0; var(z) = Llamamos (z) a su función de distribución; entonces para todo a < b: P (a Z b) = (b) (a): 32

6 Por ser ' simétrica, la cumple ( z) = (z): (5) Las tablas de suelen incluir sólo las z 0; y los valores para z < 0 se obtienen usando (5). Por ejemplo, se obtiene de la tabla que (:02) = 0:846: Para calcular ( :02) se hace 0:846 = 0:539. Se deduce de (5) que los cuantiles de la N(0; ) cumplen y en particular la mediana z( ) = z(); (6) med(z) = e = z(0:5) = 0: La variable X tiene distribución normal con media y varianza 2 (que se indica N(; 2 )) si su función de densidad está dada por: f(x) = p 2 e (x )2 =2 2 puede verse que la grá ca de esta función es simétrica respecto de : También puede demostrarse que si X s N(; 2 ), entonces: E(X) =, V (X) = 2 Importante: La familia de distribuciones normales tiene la siguiente propiedad: si X s N(; 2 ), entonces para cualquier a 6= 0 y cualquier b, se veri ca que Y = ax + b s N(a + b; a 2 2 ) Entonces, variable normalizada Z = (X )= tiene distribución N(0; ): O sea que X s N(; 2 ) si X = + Z donde Z s N(0; ): (7) Ejemplo 5.4 Sea X s N(30; 4), se desea calcular P (28 < X < 3): 33

7 P (28 < X < 3) = P ((28 30)=2 < (X 30)=2 < (3 30)=2) = = P ( < Z < =2) = (0:5) ( ) = (0:5) ( ()) = = 0:695 ( 0:843) = 0:5328 En general, para calcular probabilidades correspondientes a una X con distribución N(; 2 ); se la lleva al caso N(0; ), trabajando con Z = (X )=: Su función de distribución es entonces F (x) = P (X x) = P y por lo tanto, si a < b : P (a X b) = F (b) Z x b F (a) = x = a ; De aquí se puede ver que para cualquier variable aleatoria X con distribución normal, la probabilidad de que X esté dentro de desvío estándar de su media es: P ( < X < + ) = () ( ) = 0:6826 P ( 2 < X < + 2) = (2) ( 2) = 0:9544 y P ( 3 < X < + 3) = (3) ( 3) = 0:9974 : Usando (7), se prueba que los cuantiles de una variable X con distribución N(; 2 ) cumplen x() = + z(); (8) donde z() son los cuantiles de N(0; ): En particular, la mediana de una X s N(; 2 ) es med(x) = x(0:5) = Ejemplo 5.5 Calcularemos los cuantiles de 0.80 y de 0.20 de una variable normal X con media 5 y desviación 2. De la tabla: (0:84) = 0:7995 y (0:85) = 0:8023: Interpolando resulta aproximadamente z(0:8) = 0:843; y por lo tanto x(0:8) = :843 = 6:686: Para el otro cuantil, usamos z(0:2) = z(0:8) y por lo tanto x(0:8) = 5 2 0:843 = 3:34: Realice los ejercicios de a 4 34

8 6 "Propagación de errores": Funciones de una variable Cuando se realiza cualquier medición, siempre se cometen de errores. Los errores pueden ser sistemáticos, como en el caso de una balanza mal calibrada que siempre da un valor superior al verdadero, o pueden ser aleatorios. En muchas situaciones los errores sistemáticos deben ser eliminados, por ejemplo calibrando correctamente la balanza, en otras cuando se conoce la magnitud del error, puede corregirse el resultado de la medición sumando (o restando según sea el caso) el valor del error sistemático. Los errores que podemos tratar en estadística son los errores aleatorios. Debido a los errores aleatorios cuando repetimos una medición, en idénticas condiciones, los resultados de esas mediciones no son constantes, y uctúan alrededor de un valor medio. Este tipo de error no puede ser eliminado. Entonces, consideremos el resultado de una medición, como una variable aleatoria X = a + ", donde a es el verdadero valor de la magnitud que se está midiendo y " es el error aleatorio, que en general, podemos suponer que tiene distribución normal con media 0 (esto indica que es igualmente probable que el error sea positivo o negativo) y varianza 2, el valor de la varianza depende de la precisión del método de medición. Resumiendo, consideramos el resultado de una medición como una variable aleatoria: X = a + ", donde a es el verdadero valor y " N(0; 2 ) (9) o lo que es equivalente: X N(a; 2 ), donde a es el verdadero valor (20) En muchos casos interesa conocer el valor de una medición indirecta, es decir se está midiendo x, pero se desea conocer f(x), y también interesa conocer cual es el error en la medición indirecta f(x), esto es lo que denominamos "propagación de errores". Por ejemplo, sabemos que la absorbancia a de una solución es el negativo del logaritmo (decimal) de su transmitancia t : a = log t: Se tiene una medición de t con error, representada por una variable aleatoria X con media t y desviación ; entonces la absorvancia también es una variable 35

9 aleatoria Y : Y = log X: (2) Con estos elementos se desea calcular la desviación típica de Y; sabiendo que t = 0:50; = 0:00: Para resolver este problema, lo plantearemos de modo más general, sea una variable aleatoria Y que es función de otra variable X : Y = h(x); donde X tiene media y desviación ; buscaremos una forma de aproximar su media y su varianza. La aproximación de la serie de Taylor a h(x) en un entorno de es: h(x) ' h() + h 0 ()(X ) (22) El lado derecho de esta ecuación es una función lineal de X. Si la distribución de X está concentrada en un intervalo sobre el que la función h sea aproximadamente lineal, entonces (22) es una buena aproximación de Y; y puede usarse para aproximar los valores de E(Y ) y dt(y ); utilizando (22) y (9): E(h(X)) ' h() + h 0 ()E(X ) = h() del mismo modo, usando (22)y (0): dt(h(x)) ' jh 0 ()j dt(x) Por ejemplo, si Y = X 2 ; es h(x) = x 2 ; por lo tanto h 0 (x) = 2x; y en consecuencia dt(y ) 2 jj : En el caso (2) es = t; y h(x) = h 0 (x) = (con e = 2:7828::::); lo que da EY log 0:50 = 0:30; dt(y ) log x; por lo tanto log e x = 0:434 x 0:434 0:00 0:50 = 0:0008: Realice el resto de los ejercicios 36

10 Práctica 3. Sea X una variable aleatoria con densidad dada por: f(x) = c(2 x) si 0 x 2 0 en caso contrario (a) Determinar el valor de c y gra car f(x) (b) Obtener y gra car F (x) (c) Calcular P ( X 2) (d) Calcule E(X) y V (X) (e) Sea Y = 2X 3, cuál es la E(Y )? (f) Calcular el 80-percentil. (el cuantil-0:80) 2. El tiempo de reacción (en segundos) a cierto estímulo es una variable aleatoria X con función de distribución dada por: 0 si x < F (x) = (3=2)( =x) si x 3 si x > 3 (a) Calcular la función de densidad f(x) y gra car. (b) Cuál es la probabilidad de que el tiempo de reacción sea a lo sumo 2,5 segundos? entre,5 y 2,5 segundos? (c) Calcular el tiempo esperado de reacción y la mediana. (d) Calcular la desviacón estándar del tiempo de reacción (e) Sea Y = X 3, calcular E(Y ) 3. El tiempo de vida (en horas) de cierto tubo de radio es una variable aleatoria continua con función de densidad dada por f(x) = 0 si x 00 00=x 2 si x > 00 (a) Veri car que ésta es una función de densidad. (b) Calcular la probabilidad de que uno de esos tubos deba ser reemplazado antes de las 50 horas de operación 37

11 (c) Puede calcular la media del tiempo de vida de estos tubos? (d) Puede calcular la mediana del tiempo de vida de estos tubos? (e) Determinar el valor tal que el tiempo de vida del 90% de los tubos de radio de ese tipo sea inferior a ese valor (el 90-percentil) 4. Sea X la temperatura a que tiene lugar cierta reacción química, y sea su densidad: f(x) = (4 9 x2 ) si x 2 0 en otro caso (a) Gra car f(x) (b) Hallar la función de distribución y gra carla (c) Es 0 la temperatura mediana a que se realiza la reacción química?. Si no es así, la temperatura mediana es menor o mayor que 0? (d) Suponga que esta reacción química se realiza en 0 laboratorios en forma independiente, y que la función de densidad de la temperatura de reacción es la misma en cada laboratorio. Sea Y el número entre estos 0 laboratorios en los que la temperatura de la reacción es superior a. Qué distribución tiene esta variable aleatoria? 5. Para ciertas muestras de minerales, la proporción de impurezas por muestra es una variable aleatoria Y, con densidad dada por: f(y) = (3=2)y2 + y si 0 y 0 en caso contrario El valor de cada muestra es U = 5 0:5Y. Encontrar E(U) y V (U) 6. Suponga que la temperatura de reacción X (en o C) de un cierto proceso químico tiene una distribución uniforme en [70; 95]. Calcular: (a) P (X < 80), P (75 < X < 90) (b) Calcular la media y la varianza de X (c) Cuál es la probabilidad de que la temperatura esté dentro de desvío estándar del valor medio? 38

12 7. La duración de cada operación que realiza cierta máquina puede representarse mediante una v.a. uniforme de media 0 segundos y varianza 3 seg2. Cuántos segundos tarda como mínimo, el 75% de las veces? 8. Supongamos que el tiempo de funcionamiento de una lámpara está exponencialmente distribuida con media 0. Supongamos que una persona entra en una habitación donde hay una lámpara encendida. (a) Cuál es la probabilidad de que la lámpara dure menos de 6 horas? (b) Cuál es la probabilidad de que no se funda la bombilla si la persona desea trabajar 5 horas? (c) Cuál es la probabilidad de que dure entre 4 y 8 horas? 9. Sea X el tiempo (en minutos) entre dos llegadas sucesivas a un servicio de emergencias. Si X tiene distribución exponencial con = 0; 25. Calcular: (a) El tiempo esperado entre dos llegadas sucesivas. (b) La probabilidad de que el tiempo entre dos llegadas sea menor de 0 minutos 0. Se ha comprobado que el tiempo de vida de cierto tipo de marcapasos sigue una distribución exponencial con media de 6 años. Cuál es la probabilidad de que a una persona a la que se le ha implantado este marcapasos se le deba reimplantar otro antes de 20 años? Si el marcapasos lleva funcionando correctamente 5 años en un paciente, cuál es la probabilidad de que haya que cambiarlo antes de 25 años?. La variable Y tiene distribución normal típica. Calcular las probabilidades de (a) Y 2; 23, (b) Y > ; 35, (c) 0; 5 < Y < ; Calcular: (a) la mediana y los cuartiles de una variable con distribución normal tipica (b) Idem, para la distribución N(0; 36) (c) Para esta última, calcular los percentiles del 0% y del 90%. 39

13 3. En determinada población la presión arterial diastólica entre mujeres de 8 a 74 años se encuentra distribuida normalmente con una media de = 77 mmhg y una desviación estándar de = ; 6 mmhg (a) Cuál es la probabilidad de que una mujer elegida al azar tenga una presión arterial diastólica menor de 60 mmhg? (b) Cuál es la probabilidad de que tenga una presión diastólica mayor de 90 mmhg? (c) Cuál es la probabilidad de que tenga una presión diastólica entre 60 y 90 mmhg? 4. Una fábrica produce tornillos, las especi caciones indican que el diámetro de los mismos debe estar entre ; 9 y ; 2 pulgadas. Si el proceso de producción es tal que el diámetro de los tornillos es una variable aleatoria con distribución normal con media ; 96 y desviación estandar 0; 005: Qué porcentaje de la producción no satisface las especi caciones? 5. Si el voltaje v en un medio es jo, pero la corriente I es aleatoria, entonces la resistencia (R = v=i) también será aleatoria. Si I = 20 y I = 0:5, calcule los valores aproximados de R y R. 6. Se desea calcular el volumen de un tanque, sabemos que el radio de la base circular es la mitad de la altura. Se mide la altura y el resultado es 2m, esta medición tiene un error aleatorio con = 0:m. Calcular aproximadamente la desviación típica del error del cálculo del volumen del tanque. 7. Un sistema consta de 5 componentes idénticos conectados en serie. Cuando falla uno de los componentes, falla todo el sistema. Suponga que cada componente tiene una duración que está distribuida exponencialmente con = 0; 0 y que dicha duración es independiente para cada componente. De na A i ={i-ésimo componente dura por lo menos t horas}, i = ; :::; 5 (estos A i son eventos independientes). Sea X = el tiempo en que falla el sistema (esto es la duración más breve entre las cinco componentes) (a) El evento (X t), es equivalente a qué evento donde aparecen las A i? 40

14 (b) Por medio de la independencia de las A i, calcule P (X t). Luego obtenga F (t) = P (X t) y la densidad de X 8. La demanda semanal de gas propano (en miles de galones) es una varable aleatoria X con densidad dada por: f(x) = 2( =x2 ) si x 2 0 en caso contraio (a) Calcular la función de distribución. (b) Calcular la mediana. (c) Calcular E(X) y V (X) (d) Si al principio de la semana hay 2300 galones en existencia y no se recibe nuevo suministro durante la semana, cuántos galones se espera que queden al terminar la semana? 9. Se ha estudiado el volumen corpuscular medio eritrocitario (VCM) en pacientes con posible diagnóstico de anemia ferropénica como indicador de esta patología, el verdadero diagnóstico se establece con biopsia de médula osea. Para simpli car, suponemos que los valores de VCM en la población siguen ua distribución normal. En una población de pacientes con diagnóstico con rmado de anemia ferropénica se ha estimado = 73 y = 6;. En una población donde se ha descartado ese diagnóstico se ha estimado = 82 y = 5; 9: Si se utilza un valor del VCM inferior a 75, para diagnosticar anemia ferropénica. (a) Cuál es la sensibilidad de este método? Esto es: cuál es probabilidad de diagnosticar correctamente un paciente que tiene anemia ferropénica? Cuál es la probabilidad de un falso positivo? (b) Cuál es la especi cidad? Esto es la probabilidad de clasi car correctamente a un paciente sin anemia ferropénica Cuál es la probabilidad de un falso negativo? (c) Cómo cambiarían esos valores si el valor de corte fuera 80, y si fuera 85? 4

5 Variables aleatorias contínuas

5 Variables aleatorias contínuas 5 Variables aleatorias contínuas Una variable aleatoria continua puede tomar cualquier valor en un intervalo de números reales.. Función de densidad. La función de densidad de una variable aleatoria continua

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

Relación de Problemas. Tema 6

Relación de Problemas. Tema 6 Relación de Problemas. Tema 6 1. En una urna hay 5 bolas blancas y 2 negras y se sacan tres bolas sin reemplazamiento. a) Calcular la distribución conjunta del número de bolas blancas y negras de entre

Más detalles

La distribución de Probabilidad normal, dada por la ecuación:

La distribución de Probabilidad normal, dada por la ecuación: La distribución de Probabilidad normal, dada por la ecuación: Donde: x = X -, la distancia entre X y en el eje de las X. = la media de la población o universo ( de las X ) fx= La altura de la ordenada

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

CAPÍTULO 4 TÉCNICA PERT

CAPÍTULO 4 TÉCNICA PERT 54 CAPÍTULO 4 TÉCNICA PERT Como ya se mencionó en capítulos anteriores, la técnica CPM considera las duraciones de las actividades como determinísticas, esto es, hay el supuesto de que se realizarán con

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Probabilidades y stadística Computación Facultad de Ciencias actas y Naturales Universidad de uenos ires na M ianco y lena J Martínez 004 Variables aleatorias continuas jemplo: Con el in de realizar un

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.

Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua. Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

S = N λ = 5 5 = 1 hora.

S = N λ = 5 5 = 1 hora. Teoría de Colas / Investigación Operativa 1 PROBLEMAS DE INVESTIGACIÓN OPERATIVA. Hoja 5 1. Al supercomputador de un centro de cálculo llegan usuarios según un proceso de Poisson de tasa 5 usuarios cada

Más detalles

EL PROBLEMA DE LA TANGENTE

EL PROBLEMA DE LA TANGENTE EL PROBLEMA DE LA TANGENTE El problema de definir la tangente a una curva y f (x) en un punto P ( x, y ) ha llevado al concepto de la derivada de una función en un punto P ( x, y ). Todos sabemos dibujar

Más detalles

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M.

PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES. Prof. Johnny Montenegro 1 M. PROBABILIDADES VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES Prof. Johnny Montenegro 1 M. PROBABILIDADES 2 Una variable es aleatoria si toma los valores de los resultados de un experimento aleatorio. Esta

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de

Más detalles

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016 ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016 Ejercicio 1 Una empresa de selección de personal llama a 12 postulantes para una entrevista de empleo. Se sabe por experiencia

Más detalles

Transformaciones de variables

Transformaciones de variables Transformaciones de variables Introducción La tipificación de variables resulta muy útil para eliminar su dependencia respecto a las unidades de medida empleadas. En realidad, una tipificación equivale

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.7: Aproximación de funciones. Desarrollo de Taylor. Aproximación lineal. La aproximación lineal de una función y = f(x) en un punto x = a es la

Más detalles

Variable Aleatoria. Relación de problemas 6

Variable Aleatoria. Relación de problemas 6 Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es

Más detalles

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma:

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma: TEMA 6: Variables aleatorias Examen Junio 003.- La función de distribución de una variable continua X es de la forma: 3 F ( t) = P( X t) = a + bt ct t, Se sabe que la densidad verifica f(-)=f()=0. [ ]

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 3

Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias

Más detalles

La distribución normal o gaussiana es la distribución. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si

La distribución normal o gaussiana es la distribución. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si La distribución normal La distribución normal o gaussiana es la distribución continua más importante. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si f(x) = 1

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 1) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = x y z y B = 1, se pide: 1 1 3 1 k, X = 1.

Más detalles

PROBLEMAS ESTADÍSTICA I

PROBLEMAS ESTADÍSTICA I PROBLEMAS ESTADÍSTICA I INGENIERÍA TÉCNICA EN INFORMÁTICA CURSO 2002/2003 Estadstica Descriptiva Unidimensional 1. Un edificio tiene 45 apartamentos con el siguiente número de inquilinos: 2 1 3 5 2 2 2

Más detalles

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores: Mediciones II Objetivos El alumno determinará la incertidumbre de las mediciones. El alumno determinará las incertidumbres a partir de los instrumentos de medición. El alumno determinará las incertidumbres

Más detalles

Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página

Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página Derivadas 6 ACTIVIDADES 1. Página 140 Función f(x) x 2 1: Función g(x) x 3 7: 2. Página 140 3. Página 141 4. Página 141 5. Página 142 211 Derivadas 6. Página 142 Las derivadas laterales no existen, por

Más detalles

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24 Comenzado el lunes, 25 de marzo de 2013, 17:24 Estado Finalizado Finalizado en sábado, 30 de marzo de 2013, 17:10 Tiempo empleado 4 días 23 horas Puntos 50,00/50,00 Calificación 10,00 de un máximo de 10,00

Más detalles

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011 NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011 CÓMO CARACTERIZAR UNA SERIE DE DATOS? POSICIÓN- dividen un conjunto ordenado de datos en grupos con la misma cantidad de individuos CENTRALIZACIÓN-

Más detalles

CAPITULO XII PUENTES DE CORRIENTE ALTERNA

CAPITULO XII PUENTES DE CORRIENTE ALTERNA CAPITULO XII PUENTES DE CORRIENTE ALTERNA 2. INTRODUCCION. En el Capítulo IX estudiamos el puente de Wheatstone como instrumento de medición de resistencias por el método de detección de cero. En este

Más detalles

Propiedades en una muestra aleatoria

Propiedades en una muestra aleatoria Capítulo 5 Propiedades en una muestra aleatoria 5.1. Conceptos básicos sobre muestras aleatorias Definición 5.1.1 X 1,, X n son llamadas una muestra aleatoria de tamaño n de una población f(x) si son variables

Más detalles

5 DISTRIBUCIONES BINOMIAL Y DE POISSON

5 DISTRIBUCIONES BINOMIAL Y DE POISSON 5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015 CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 201 Apellidos Nombre Centro de examen Instrucciones Generales PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Ejercicios de Variables Aleatorias

Ejercicios de Variables Aleatorias Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UCM Función de distribución y función de densidad Ejercicio. Sea X una variable aleatoria con función de distribución dada

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Ecuaciones diferenciales de primer orden. Traectorias ortogonales. Muchas aplicaciones problemas de la ciencia, la ingeniería la economía se formulan en términos

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATMÁTICAS APLICADAS A LAS CINCIAS SOCIALS JRCICIO Nº páginas 2 Tablas OPTATIVIDAD: L ALUMNO/A DBRÁ SCOGR UNO D LOS DOS BLOQUS Y DSARROLLAR LAS

Más detalles

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2010 Contenidos...............................................................

Más detalles

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Simulación I. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Simulación I Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Modelos de simulación y el método de Montecarlo Ejemplo: estimación de un área Ejemplo: estimación

Más detalles

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

6. VARIABLES ALEATORIAS

6. VARIABLES ALEATORIAS 6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta

Más detalles

Resumen sobre mecánica analítica

Resumen sobre mecánica analítica Resumen sobre mecánica analítica Ecuaciones de Lagrange. Supongamos una partícula, cuyo movimiento se puede describir mediante una sóla coordenada x, de modo que en el instante t la posición de la partícula

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

RELACIÓN DE PROBLEMAS. Distribuciones de probabilidad

RELACIÓN DE PROBLEMAS. Distribuciones de probabilidad RELACIÓN DE PROBLEMAS Distribuciones de probabilidad 1. Se lanzan al aire dos monedas tres veces consecutivas. Sea X la v.a. que representa el número de veces que se obtiene cara en ambas monedas en los

Más detalles

f (x) (1+[f (x)] 2 ) 3 2 κ(x) =

f (x) (1+[f (x)] 2 ) 3 2 κ(x) = MATEMÁTICAS II - EXAMEN PRIMER PARCIAL - 4/11/11 Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio 1. La curvatura de una función f en un punto x viene

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas 2 Tablas OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido:

1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido: . Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido: Peso [.5,.75) [.75,3) [3,3.5) [3.5,3.5) [3.5,3.75) [3.75,4) [4,4.5) [4.5,4.5] N o de niños 7 36

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 009,

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

Variables aleatorias unidimensionales

Variables aleatorias unidimensionales Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen

Más detalles

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante. Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

1.3.- V A L O R A B S O L U T O

1.3.- V A L O R A B S O L U T O 1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

Ejercicios de Vectores Aleatorios

Ejercicios de Vectores Aleatorios Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO MAGISTRAL GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES Otros M2 Calcular la función de densidad conjunta y las marginales

Más detalles

Análisis de datos Categóricos

Análisis de datos Categóricos Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Semana 2 [1/24] Derivadas. August 16, Derivadas

Semana 2 [1/24] Derivadas. August 16, Derivadas Semana 2 [1/24] August 16, 2007 Máximos y mínimos: la regla de Fermat Semana 2 [2/24] Máximos y mínimos locales Mínimo local x es un mínimo local de la función f si existe ε > 0 tal que f( x) f(x) x (

Más detalles

FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

JUNIO Bloque A

JUNIO Bloque A Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.4: La derivada y sus propiedades básicas. La Regla de la cadena. El concepto de derivada aparece en muchas situaciones en la ciencias: en matemáticas

Más detalles

Distribución Chi (o Ji) cuadrada (χ( 2 )

Distribución Chi (o Ji) cuadrada (χ( 2 ) Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante

Más detalles

P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249

P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249 Hoja 3: robabilidad y variables aleatorias 1. La probabilidad de que un enfermo se recupere tomando un nuevo fármaco es 0.95. Si se les administra a 8 enfermos, hallar: a La probabilidad de que se recuperen

Más detalles

4. NÚMEROS PSEUDOALEATORIOS.

4. NÚMEROS PSEUDOALEATORIOS. 4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar

Más detalles

MÉTODO DE VARIACIÓN DE PARÁMETROS

MÉTODO DE VARIACIÓN DE PARÁMETROS MÉTODO DE VARIACIÓN DE PARÁMETROS El método de variación de parámetros es aplicado en la solución de ecuaciones diferenciales no homogéneas de orden superior de las cuales sabemos que la solución de la

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

MODELO DE RESPUESTAS Objetivos del 1 al 9

MODELO DE RESPUESTAS Objetivos del 1 al 9 PRUEBA INTEGRAL LAPSO 05-764 - /9 Universidad Nacional Abierta Probabilidad y Estadística I (Cód. 764) Vicerrectorado Académico Cód. Carrera: 6 Fecha: 0-04-06 MODELO DE RESPUESTAS Objetivos del al 9 OBJ

Más detalles

INTRODUCCIÓN. Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora.

INTRODUCCIÓN. Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora. CAPÍTULO 1 INTRODUCCIÓN Construcción con tijeras y papel Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora. La caja1. De una hoja de papel vamos a recortar un cuadrito

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN 1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello

Más detalles

Introducción a Ecuaciones Diferenciales

Introducción a Ecuaciones Diferenciales Introducción a Ecuaciones Diferenciales Temas Ecuaciones diferenciales que se resuelven directamente aplicando integración. Problemas con condiciones iniciales y soluciones particulares. Problemas aplicados.

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Modelos de PERT/CPM: Probabilístico

Modelos de PERT/CPM: Probabilístico INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO Modelos de PERT/CPM: Probabilístico M. En C. Eduardo Bustos Farías 1 Existen proyectos con actividades que tienen tiempos inciertos, es decir,

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Bloque A JUNIO 2007 1.- Julia, Clara y Miguel reparten hojas de propaganda. Clara reparte siempre el 20 % del total, Miguel reparte 100 hojas más que Julia. Entre Clara y Julia reparten 850 hojas. Plantea

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios

III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios Esta lista contiene ejercicios y problemas tanto teóricos como de modelación. El objetivo

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x): MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales 5 Ecuaciones diferenciales 5.1. Qué es una ecuación diferencial Una ecuación diferencial es una ecuación en la que la incógnita a despejar no es un número sino una función. Las operaciones que intervienen

Más detalles

Distribución Normal. Universidad Diego Portales Facultad de Economía y Empresa. Estadística I Profesor: Carlos R. Pitta

Distribución Normal. Universidad Diego Portales Facultad de Economía y Empresa. Estadística I Profesor: Carlos R. Pitta Distribución Normal La distribución normal (O Gaussiana) se define como sigue: En donde y >0 son constantes arbitrarias. Esta función es en realidad uno de las más importantes distribuciones de probabilidad

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles