Introducción a la Probabilidad
|
|
|
- Rosario Roldán Acuña
- hace 8 años
- Vistas:
Transcripción
1 Introducción a la Probabilidad 1.- Introducción Aunque no lo creas, estudiando el comportamiento de los resultados al lanzar una moneda o un dado, se pueden establecer principios matemáticos de probabilidad que han resultado vitales para el desarrollo de la ciencia, como la Física, la Biología, la Genética, la Economía, la Química, las Ciencias Sociales. De hecho, la axiomática de todo el cálculo de la probabilidad está basado, prácticamente, en el lanzamiento de una moneda o de un dado. Un ejemplo más de que los principios de la ciencia son por lo general sencillos. 2.- Orígenes de la Probabilidad Sabías que la probabilidad tiene su origen en los estudios de las posibilidades de ganar en juegos de azar; en el siglo XVII. Pues bien, en el año 1650, De Meré un francés, jugador empedernido, se encuentra con Blaise Pascal y le propone un problema que ya se había discutido durante la Edad Media. El juego consistía en que cada jugador elegía un número, tiraban un dado alternadamente y el que conseguía primero tres veces el número elegido, ganaba. El problema que le propone De Meré a Pascal consistía en cómo debían repartirse el premio si al suspenderse, De Mère tenía dos puntos y su contrincante 1 punto. Pascal le envía cartas a otro matemático famoso de la época; Pierre de Fermat, contándole acerca de este problema. En el año 1645, ambos matemáticos resuelven el problema argumentado de que si cada uno de los jugadores había aportado 32 doblones y como De Meré tiene el doble de posibilidades de ganar que su adversario, debería recibir 48 doblones. Sobre estas investigaciones que Fermat y Pascal hicieron acerca del juego de dados, surgieron las bases de la probabilidad, la que actualmente influye en muchos aspectos de nuestra vida actual.
2 Por supuesto que estos son los primeros pasos de la teoría de la probabilidad, a continuación te presento un breve resumen del desarrollo histórico de la teoría de la probabilidad. Actividad 1: 1. Elegid un personaje de los mencionados e investigad acerca de la contribución que hizo al desarrollo o estudio de las probabilidades (obra, teorema, trabajos realizados, problemas resueltos etc). 2. Redactad vuestras conclusiones, comenta las conexiones respectivas entre las diversas obras de los personajes. Si aparecen otros matemáticos relacionados con el tema ubícalos en el esquema anterior Para realizar tu actividad puedes revisar la siguiente página relacionada con el tema: Taller 1: Lenguaje del azar Objetivo: Conocer y utilizar el lenguaje del azar Para iniciar este estudio es necesario que conozcas el lenguaje del azar para entender cuando hablamos de él, lo que te será de mucha utilidad. Lee y analiza atentamente las siguientes situaciones: 1. Al tirar una moneda 5 veces ha salido: cara-cara-cruz-cara cruz, si la lanzamos otra vez qué saldrá? 2. En una bolsa tenemos 7 bolas blancas y 4 bolas verdes. Sin mirar sacamos una Qué es más fácil, que la bola sea blanca o que sea verde? 3. Julio ha tirado una moneda al aire y ha obtenido 8 cruces seguidas. Si vuelve a tirar otra vez la moneda, saldrá otra vez cruz? Encontraste la solución?, parece que la respuesta no es tan simple, pues como te habrás dado cuenta dependen del azar, a estos experimentos se les llama
3 experimentos aleatorios, aleatorio porque procede de la palabra latina Alea, que significa riesgo, suerte, incertidumbre (también se utilizaba en la antigua Roma para indicar juego de azar, y más propiamente juegos de dados). Una experiencia es de azar si no se puede predecir su resultado. Ahora fíjate en los siguientes experimentos: 4. Si en un laboratorio se mezclan, en las proporciones adecuadas, hidrógeno y oxígeno da como resultado agua 5. Si lanzas una pelota al aire está siempre caerá al suelo Entonces habrás observado que el resultado de estos experimentos se sabe de antemano por lo que podemos decir que estamos ante dos experimentos determinísticos Puedes diferenciar ahora un experimento aleatorio de uno determinístico?, señala un ejemplo de tu vida diaria de cada uno. Ya conoces dos nuevos conceptos, experimento aleatorio y experimento determinístico, ahora concéntrate y contesta las siguientes preguntas: 1. Al lanzar una moneda Qué es más fácil, obtener cara o cruz? 2. Al lanzar un dado qué es más fácil obtener 3 o 6? 3. Al extraer una bolita de una bolsa que contiene dos bolas rojas y dos verdes, Qué es más fácil de extraer una bolita de color rojo o verde? Te fijas que las posibilidades de salir son las mismas, entonces si dos experimentos aleatorios tienen la misma posibilidad de ocurrir, se dice que son equiprobables, o que tiene la misma probabilidad. Ahora observa la caja con bolitas: Si sacas una bola sin mirar, es posible sacar una bola verde?, Qué es más seguro sacar una bola blanca o roja?, es poco
4 probable sacar una bola amarilla? Un hecho o suceso de un experimento aleatorio es: Imposible, si nunca ocurre. Seguro, si siempre ocurre. Poco probable, o improbable, si tenemos poca confianza de que ocurra. Bastante probable, si tenemos mucha confianza de que ocurra. De acuerdo a esto: Sacar una bola verde es: Sacar una bola blanca es: Sacar una bola roja es: Si Tienes bolas de colores: rojo, negra, café y amarilla, y queremos llenar una bolsa con 10 de esas bolas de modo que: 1. Sea imposible sacar bola amarilla. 2. Sea muy poco probable de sacar bola café. 3. Sea poco probable sacar bola roja. 4. Sea muy probable sacar bola negra. Cuántas bolas de cada color echaría en la bolsa? Sigamos formando nuestra base de datos: Observa el dado de la figura, los números que se pueden obtener al lanzar el dado son: Observa la moneda de la figura, Al lanzarla podemos obtener: El conjunto formado por todos los posibles resultados de un experimento aleatorio es llamado espacio muestral y cada uno de los resultados se llama suceso o evento elemental:
5 Experimento Espacio muestral Sucesos elementales Lanzar un dado S={1,2,3,4,5,6} 1,2,3,4,5,6 Lanzar una moneda S={cara, cruz} Cara y Cruz Si tú lanzas dos monedas al aíre crees que el espacio muestral es el mismo que si lanzas una? Descríbelos. Actividad 2: Realiza un esquema resumen de todo lo visto hasta ahora. 4.-Taller 2: Recogiendo información Recogiendo información un paso hacia la probabilidad experimental Objetivo: Construir tablas de frecuencias y calcular probabilidad en forma experimental En la mayor parte de los experimentos aleatorios se obtiene una gran cantidad de información, y está contiene datos que hay que recoger de algún modo para analizar y sacar conclusiones Lanza una moneda 10 veces al aire y rellena la siguiente tabla Lanzamientos Cara Cruz Frecuencia Cuántas veces ha salido cara? Con que frecuencia ha salido cruz? Llamaremos frecuencia al número de veces que ha ocurrido un suceso en un determinado experimento aleatorio, para diferenciarla de otro tipo de frecuencia la llamaremos frecuencia absoluta. Para obtener más información podemos realizar una comparación a través de una razón, entre la frecuencia absoluta de un suceso y el total de veces que se realiza el experimento a este cociente lo llamaremos Frecuencia relativa. Ejemplo: si lanzas una moneda 20 veces y 7 veces sale cara; la razón entre la frecuencia absoluta de un suceso y el total de veces que se realiza el experimento es 7/20; salen 7 caras de un total de 20 lanzamientos
6 Ahora te toca completar la siguiente tabla, observa lo que vas obteniendo: Al lanzar un dado 20 veces, Marta obtiene los siguientes resultados (complete la frecuencia relativa) Cara Frecuencia absoluta Frecuencia relativa total 20 1 Observa y contesta: Menor valor de la frecuencia relativa: Mayor valor de la frecuencia relativa: La frecuencia relativa varía entre 0 y 1 La suma de las frecuencias relativas es 1 Actividad 3: Para finalizar este taller continúa resumen que hiciste al inicio, complétalo con lo aprendido hasta ahora. 5.- Taller 3: Probabilidad Experimental Objetivo: cuantificar la probabilidad a través de un experimento Aunque un suceso o experimento aleatorio sea impredecible, la matemática ayuda a expresar en forma numérica hasta qué punto se puede esperar que dicho suceso ocurra. Para cuantificar la probabilidad de que un suceso ocurra realizaremos el siguiente experimento, visita el enlace que aparece a continuación en la página, te permitirá simular el lanzamiento de una moneda, primero lánzala 50 veces, anota en una tabla las respectivas frecuencias absolutas (el número de caras y cruces obtenidas) y sus respectivas frecuencia relativas, observa el gráfico, luego borra todo y lanza la moneda
7 100 veces anota en otra tabla los datos obtenidos, hazlo sucesivamente con 1000 lanzadas, lanzadas, lanzadas, y por ultimo lanzadas (indicaciones: 1º debes presionar inicio para limpiar, debes ingresar el numero de lanzamientos, luego presionar intro, y después el botón lanzar moneda, cada vez que realices un nuevo lanzamiento debes borrar el anterior con el botón inicio, en caso de ser necesario debes habilitar macros) Enlace Lados Frecuencia absoluta Frecuencia relativa Cara Cruz Observaste que la frecuencia relativa de un evento, a medida que aumenta el número de repeticiones de un mismo experimento empieza a mantenerse constante. Este número hacia el cual se aproxima la frecuencia relativa de un evento a medida que aumenta el número de repeticiones de un mismo experimento aleatorio, se denomina probabilidad (varía entre 0 y 1). La probabilidad de un suceso es la razón entre el número de veces que el suceso ocurriría en un número muy grande de prueba. La frecuencia relativa y la probabilidad se aproximan más y más cuanto mayor es el número de repeticiones de un mismo experimento aleatorio. De acuerdo al experimento realizado Cuál es la probabilidad que salga cara? Veamos cuánto has aprendido:
8 Un grupo de hombres y mujeres que asistieron a una cena pidieron postre o café según la tabla: Postre café total Hombre Mujer Total Si elegimos al azar un asistente, calcula la probabilidad de que: a) pidiera postre b) sea hombre c) sea mujer y haya pedido postre d) sea hombre y haya pedido café 6.-Taller 4: Regla de Laplace Objetivo: Utilizar la fórmula de Laplace para el cálculo de probabilidades Como has podido comprobar anteriormente, la probabilidad, que es un valor teórico, se puede obtener de forma experimental mediante el cálculo de la frecuencia relativa de un número grande de experiencias. En este caso, sabemos que la frecuencia relativa es un valor aproximado de la probabilidad. Ahora aprenderemos a calcular la probabilidad de forma teórica o matemática y no experimental, mediante la aplicación de la Regla o ley de Laplace. Pierre Laplace ( ) definió, sin tener que hacer repeticiones ni experimentos, la probabilidad de un evento solo con el análisis de casos favorables. Laplace propuso el cálculo del cociente entre los casos favorables y el total de casos posibles del evento, cuando los sucesos elementales del experimento aleatorio son equiprobables.
9 Veamos si has comprendido: Usando la regla de Laplace, resuelve el siguiente ejercicio: Si se tira un dado de seis caras numerado del 1 al 6 : a) Qué probabilidad tienes de obtener 5 al lanzar el dado? b) y de obtener un número entero menor que 5?
OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Experimento determinista. Experimento aleatorio. Espacio muestral. Suceso elemental.
Probabilidad INTRODUCCIÓN El estudio matemático de la probabilidad surge históricamente vinculado a los juegos de azar. Actualmente la probabilidad se utiliza en muchas disciplinas unidas a la Estadística:
Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.
Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,
EJERCICIOS DE PROBABILIDAD
Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias, cuáles son aleatorias? a) En una caja hay cinco bolas amarillas, sacamos una bola y anotamos su color. b) Lanzamos una
Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior.
Curso ON LINE Tema 01 SÓLO ENUNCIADOS. PROBABILIDADES I Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior. 001 002 003 004 005 Lanzamos 1 dado y comprobamos cuál es el
Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades
Experimentos deterministas Probabilidad Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar a dudas,
PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10
1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página PRACTICA Muy probable, poco probable Tenemos muchas bolas de cada uno de los siguientes colores: negro (N), rojo (R), verde (V) y azul (A), y una gran caja vacía. Echamos en la caja R, 0 V
Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 6 Cara o cruz
Ámbito Científico-Tecnológico Módulo IV Bloque 6 Unidad 6 Cara o cruz Me tocará? No me tocará? Si jugamos al parchís, sacaré un cinco para salir de casa? No lo sabemos, todo depende de la suerte o el azar.
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
PROBABILIDAD Definición de probabilidad La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES EXPERIMENTO ALEATORIO: ESPACIO MUESTRAL Y SUCESOS 1) Se considera el experimento que consiste en la extracción de tres tornillos de una caja que contiene tornillos
Tema 6 Probabilidad. 0.-Introducción La probabilidad de un suceso es un número, comprendido entre 0 y
Tema 6 Probabilidad 0.-Introducción La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
PROBABILIDAD La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio. Experimentos deterministas
2012-2013 2º ESO APLICACIÓN DE LAS FRACCIONES Y DE LA PRORCIONALIDAD AL CÁLCULO DE LA PROBABILIDAD
º ESO APLICACIÓN DE LAS FRACCIONES Y DE LA PRORCIONALIDAD AL CÁLCULO DE LA PROBABILIDAD Experiencias aleatorias La lotería, las rifas, el lanzar un dado, la bola de un bingo, etc. Son hechos, acciones,
ESTADISTICA Y PROBABILIDAD ESTADÍSTICA
ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta
Ejercicios elementales de Probabilidad
Ejercicios elementales de Probabilidad 1. Se extrae una carta de una baraja de 52 naipes. Halla la probabilidad de que sea: (a) Un rey. (b) Una carta roja. (c) El 7 de tréboles. (d) Una figura de diamantes.
Probabilidad. Contenidos. Objetivos. 1. Experimentos aleatorios Espacio muestral y sucesos Operaciones con sucesos Sucesos compatibles, incompatibles
CUADERNO Nº 12 NOMBRE: FECHA: / / Probabilidad Contenidos 1. Experimentos aleatorios Espacio muestral y sucesos Operaciones con sucesos Sucesos compatibles, incompatibles 2. Probabilidad de un suceso La
HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD
pág.45 HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD 1.- De una baraja española de 40 cartas se extrae una al azar, cuál es la probabilidad de que sea bastos o menor que 5? 2.- Dos jugadores (A y B) inician
GUÍA DE EJERCICIOS N 14 PROBABILIDADES
LICEO CARMELA CARVAJAL DE PRAT PROVIDENCIA DPTO DE MATEMATICA GUÍA DE EJERCICIOS N PROBABILIDADES SECTOR: Matemática PROFESOR(es): Marina Díaz MAIL DE PROFESORES: [email protected] [email protected]
EXPERIMENTOS ALEATORIOS ESPACIO MUESTRAL SUCESO. Probabilidad de un suceso. Ley de Laplace. Resolución de problemas
EXPERIMENTOS ALEATORIOS ESPACIO MUESTRAL SUCESO Tipos de sucesos Probabilidad de un suceso Frecuencia absoluta y relativa de un suceso - Imposible - Seguro - Incompatibles - Compatibles - Contrarios -
Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace.
Álgebra lineal. Curso 2007-2008. Tema 5. Hoja 1 Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. 1. Un dado se lanza dos veces. Se pide: (a) Construir el espacio muestral.
1.- Hallar la probabilidad de obtener al menos una cara al tirar n veces una moneda.
.- Hallar la probabilidad de obtener al menos una cara al tirar n veces una moneda. Si A sacar al menos una cara en n lanzamientos entonces A no sacar ninguna cara en n lanzamientos. Si A i sacar cara
TEMA 11. PROBABILIDAD
TEMA 11. PROBABILIDAD 11.1. Experimentos aleatorios. - Espacio muestral asociado a un experimento aleatorio. - Sucesos. Operaciones con sucesos. 11.2. Probabilidad. - Regla de Laplace 11.3. Experiencias
PRÁCTICA 6: Introducción a las probabilidades
Facultad de Agronomía Laboratorio Estadística General Aux. P. Agr. Jorge Sandoval 1 Introducción PRÁCTICA 6: Introducción a las probabilidades Las probabilidades constituyen una rama de las matemáticas
Nombre: Fecha: Curso:
REPASO 1 Begoña tiene camisetas para hacer deporte de tres colores: blancas, grises y negras. Completa la siguiente tabla de frecuencias con los datos del dibujo. Cuántas camisetas tiene en total? frecuencia
Problema 15.3. Observa las siguientes urnas y contesta las cuestiones que siguen:
15 Probabilidad Ejercicio 15.1. Indica cuáles de los siguientes sucesos son aleatorios y cuáles no: a) Lanzar una moneda. b) Aprobar un examen de matemáticas. c) Acertar una quiniela de fútbol. d) Lanzar
Tema 4. Probabilidad Condicionada
Tema 4. Probabilidad Condicionada Presentación y Objetivos. En este tema se dan reglas para actualizar una probabilidad determinada en situaciones en las que se dispone de información adicional. Para ello
TEMA 11: LA PROBABILIDAD
TEMA 11: LA PROBABILIDAD 1-T 11--2ºESO 1.- Experimentos Aleatorios y Deterministas. Nuestro entorno está lleno de vida, y en todo momento estamos rodeados de lo que se llaman fenómenos sociales colectivos,
RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO
RELACIÓN EJERCICIOS PROBABILIDAD 4º B CURSO 00- Sea el experimento consistente en lanzar un dado cúbico y los sucesos A={,,3} y B={3,4}. Halla A I B Lanzamos un dado cúbico, cuál es la probabilidad de
Tutorial MT-m5. Matemática Tutorial Nivel Medio. Probabilidad
356790356790 M ate m ática Tutorial MT-m5 Matemática 006 Tutorial Nivel Medio Probabilidad Matemática 006 Tutorial Probabilidad Marco Teórico. Probabilidad P(#). Definición: La probabilidad de ocurrencia
TEMA 17: PROBABILIDAD
TEMA 17: PROBABILIDAD Probabilidad de un suceso aleatorio es un numero entre 0 y 1 (más cerca del 0, mas difícil que ocurra. Más cerca del 1 más fácil que ocurra). Suceso seguro: Su probabilidad es 1.
Probabilidad. Experimento aleatorio
Probabilidad Pierre Simón Laplace 1749-1827 Astrónomo, físico y matemático francés. Creó una curiosa fórmula para expresar la probabilidad de que el sol saliera por el horizonte. Así: d 1 P d 2 Donde d
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
UNIDAD XI Eventos probabilísticos
UNIDAD XI Eventos probabilísticos UNIDAD 11 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;
PROBABILIDAD. Espacio muestral. El espacio muestral de un experimento aleatorio es el conjunto de todos los resultados posibles de un experimento.
PROBABILIDAD. CONTENIDOS: Experimentos aleatorios. Espacio muestral. Sucesos. Operaciones con sucesos. Suceso contrario y sucesos incompatibles. Idea intuitiva del concepto de probabilidad. Propiedades.
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
Matemáticas Propedéutico para Bachillerato. Introducción
Actividad 5. Nociones básicas de Probabilidad y Estadística. Introducción Alguna vez te has preguntado qué es la estadística? Y más aún eso a mi para qué me sirve? La estadística no es sino un sistema
UNIDAD II Eventos probabilísticos
UNIDAD II Eventos probabilísticos UNIDAD 2 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;
Probabilidad. INTER-CAMMC Matemática 4-6. Profa. Liza V. Rodríguez
Probabilidad INTER-CAMMC Matemática 4-6 Objetivos: Definir los conceptos probabilidad, probabilidad teórica y probabilidad experimental. Presentar ejemplos de cada concepto discutido. Vocabulario Experimento:
Nombre: Fecha: Curso:
Begoña tiene camisetas para hacer deporte de tres colores: blancas, grises y negras. Completa la siguiente tabla de frecuencias con los datos del dibujo. Cuántas camisetas tiene en total? camiseta blanca
1.º ESO INICIANDO LA PROBABILIDAD
1.º ESO INICIANDO LA PROBABILIDAD Realiza varias tiradas en la ruleta y responde: a. Observa las veces que aparece cada color. b. Qué color crees que va a salir en la próxima tirada? Tira y compruébalo.
Ejercicios resueltos de probabilidad
Ejercicios resueltos de probabilidad 1) En un saco tenemos bolas con las letras de la palabra "MATEMÁTICAS" (en las bolas, ninguna letra tiene tilde). Sacamos cuatro bolas por orden Hay la misma probabilidad
Probabilidad. La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento.
Matemáticas segundo medio COLEGIO SSCC CONCEPCION NOMBRE: Clase Teórica Práctica Nº 30 Probabilidad Probabilidad: Introducción La probabilidad mide la frecuencia con la que aparece un resultado determinado
Ejercicios de Cálculo de Probabilidades
Ejercicios de Cálculo de Probabilidades Ejercicio nº 1.- De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar. a Cuál es el espacio muestral? b Describe los sucesos: A "Mayor
Prueba Matemática Coef. 1 NM-4
1 Centro Educacional San Carlos de Aragón. Sector: Matemática. Prof.: Ximena Gallegos H. Prueba Matemática Coef. 1 NM-4 Nombre: Curso: Fecha. Porcentaje de Logro Ideal: 100% Porcentaje Logrado: Nota: Unidad:
Probabilidad teórica (páginas )
A NOMRE FECHA PERÍODO Probabilidad teórica (páginas 8 ) La probabilidad teórica es la razón del número de maneras en que un evento puede ocurrir al número de resultados posibles. Calcula la probabilidad
INSTITUCIÓN EDUCATIVA NUESTRA SEÑORA DEL PALMAR SEDE LICEO FEMENINO GUIA DE ESTADISTICA TERCER PERIODO - GRADO NOVENO PROBABILIDAD
PROBABILIDAD Hay probabilidad de que ocurran cosas inesperadas en cada segundo de nuestra frágil existencia. Paulo Coelho En cuanto al concepto en sí, la probabilidad y el azar siempre ha estado en la
1.- Definiciones Básicas:
Tema 3 PROBABILIDAD Y COMBINATORIA 1.- Definiciones Básicas: El objetivo del cálculo de probabilidades es el estudio de métodos de análisis del comportamiento de fenómenos aleatorios en lo relativo a su
Un juego de azar consiste en escoger 3 números distintos del 1 al 7. De cuántas formas se puede realizar esta selección?
. Un juego de azar consiste en escoger números distintos del al 7. De cuántas formas se puede realizar esta selección?. 7 0 4 840 De cuántas maneras distintas se pueden ordenar personas en un círculo?.
Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.
Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Técnicas de conteo En muchos problemas de probabilidad, el reto mayor es encontrar
Probabilidad y Estadística
Capítulo 13 Probabilidad y Estadística H istóricamente el hombre ha querido saber que es lo que le prepara el destino, conocer el futuro para poder prepararse, y hasta el día de hoy no hemos logrado tener
Tipos de sucesos. Suceso elemental
Definición de probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA 5)
TEMA 5 NOCIONES BÁSICAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer los conceptos de experimento aleatorio y espacio muestral. Distinguir los distintos tipos de sucesos que forman parte del espacio
Probabilidades. Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM
Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM Probabilidades P(A) = Casos favorables Casos posibles Objetivos: Definir el concepto de
EJERCICIOS DE PROBABILIDAD
EJERCICIOS DE ROBABILIDAD Ejercicio nº 1.- Lanzamos dos dados sobre la mesa y anotamos los dos números obtenidos. a) Cuántos elementos tiene el espacio muestral? b) Describe los sucesos: A "Obtener al
DISTRIBUCIÓN N BINOMIAL
DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina
Hoja 2 Probabilidad. 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, Además, resolver el ejercicio 3 desde (5.a) y (5.b).
Hoja 2 Probabilidad 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, se define A A = {B Ω : B = A C con C A}. Demostrar que A A P(A) es σ-álgebra. 2.- Sea {A n : n 1} A una sucesión
Probabilidad: Introducción
Probabilidad: Introducción La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento. Ejemplo: tiramos un dado al aire y queremos saber cual es la
Probabilidad. Generalidades
robabilidad Generalidades a probabilidad estudia experimentos en los que se pueden esperar varios resultados y no solamente uno. os experimentos se pueden clasificar como aleatorios o determinísticos.
Ejercicios de probabilidad
1. Dos personas juegan con una moneda, a cara (C) o escudo (E). La que apuesta por la cara gana cuando consiga dos caras seguidas o, en su defecto, tres caras; análogamente con el escudo. El juego acaba
Tema 3: Probabilidad. Bioestadística
Tema 3: Probabilidad Bioestadística SUCESOS DETERMINISTAS Y ALEATORIOS Cuando realizamos un experimento, diremos que es: Determinista: dadas unas condiciones iniciales, el resultado es siempre el mismo.
P R O B A B I L I D A D E S
Seminario Conciliar La Serena DEPTO DE MATEMATICA. MCP - GGU P R O B A B I L I D A D E S DEFINICIÓN: Es una rama de la matemática que consiste en el estudio de ciertos experimentos llamados aleatorios
COMBINATORIA Y PROBABILIDAD
COMBINATORIA Y PROBABILIDAD Esp. HENRY CARRASCAL C. Lic. Matemáticas y Física Esp. Informática Educativa Esp. Práctica Docente Universitaria Magíster en Práctica Pedagógica INSTITUCIÓN EDUCATIVA RAFAEL
EL AZAR Y LA PROBABILIDAD
EL AZAR Y LA PROBABILIDAD Prof. José Luis Pittamiglio Los experimentos cuya realización depende del azar, se llaman sucesos aleatorios. La teoría de las probabilidades se ocupa de medir hasta qué punto
ESTADÍSTICA INFERENCIAL
ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 2 Nombre: Probabilidad Contextualización En la sesión anterior analizamos cómo a largo plazo un fenómeno aleatorio o probabilístico posee un
2) Una persona tiene 6 chaquetas y 10 pantalones. De cuántas formas distintas puede combinar estas prendas?.
ACTIVIDADES COMBINATORIA 1) Se distribuyen tres regalos distintos entre cinco chicos. De cuántas formas pueden hacerlo si: a) cada chico sólo puede recibir un regalo b) a cada chico le puede tocar más
Tema 3: Cálculo de Probabilidades. Métodos Estadísticos
Tema 3: Cálculo de Probabilidades Métodos Estadísticos 2 INTRODUCCIÓN Qué es la probabilidad? Es la creencia en la ocurrencia de un evento o suceso. Ejemplos de sucesos probables: Sacar cara en una moneda.
e) Saber si el próximo año es bisiesto. Número de veces cara 56 cruz 44 Total 100 Posibles resultados Posibles resultados
122 Capítulo 14: ESTADÍSTICA Y PROBABILIDAD.. Matemáticas 1º y 2º de ESO. 1. EL AZAR Y LA PROBABILIDAD 1.1. Fenómenos o experimentos aleatorios Un fenómeno o experimento aleatorio es aquel, que manteniendo
TEC Tecnológico. de Costa Rica TEC. Teoría de conjuntos y probabilidad. Jornada de capacitación CIEMAC: Alajuela 2016
TEC Tecnológico de Costa Rica Jornada de capacitación CIEMAC: Alajuela 2016 Teoría de conjuntos y probabilidad Jornada de capacitación CIEMAC Alajuela 2016 Página 2 de 13 Conocimientos: Eventos Relaciones
Introducción a la Probabilidad
Introducción a la Probabilidad Tema 3 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Entender el concepto de experimento
4.12 Ciertos teoremas fundamentales del cálculo de probabilidades
1 de 9 15/10/2006 05:57 a.m. Nodo Raíz: 4. Cálculo de probabilidades y variables Siguiente: 4.14 Tests diagnósticos Previo: 4.10 Probabilidad condicionada e independencia de 4.12 Ciertos teoremas fundamentales
PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B:
Ejercicios y problemas 2º Bachillerato C.C.S.S. PROBABILIDAD 1.- Justifica gráficamente las siguientes igualdades: 2.- Tenemos dos urnas la urna I con 1 bola negra, 2 rojas y 3 verdes, y la urna II con
Posibles resultados. Número de veces cara 56 cruz 44 Total 100. Posibles resultados. Frecuencias relativas cara 0,56 cruz 0,44 Suma total 1
119 Capítulo 2: Estadística y probabilidad. Matemáticas 1º de ESO. 1. EL AZAR Y LA PROBABILIDAD 1.1. Fenómenos o experimentos aleatorios Un fenómeno o experimento aleatorio es aquel, que manteniendo las
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
008 _ 0-048.qxd 9/7/08 9:07 Página 405 4 Probabilidad INTRODUCCIÓN En la vida cotidiana tienen lugar acontecimientos cuya realización es incierta y en los que el grado de incertidumbre es mayor o menor
Estadística y sus aplicaciones en Ciencias Sociales 1. Introducción a la probabilidad
Estadística y sus aplicaciones en Ciencias Sociales 1. Introducción a la probabilidad Facultad de Ciencias Sociales Universidad de la República Curso 2016 Índice 1.1. Aleatoriedad e incertidumbre 1.2 Probabilidad
Probabilidad. Distribuciones binomial y normal
Tema 7 Probabilidad. Distribuciones binomial y normal 7.1. Introducción En este tema trataremos algunas cuestiones básicas sobre Probabilidad. Tanto la Probabilidad como la Estadística son dos campos de
Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta
Capítulo 3: Técnicas de Conteo Clase 2: Permutaciones y Combinaciones, Coeficientes Binomiales y Aplicaciones a Probabilidad Discreta Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática
Tema 9: Probabilidad: Definiciones
Tema 9: Probabilidad: Definiciones 1. CONCEPTOS Experimento aleatorio Suceso Espacio muestral 2. DEFINICIÓN DE PROBBILIDD Enfoque clásico Enfoque frecuencialista 3. PROBBILIDD CONDICIONL 4. TEOREMS BÁSICOS
COMPETENCIA MATEMÁTICA
Servicio de Inspección Educativa 0 1 1 / EVALUACIÓN DIAGNÓSTICA º DE EDUCACIÓN SECUNDARIA COMPETENCIA MATEMÁTICA 1 Nombre y apellidos:... Centro escolar:... Grupo/Aula:... Localidad:... Fecha:... Instrucciones
Métodos estadísticos y numéricos Probabilidad 1 EJERCICIOS PROPUESTOS DE PROBABILIDAD
Métodos estadísticos y numéricos Probabilidad 1 EJERCICIOS PROPUESTOS DE PROBABILIDAD 1. Una bolsa contiene tres bolas (1 roja, 1 azul, 1 blanca). Se sacan dos bolas con reemplazo, es decir, se saca una
Definición de probabilidad
Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total
Experimento aleatorio, Espacio muestral, Suceso
El siguiente material se encuentra en etapa de corrección y no deberá ser considerado una versión final. Alejandro D. Zylberberg Versión Actualizada al: 4 de mayo de 2004
Notas de Probabilidades
1 Introducción Notas de Probabilidades En la vida cotidiana nos encontramos con frecuencia con situaciones que producen varios resultados conocidos, sin poder determinar con exactitud cual de ellos ocurrirá.
Probabilidad Colección C.1. MasMates.com Colecciones de ejercicios
1. Un monedero contiene 2 monedas de plata y 3 de cobre y otro contiene 4 de plata y 3 de cobre. Si se elige un monedero al azar y se extrae una moneda, cuál es la probabilidad de que sea de plata? 2.
13Soluciones a los ejercicios y problemas PÁGINA 280
Soluciones a los ejercicios y problemas PÁGINA 0 Pág. P RACTICA Muy probable, poco probable Tenemos muchas bolas de cada uno de los siguientes colores: negro (N), rojo (R), verde (V) y azul (A), y una
2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria
2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un
MOOC UJI: La Probabilidad en las PAU
4. Probabilidad Condicionada: Teoremas de la Probabilidad Total y de Bayes 4.1. Probabilidad Condicionada Vamos a estudiar como cambia la probabilidad de un suceso A cuando sabemos que ha ocurrido otro
AREA ASIGNATURA: Estadística FECHA: PERÍODO: 1 DOCENTE: Susana Betancur Peláez
AREA ASIGNATURA: Estadística GRADO: SEXTO FECHA: PERÍODO: 1 DOCENTE: Susana Betancur Peláez LOGRO N 1: Interpreta Información estadística, proveniente de diversas fuentes y representaciones. TALLER 1.
PROBABILIDAD. Ejercicio nº 1.- Qué es una experiencia aleatoria? De las siguientes experiencias cuáles son aleatorias?
PROBABILIDAD Ejercicio nº 1.- a Al lanzar un dado sacar puntuación par. b Lanzar un dado y sacar una puntuación mayor que 6. c Bajar a la planta baja en ascensor. Ejercicio nº 2 a En una caja hay cinco
TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES
TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela
EXPERIMENTO ALEATORIO
EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,
EVALUACIÓN 11 B) 150 1 C) 2 D) 15 E) 30
EVALUACIÓN 1. Si la probabilidad que llueva en San Pedro en verano es 1/30 y la probabilidad que caigan 100 cc es 1/40, cuál es la probabilidad que no llueva en San Pedro y que no caigan 100 cc? A) 1/1200
Probabilidad y Estadística
Probabilidad y Estadística Probabilidad Conceptos como probabilidad, azar, aleatorio son tan viejos como la misma civilización. Y es que a diario utilizamos el concepto de probabilidad: Quizá llueva mañana
CÁLCULO DE PROBABILIDADES
0 CÁLCULO DE PROBABILIDADES Página 9 REFLEXIONA Y RESUELVE Cálculo matemático de la probabilidad Calcula matemáticamente cuál es la probabilidad de que un botón de cm de diámetro no toque raya en la cuadrícula
Unidad I. Teoría Básica de Probabilidad
Unidad I Teoría Básica de Probabilidad Última revisión: 15-mayo-2009 Elaboró: Ing. Víctor H. Alcalá-Octaviano Página 1 I.1 Conceptos matemáticos sobre la teoría de conjuntos I.1.1 Definición Un conjunto
Tiempo completo Tiempo parcial Total Mujeres Hombres Total
ASIGNACION DE ROBABILIDAD A manera de introducción al tema analicemos las diferencias entre eventos mutuamente excluyentes, no mutuamente excluyentes, dependientes e independientes. Ejemplo : En un grupo
Tema 5 Algunas distribuciones importantes
Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos
EXPERIMENTO ALEATORIO, ESPACIO MUESTRAL Y SUCESO
EXPERIMENTO ALEATORIO, EPAIO MUETRAL Y UEO Experimento aleatorio: Es una acción o proceso que puede tener distintos resultados posibles, y cuyo resultado no se conoce hasta que no se lleva a cabo. Ejemplos:
Por ejemplo, lanzar al aire un dado o una moneda son experimentos aleatorios. Los experimentos aleatorios pueden ser simples o compuestos.
.- CONCEPTOS BÁSICOS DE PROBABILIDAD Experimento aleatorio: Es aquel cuyo resultado depende del azar y, aunque conocemos todos los posibles resultados, no se puede predecir de antemano el resultado que
1º ESO TEMA 9 ESTADÍSTICA Y PROBABILIDAD
1º ESO TEMA 9 ESTADÍSTICA Y PROBABILIDAD 1 1.- FRECUENCIAS Para organizar y analizar una serie de datos estadísticos se utiliza una tabla de frecuencias Tabla de frecuencias Valores (xi) 0 1 2 Frecuencia
Unidad Temática 2 Probabilidad
Unidad Temática 2 Probabilidad Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza. 1. El experimento que consiste
