Selección de materiales II. Índice de performance
|
|
|
- María del Carmen Aranda Reyes
- hace 8 años
- Vistas:
Transcripción
1 Selección de materiales II Índice de performance
2 Propiedades de los materiales El diseñador no busca un material, sino un perfil de propiedades (una combinación específica), por eso piensa al material como un conjunto de atributos: sus propiedades. Breve descripción de las propiedades: Densidad [Mg/m 3 ]: masa por unidad de volumen, se mide pesando en un fluido de densidad conocida (aire, agua)
3 Propiedades de los materiales Módulo elastico [GPa, GN/m 2 ]: pendiente de la parte elástica (lineal) de la curva de tensióndeformación. E: módulo de Young: (tracción o compresión) G: módulo transversal (tensión de corte) K: módulo volumétrico (presión hidrostática) Para materiales isotrópicos: Se miden dinámicamente (excitando las frecuencias naturales). ν 1/ 3 G 3E / 8 σf [GPa, GN/m 2 ]: σ y(0.2) (metales), σ y (+-1%, polímeros), σ f (rotura, cerámicas), σ y (+-0.2%, compuestos). Depende del modo de carga, (bajo cargas multiaxiales se relaciona σ f con el estado tensional via la expresión de la tensión equivalente correspondiente). K E
4 Propiedades de los materiales Módulo de rotura [MPa, MN/m 2 ]: tensión máxima en viga en flexión en la rotura (mayor que el σ uts en tracción). Tensión última σ uts [MPa, MN/m 2 ]: mayor que σ f (entre 1.1y 3 veces) Dureza H [MPa]: se mide por la presión de un indentador sobre el material. H 3σf Tenacidad G c [kj/m 2 ] y tenacidad a la fractura K c [Pa*m 1/2, MN/m 3/2 ]: miden la resistencia del material a la propagación de la fisura. G c se mide cargando una probeta con una fisura de long 2c y registrando tensiones: Y: factor geométrico. Valores bien definidos para materiales frágiles requiere correcciones por plasticidad para materiales dúctiles. Coeficiente de pérdida η [adim.]: mide el grado al cual el material disipa energía vibratoria (régimen elástico). K G c c = Yσ c πc 2 Kc = E(1 + ν ) ΔU η = 2πu U = ΔU = 2 1 σ σdε = E σ max 0 2 σdε
5 Propiedades de los materiales Conductividad térmica λ [W/mK]: tasa al la cual el calor es conducido en un sólido en estado estacionario, difusividad térmica a [m 2 /s] para flujo transitorio. Temperatura de fusión T m [K]: (sólidos cristalinos) caracteriza la transición de sólido a líquido; temperatura de transición vítrea T g [K]: (no cristalinos) caracteriza la transición entre un sólido verdadero a un líquido muy viscoso. Temperatura máxima de servicio T max [K]: temperatura máxima a la cual el material puede usarse sin oxidación, cambios químicos y creep excesivo. Temperatura de ablandado T s [K]:temperatura a la cual el material fluye adecuadamente para procesos de extruído y conformado. Coeficiente de expansión térmica α [1/K]: deformación térmica por grado. Materiales isotrópicos: deformación volumétrica por grado, anisitrópicos requieren varios coeficientes
6 Propiedades de los materiales Para diseño a altas temperaturas: Resistencia al shock térmico T shock [K]: diferencia de temperatura máxima a la que puede ser calentado rápidamente el material sin sufrir daño. Resistemcia al creep T creep [K]: 1/3T m o 2/3T g. Otros datos sobre creep (deformación a tensión constante; lento, dependiente del tiempo ocurre cuando los materiales son cargados a 1/3T m o 2/3T g ). n: exponente de creep, Q: energía de activación A: factor cinético σ 0 : tensión de referencia σ ε& = A σ 0 exp Q RT Desgaste, oxidación y corrosión son difíciles de cuantificar, los dos problemas principales son: son fenómenos de superficie (no de volumen) y involucran interacciones entre dos materiales, al menos (combinación adecuada de propiedades). n
7 Cartas de materiales Módulo : mide rigidez- compliancia; depende de rigidez de los enlaces atómicos y de su densidad por unidad de área. Límite inferior en sólidos 1GPa. Los elasómeros y espumas tienen módulo menor Las uniones covalentes son muy rígidas las metálicas y las iónicas menos las de van der Waals muy débiles; la densidad de enlaces en los metales (empaquetamiento compacto) es alta (y el enlace bastante rígido), los polímeros contienen enlaces muy rígidos y también muy débiles (uniones de Van der Waals que se estiran cuando se deforman los polímeros) pero poca densidad por unidad de área La densidad: mide pesado-liviano; depende de: peso atómico (+), tamaño atómico y empaquetamiento. Los metales son densos porque sus átomos son pesados y están empaquetados en forma compacta, los polímeros son poco densos porque los átomos de C y H son livianos y están dispuestos en redes 1, 2, o 3D, los cerámicos tienen menor densidad que los metales porque contienen N, O y C (livianos, las espumas son muy poco densos porque tienen una gran fracción de material poroso. Útil cuando es importante minimizar peso.
8 Cartas de materiales Relaciones de performance
9 Cartas de materiales
10 Requerimientos funcionales Para la mayoría de los componentes estructurales la maximización de la performance puede ponerse en forma funcional: p = f((requerim. funcionales),(parám. geométricos),(prop. materiales)) = f(f,g,m) = f 1 (F)*f 2 (G)*f 3 (M), si los grupos de parámetros son separables. Si la optimización de una de las f s optimiza p, se designa índice de performance a esa función o a su inversa.
11 Casos de estudio Índice de performance de una biela resistente y liviana: m = A*l*ρ F/A = σ f /s f => m = [s f *F]*[l]*[ρ/σ f ] Para minimizar m basta con maximizar M 1 = σ f /ρ (índice) A: área d la sección, variable libre, l: longitud, no negociable. F: fuerza aplicada, no negociable. s f : factor de seguridad
12 Casos de estudio Patas de mesa de mínima masa y delgadas (radio mínimo): m = π*r 2 *l*ρ (1) P < P crit = π 2 *E*J/l 2, J = π*r 4 /4 (2) =>m = [4*P/π][l 2 ][ρ/e 1/2 ] => M 1 = E 1/2 /ρ De (2) r = [(4*P/π 3 ) 1/4 ][l 1/2 ][1/E 1/2 ] => M 2 = E 1/2
13 Procedimiento para deducir el índice de performance Identificar el atributo a ser optimizado (peso, costo energía, resistencia, rigidez ) Desarrollar una ecuación para ese atributo en términos de los requerimientos funcionales, geometría y propiedades del material (función objetivo) Identificar las variables libre (no especificadas) Identificar las restricciones, en orden de importancia Desarrollar ecuaciones para las restricciones (no pandeo, no fluencia, no fractura, costo por debajo de un límite) Eliminar las variables libres entre estas ecuaciones y la función objetivo Agrupar las variables en tres grupos: requerimientos funcionales (F), geometría (G) y propiedades materiales (M), de modo que Atributo = f(f,g,m) Interpretar M como el índice de performance a ser optimizado
14 Procedimiento para seleccionar los materiales Restricciones primarias: en general toman la forma: P>P crit o P<P crit, donde P es una propiedad (ej: carga admisible, temperatura de servicio ). Son las líneas horizontales o verticales en la carta de selección. Permiten eliminar familias enteras de materiales. No hay que ser demasiado restrictivo en esta etapa. Criterios de maximización de la performance: aquí son de utilidad las líneas de guía de diseño que son líneas de índice de performance constante. Restricciones múltiples: generalmente están sobre determinados (hay más restricciones que variables libres). Una forma de resolver el problema es ordenar las restricciones en orden de importancia creciente, resolver para las más importantes ignorando el resto, identificar el índice de performance y determinar un primer subconjunto de materiales que lo maximiza. Utilizar las restantes restricciones para establecer (mismo procedimiento) un segundo conjunto de materiales (y así ) dentro del conjunto anterior. Si el subconjunto resultara vacío, repetir el procedimiento cambiando el orden de priorodad de las restricciones. Se trabaja con varias cartas.
9. PROPIEDADES MECÁNICAS EN SÓLIDOS
9. PROPIEDADES MECÁNICAS EN SÓLIDOS MATERIALES I 12/13 Introducción Bloque I Teoría Elástica Tensión-deformación Propiedades mecánicas Bloque II Desgaste Dureza 2 Resistencia de Materiales Cantidad de
Propiedades de la materia. Características de sólidos, líquidos y gases
Propiedades de la materia Características de sólidos, líquidos y gases Fluidos Líquidos Ej: H 2 O Estados de la materia Gases Ej: O 2 Amorfos Ej: caucho Cristalinos Ej: sal, azúcar Sólidos Metálicos Enlace
8. Ensayos con materiales
8. Ensayos con materiales Los materiales de interés tecnológico se someten a una variedad de ensayos para conocer sus propiedades. Se simulan las condiciones de trabajo real y su estudia su aplicación.
UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA
UNE RAFAEL MARÍA BARALT PROGRAMA DE INGENIERÍA Y TECNOLOGÍA Proyecto de Ingeniería en Gas INTRODUCCIÓN A LOS MATERIALES Elaborado por: Ing. Roger Chirinos. MSc Cabimas, Abril 2011 FUNDAMENTACIÓN Asignatura:
PROPIEDADES Y ENSAYOS
PROPIEDADES Y ENSAYOS Las propiedades de todos los materiales estructurales se evalúan por ensayos, cuyos resultados sólo dan un índice del comportamiento del material que se debe interpretar mediante
TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES.
Félix C. Gómez de León Antonio González Carpena TEMA 3. BASES DEL DISEÑO MECÁNICO CON MATERIALES. Curso de Resistencia de Materiales cálculo de estructuras. Clases de tensiones. Índice. Tensión simple
Si cada elefante pesa en promedio 3800 kg y se considera que su peso se reparte uniformemente sobre la plataforma:
Considerar los siguientes datos para un acero: Límite elástico = 345 MPa Módulo de Young = 207 GPa Tenacidad a fractura = 90 MPa Tensión de rotura = 517 MPa Deformación bajo carga máxima = 20% Factor de
PROCESO DE EXTRUSIÓN PROCESOS II ING. CARLOS RODELO A
PROCESO DE EXTRUSIÓN CONTENIDO Definición y Clasificación de los Procesos Equipos y sus Características Técnicas Variables Principales del Proceso Defectos Análisis de Extrusión PROCESOS I Definición Es
BIOMECÁNICA MEJOR DESEMPEÑO
BIOMECÁNICA Componentes Biológicos Componentes Mecánicos Considerac. Anatómicas Considerac. Fisiológicas Considerac. Histológicas Sólidos Líquidos TEJIDOS Músculos Tendón Cartílago Hueso Ligamentos Cuerpos
CAPÍTULO 2. RESISTENCIAS PASIVAS
CAÍTULO 2. RESISTENCIAS ASIVAS 2.1. Introducción Son aquellas internas o externas a los elementos que constituyen un mecanismo, que de una forma u otra, se oponen al movimiento relativo de los mismos.
CAPÍTULO IV: ANÁLISIS ESTRUCTURAL 4.1. Introducción al comportamiento de las estructuras Generalidades Concepto estructural Compo
CAPITULO 0: ACCIONES EN LA EDIFICACIÓN 0.1. El contexto normativo Europeo. Programa de Eurocódigos. 0.2. Introducción al Eurocódigo 1. Acciones en estructuras. 0.3. Eurocódigo 1. Parte 1-1. Densidades
TRANSFERENCIA DE CALOR
Conducción Convección Radiación TRANSFERENCIA DE CALOR Ing. Rubén Marcano Temperatura es una propiedad que depende del nivel de interacción molecular. Específicamente la temperatura es un reflejo del nivel
LaborEUSS. LaborEUSS
enomenología de la deformación plástica Todos los materiales presentan una carga característica (límite elástico) Por debajo de ella se comportan elásticamente (al retirar la carga el material vuelve a
8) ENSAYOS MECÁNICOS: INTRODUCCIÓN
A.08. 1 8) ENSAYOS MECÁNICOS: INTRODUCCIÓN Las propiedades mecánicas de los polímeros dependen fuertemente de la temperatura T y de la escala temporal de la deformación. En general, y debido a los diferentes
INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2
INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN 13384-1.... 2 1.1.- DATOS DE PARTIDA.... 2 1.2.- CAUDAL DE LOS PRODUCTOS DE COMBUSTIÓN.... 2 1.3.- DENSIDAD MEDIA DE LOS HUMOS...
Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades.
LA DENSIDAD (D) de un material es la masa por unidad de volumen del material La densidad del agua es aproximadamente de 1000 DENSIDAD RELATIVA (Dr) de una sustancia es la razón de la densidad de una sustancia
Tema 20 Propiedades eléctricas de los materiales.
Tema 20 Propiedades eléctricas de los materiales. Las propiedades eléctricas miden la respuesta del material cuando se le aplica un campo eléctrico. Conductividad eléctrica R i = V ; R= resistencia del
UNIDAD 11 Características térmicas de los materiales
UNIDAD 11 Características térmicas de los materiales 11.1 CUESTIONES DE AUTOEVALUACIÓN 1. La conductividad térmica de un metal o aleación aumenta al: a) Aumentar la temperatura. b) Aumentar el grado de
Qué se busca al restaurar?
Aleaciones Qué se busca al restaurar? Estética y función Devolver la armonía óptica Devolver la forma anatómica Evitar la formación de nuevas lesiones Restablecer el comportamiento biomecánico Qué se busca
Colegio San Lorenzo - Copiapó - Región de Atacama Per Laborem ad Lucem
TEMARIO EXAMENES QUIMICA 2012 7º BASICO Descubrimiento del átomo: Quién lo descubrió y su significado Estructura atómica: Partes del átomo, características del núcleo y la corteza, cálculo del protón,
CIENCIA DE MATERIALES
CIENCIA DE MATERIALES PROPIEDADES MECANICAS DE LOS MATERIALES Ing. M.Sc. José Manuel Ramírez Q. Propiedades Mecánicas Tenacidad Dureza Medida de la cantidad de energía que un material puede absorber antes
Departamento de Mecánica de Medios Continuos y Teoría de Estructuras. Ingeniería Estructural. Introducción
Departamento de Mecánica de Medios Continuos y Teoría de Estructuras Ingeniería Estructural Introducción Puede definirse, en general, una estructura como:...conjunto de elementos resistentes capaz de mantener
Propiedades físicas y mecánicas de los materiales Parte I
Propiedades físicas y mecánicas de los materiales Parte I Propiedades físicas y mecánicas de los materiales Capítulo 1. Conceptos generales Tipos de materiales Metodología para el estudio de materiales
8º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA Cusco, 23 al 25 de Octubre de 2007
8º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA Cusco, 23 al 25 de Octubre de 2007 ANÁLISIS POR ELEMENTOS FINITOS DE LA FALLA OCURRIDA EN UN MIRILLA DE VIDRIO TEMPLADO Jaramillo H. E. Grupo de Investigación
Dinámica de Fluidos. Mecánica y Fluidos VERANO
Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo
TERMODINÁMICA y FÍSICA ESTADÍSTICA I
TERMODINÁMICA y FÍSICA ESTADÍSTICA I Tema 1 - LA TEMPERATURA Y OTROS CONCEPTOS BÁSICOS DE LA TERMODINÁMICA Introducción: características generales y objetivos de la termodinámica. Comparación de los criterios
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.
El Mecanizado Tecnología de los Materiales
El Mecanizado Tecnología de los Materiales TECNOLOGÍA INDUSTRIAL II Liceo Industrial Vicente Pérez Rosales Profesor: Richard Ayacura Castillo MEcanizado ÍNDICE 10.0 Introducción 10.1 Procesos de mecanizado
TEMA 1: ESTRUCTURA INTERNA DE LOS MATERIALES
PERIODO Departamento de Tecnología. IES Nuestra Señora de la Almudena Mª Jesús Saiz TEMA 1: ESTRUCTURA INTERNA DE LOS MATERIALES El átomo: Toda la materia está compuesta por átomos y éstos por partículas
Formulario PSU Parte común y optativa de Física
Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud
Ejemplo: Uso del perfil IPE como correa simplemente apoyada
Ref. Documento SX01a-ES-EU Hoja 1 de 10 Eurocódigo Ref Hecho por Mladen Lukic Fecha Ene 006 Revisado por Alain Bureau Fecha Ene 006 Ejemplo: Uso del perfil IPE como correa simplemente Este ejemplo proporciona
MEDICIÓN DEL VOLUMEN
MEDICIÓN DEL VOLUMEN CONCEPTOS BÁSICOS Volumen: porción de espacio que ocupa un cuerpo ya sea sólido, líquido o gaseoso. Capacidad: es el volumen de un fluido que puede contener o suministrar un instrumento
Capítulo 5. Propiedades Mecánicas. 1.5. Ensayos mecánicos. 1.5.1. Prueba Tensil
Capítulo 5 Propiedades Mecánicas 1.5. Ensayos mecánicos 1.5.1. Prueba Tensil Figura 49 Curva esfuerzo deformación obtenida a través de la prueba tensil. El esfuerzo de ingeniería y deformación de ingeniería
CURVATURA EN COLUMNAS
UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLIVAR UNIDAD DE ESTUDIOS BASICOS DEPARTAMENTO DE CIENCIAS AREA DE MATEMATICA CURVATURA EN COLUMNAS Prof. Cristian Castillo Sección 02 Presentado por: Olivera Ricardo
LA RIOJA / JUNIO 04. LOGSE / FÍSICA / EXAMEN COMPLETO
LA RIOJA / JUNIO 0. LOGSE / FÍSICA / EXAMEN COMPLEO EXAMEN COMPLEO El alumno elegirá una sola de las opciones de problemas, así como cuatro de las cinco Cuestiones propuestas. No deben resolverse problemas
POLIETILENO DE ALTA Y BAJA DENSIDAD
Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Química y Biotecnología IQ5432- Tecnología de Materiales Plásticos POLIETILENO DE ALTA Y BAJA DENSIDAD SOY PAZ
Solidificación e Imperfecciones. en Sólidos
Preguntas definitivas Capítulo 2 Solidificación e Imperfecciones en Sólidos Ciencia de Materiales 28 PREGUNTA 2.1 Cuándo suele presentar interés el uso de un metal en estado puro?. Justifícalo. Pon un
Interacciones Eléctricas La Ley de Coulomb
Interacciones Eléctricas La Ley de Coulomb 1. Introducción La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo. Las primeras experiencias relativas a los fenómenos
TEMA 5: MATERIALES COMPUESTOS DE MATRIZ ORGÁNICA:
TEMA 5: MATERIALES COMPUESTOS DE MATRIZ ORGÁNICA: CONTROL DE CALIDAD 5.1- Introducción El control de calidad de los materiales compuestos es muy importante debido a: a) la gran variedad de combinaciones
Sesión 7. El proceso cerámico tradicional (continuación)
Sesión 7 El proceso cerámico tradicional (continuación) Moldeo El moldeo de las pastas cerámicas tradicionales depende de las propiedades plásticas y de flujo de ésta. La facilidad con que cambia de forma
TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR
TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar
LABORATORIO DE FENÓMENOS COLECTIVOS
LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,
CAPÍTULO 7 INTRODUCCIÓN A LAS ESTRUCTURAS SANDWICH
CAPÍTULO 7 INTRODUCCIÓN A LAS ESTRUCTURAS SANDWICH 7.1. MATERIALES COMPUESTOS TIPO SANDWICH 7.1.1 INTRODUCCIÓN Debido a la importancia de este tipo de materiales en las industrias aeroespacial, de construcción,
FORMACIÓN EN VÁLVULAS DE CONTROL: CRITERIOS DE SELECCIÓN Y DISEÑOS SEGÚN CONDICIONES DE PROCESO
FORMACIÓN EN VÁLVULAS DE CONTROL: CRITERIOS DE SELECCIÓN Y DISEÑOS SEGÚN CONDICIONES DE PROCESO. Alberto Argilés Ringo Válvulas S.L. 1.- Introducción La válvula de control manipula el fluido que pasa por
HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica
HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión
FÍSICA Y QUÍMICA 4º ESO. MCU. Características. Magnitudes angulares. Ley del movimiento.
FÍSICA Y QUÍMICA 4º ESO Unidad 1. El movimiento Sistema de referencia. o Carácter relativo del movimiento. Conceptos básicos para describir el movimiento. o Trayectoria, posición, desplazamiento. o Clasificación
Ángulo de rozamiento interno y cohesión de un suelo. rozamiento. Estudiando el equilibrio en la dirección del plano de deslizamiento:
Ángulo de rozamiento interno y cohesión de un suelo. Ángulo de rozamiento interno. Deslizamiento de un cuerpo sobre un plano inclinado. A Sin rozamiento rozamiento Ø Rozamiento muebles Ø P (peso cuerpo)
C 6.1. ESTADOS LÍMITES PARA SOLICITACIONES DE FLEXIÓN Y DE CORTE
COMENTARIOS AL CAPÍTULO 6. BARRAS EN FLEXIÓN SIMPLE Para tener una respuesta simétrica de la sección en flexión simple y evitar efectos torsionales, se exige que cuando sean más de una las arras de los
El modelo cinético molecular para un gas ideal
El modelo cinético ecular para un gas ideal En 166, Robert Boyle encontró que el volumen de un gas a temperatura constante es proporcional al inverso de la presión ley de Boyle 1 (1) P En 1787, Jacques
Índice Matemáticas 11
5 Índice Índice Matemáticas 11 I. Símbolos, operaciones aritméticas, leyes 12 1. Símbolos generales 12 2. Símbolos de la teoría de conjuntos 12 3. Símbolos de lógica 12 4. Operaciones artiméticas 13 5.
Tema 9. Materiales compuestos. Problemas de materiales compuestos (W.D. Callister Ed. Reverté - Cap 17).
Tema 9. Materiales compuestos. Problemas de materiales compuestos (W.D. Callister Ed. Reverté - Cap 17). 17.3. Las propiedades mecánicas del cobalto mejoran agregándole partículas diminutas de carburo
Trabajo Práctico n 2. Robotización de un Puente Grúa. Presentación. Restricciones. Curso 2011
Trabajo Práctico n 2 Robotización de un Puente Grúa Presentación Este problema consiste en desarrollar un sistema de control automático que permita robotizar la operación de un puente grúa para la carga
METALES. 1.- Materiales CRISTALINOS y la deformación plástica
METALES 1.- Materiales CRISTALINOS y la deformación plástica esfuerzo El ensayo de tracción s = F/A 0 s f, resistencia a la fluencia s T, resistencia a la tracción s T, resistencia a la ruptura s= Ke n
Ficha Técnica. utilizados en este Capítulo deben ser iguales o menores que 8,3 MPa
1. Requisitos generales La tracción o la compresión que solicita la barra de acero, se debe transmitir o desarrollar hacia cada lado de la sección considerada mediante una longitud de armadura embebida
Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile
Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 4: Mecánica de fluidos Martes 25 de Septiembre, 2007
MEDICIÓN DE CONDUCTIVIDAD TÉRMICA
MEDICIÓN DE CONDUCTIVIDAD TÉRMICA Introducción: Las soluciones de la Ley de Fourier en su formulación diferencial, empleando las condiciones de borde adecuadas, permite resolver el problema de conducción
CURSO DE ESTRUCTURAS METALICAS Y CONEXIONES.
TEMARIO: 1.- ESFUERZOS ACTUANTES. 1.1 DETERMINACIÓN DE INERCIAS TOTALES. 1.2 DETERMINACIÓN DE CENTROIDES. 1.3 DETERMINACIÓN DEL MODULO DE SECCIÓN ELÁSTICO Y PLÁSTICO DE SECCIONES CUADRADAS Y SECCIONES
POLIAMIDA PA2200. Propiedades mecánicas. Propiedades térmicas. Propiedades eléctricas. Propiedades superficiales
POLIAMIDA PA2200 Densidad DIN 53466 g/cm 3 0.95 Coef. Dil. Térmica DIN 53752-A x10-4 / K 1.09 Módulo de tensión DIN EN ISO 527 N/mm 2 1700 ± 150 Resistencia a la tracción DIN EN ISO 527 N/mm 2 45 ± 3 Alargamiento
Sólo cuerdas dinámicas
Efectos de una caída Al caernos desde una cierta altura estando amarrados con una se producen varios sucesos simultáneos. Toda la energía potencial que habíamos ganado con la altura se convierte en cinética
LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro
LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento
Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.
Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar
TEMA 8 SISTEMA PERIÓDICO Y ENLACES
TEMA 8 SISTEMA PERIÓDICO Y ENLACES 1. LA TABLA PERIÓDICA Elementos químicos son el conjunto de átomos que tienen en común su número atómico, Z. Hoy conocemos 111 elementos diferentes. Los elementos que
Shell Térmico Oil B. Aceite para transferencia térmica
Shell Térmico B es un aceite mineral puro de baja viscosidad, baja tensión de vapor y alta resistencia a la oxidación desarrollado para transferencia de calor ya sea en sistemas de calefacción cerrados
Mecánica de sólidos Sesión 23. Flujo viscoso, medición de la viscosidad
Mecánica de sólidos Sesión 23 Flujo viscoso, medición de la viscosidad Reología de la corteza REOLOGIA: Estudio de la conducta mecanica (flujo) de los materiales. Elastico, Plastico, Viscoso y sus combinaciones
CENTRIFUGACIÓN. Fundamentos. Teoría de la centrifugación
CENTRIFUGACIÓN Fundamentos. Teoría de la centrifugación Fuerzas intervinientes Tipos de centrífugas Tubular De discos Filtración centrífuga 1 SEDIMENTACIÓN Se basa en la diferencia de densidades entre
La principal particularidad de esta magnitud es lo amplitud del rango de medidas de interés para la ciencia y la ingeniería.
Sensores de Distancia SENSORES DE DISTANCIA La principal particularidad de esta magnitud es lo amplitud del rango de medidas de interés para la ciencia y la ingeniería. Sensores de Distancia SENSORES DE
Física y Química 3º ESO
1. Física y Química. Ciencias de la medida forman parte de las necesitan Ciencias de la naturaleza medir las propiedades de los cuerpos que se dividen en para lo cual se emplean lo que siempre conlleva
Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil
Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo
1.- ACCIONES MECÁNICAS 2.- TEMPERATURA 3.- TIEMPO, ETC.
AL CONSIDERAR LOS PLÁSTICOS COMO MATERIALES PARA EL DISEÑO DE CUALQUIER ARTÍCULO DEBE CONOCERSE SU COMPORTAMIENTO FRENTE A LOS DIFERENTES AGENTES EXTERNOS: 1.- ACCIONES MECÁNICAS 2.- TEMPERATURA 3.- TIEMPO,
El valor máximo de la tensión a que esta sometida El valor mínimo de la tensión La diferencia entre el valor máximo y mínimo El valor medio (σ med )
11. Ensayo de fatiga Un ensayo de fatiga es aquel en el que la pieza está sometida a esfuerzos variables en magnitud y sentido, que se repiten con cierta frecuencia. Muchos de los materiales, sobre todo
UNIDAD 1. ENSAYO Y MEDIDA DE LAS PROPIEDADES DE LOS MATERIALES UNIDAD 3. MODIFICACIÓN DE LAS PROPIEDADES DE LOS METALES
BLOQUE I. MATERIALES UNIDAD 2. OXIDACIÓN Y CORROSIÓN UNIDAD 3. MODIFICACIÓN DE LAS PROPIEDADES DE LOS METALES UNIDAD 4. DIAGRAMAS DE EQUILIBRIO EN MATERIALES METÁLICAS UNIDAD 5. TRATAMIENTOS TÉRMICOS DE
TEMA 7: Materiales: estructura, propiedades y ensayos.
TEMA 7: Materiales: estructura, propiedades y ensayos. 1. Composición de la materia. Las propiedades de un material y el comportamiento que éste tendrá al ser sometido a diferentes técnicas o procesos
Clasificación: índice de materiales
Clasificación: índice de materiales Mike Ashby Department of Engineering University of Cambridge M F Ashby, 2011 For reproduction guidance see back page This lecture unit is part of a set created by Mike
Gradiente de Fractura de la Formación
Gradiente de Fractura de la Formación Gradiente de Fractura de la Formación Objetivo del Aprendizaje Al final de esta sección será capaz de descrubir lo siguiente, al igual que los cálculo presentados:
Sistema Circulatorio Estructura y Composición Propiedades Mecánicas Ejemplos
Vasos Sanguíneos Sistema Circulatorio Estructura y Composición Propiedades Mecánicas Ejemplos Sistema Circulatorio Sistema Circulatorio Función de los Vasos Sanguíneos 6 mmhg 15 mmhg 5 mmhg Transporte
1817: Döbreiner. Triadas de elementos con propiedades semejantes. 1865: Newlands. Ley de las octavas. Ordenó 55 elementos.
Evolución histórica de la Tabla Periódica 1817: Döbreiner. Triadas de elementos con propiedades semejantes. 1865: Newlands. Ley de las octavas. Ordenó 55 elementos. 1869: Mendeleev y Meyer: las propiedades
Tema 7.- Ensayos mecánicos
BLOQUE III.- CARACTERIZACIÓN Y PROPIEDADES Tema 7.- Ensayos * William F. Smith Fundamentos de la Ciencia e Ingeniería de Materiales. Tercera Edición. Ed. Mc-Graw Hill * James F. Shackerlford Introducción
IES Atenea (S.S. de los Reyes) Departamento de Física y Química. PAU Química. Septiembre 2006 PRIMERA PARTE
1 PAU Química. Septiembre 2006 PRIMERA PARTE Cuestión 1. La configuración electrónica del último nivel energético de un elemento es 4s 2 4p 3. De acuerdo con este dato: a) Deduzca la situación de dicho
FISICA II PARA INGENIEROS
FISICA II PARA INGENIEROS INTRODUCCION INGENIERIA La Ingeniería es el conjunto de conocimientos y técnicas científicas aplicadas a la creación, perfeccionamiento e implementación de estructuras (tanto
Curvaturas diferidas y tensiones residuales en baldosas de gres porcelánico. V. Cantavella
Curvaturas diferidas y tensiones residuales en baldosas de gres porcelánico V. Cantavella Índice Introducción Fenomenología Posibles causas de las curvaturas diferidas Tensiones residuales Fluencia Expansión
Estructuras de Materiales Compuestos
Estructuras de Materiales Compuestos Ensayos normalizados de caracterización Ing. Gastón Bonet - Ing. Cristian Bottero - Ing. Marco Fontana Objetivos Estructuras de Materiales Compuestos Ensayos normalizados
Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. Tema 6.- Ondas Mecánicas.
Ondas Mecánicas. Introducción a la Física Ambiental. Tema 6. IFA6. Prof. M. RAMOS Tema 6.- Ondas Mecánicas. Ondas periódicas: Definiciones. Descripción matemática. Ondas armónicas. Ecuación de ondas. Velocidad
Efectos del Viento y Sismos en Equipos Verticales. Entendiendo las Cargas de Viento y Sismo en Equipos Verticales. Presentado por: Intergraph
Efectos del Viento y Sismos en Equipos Verticales Entendiendo las Cargas de Viento y Sismo en Equipos Verticales Presentado por: Intergraph Considerando una Torre Típica Efectos del Viento y Sismos en
PROGRAMA INSTRUCCIONAL
UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERIA PROGRAMA AL DATOS BÁSICOS DE LA ASIGNATURA Nombre de la asignatura: Código Semestre U.C. Pre- Requisito QUÍMICA QUI-422 IV 2 S/P
TUTORIAL BÁSICO DE MECÁNICA FLUIDOS
TUTORIAL BÁSICO DE MECÁNICA FLUIDOS El tutorial es básico pues como habréis visto en muchos de ellos es haceros entender no sólo la aplicación práctica de cada teoría sino su propia existencia y justificación.
1. Los elementos químicos
RESUMEN de la UNIDAD 3. ELEMENTOS Y COMPUESTOS 1. Los elementos químicos La materia está formada por partículas denominadas átomos que, a su vez, están formados por otras partículas más pequeñas: protones,
INTRODUCCION 1.1.-PREAMBULO
INTRODUCCION 1.1.-PREAMBULO El suelo en un sitio de construcción no siempre será totalmente adecuado para soportar estructuras como edificios, puentes, carreteras y presas. Los estratos de arcillas blanda
Cuarta Lección. Principios de la física aplicados al vuelo.
Capítulo II. Termodinámica y Física de los Fluidos aplicadas a procesos naturales. Tema. El proceso de vuelo de las aves y de los ingenios alados. Cuarta Lección. Principios de la física aplicados al vuelo.
Unidad. Los materiales: Tipos y propiedades
Unidad 8 Los materiales: Tipos y propiedades 8.1. Necesidad de materiales para fabricar objetos La inteligencia del ser humano le llevó desde sus orígenes a la fabricación de objetos que le facilitaran
ECUACIONES DIMENSIONALES
ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?
Ejemplo: Columna continua en un edificio de varias plantas utilizando secciones H o RHS
Documento Ref SX00a-ES-EU Hoja de 8 Eurocódigo Ref E 993-- Hecho por Matthias Oppe Fecha Junio 005 Revisado por Christian Müller Fecha Junio 005 Ejemplo: Columna continua en un edificio de varias plantas
Universidad Central Del Este UCE Facultad de Ciencias de la Salud Escuela de Bioanálisis
Universidad Central Del Este UCE Facultad de Ciencias de la Salud Escuela de Bioanálisis Programa de la asignatura: (FIS-012) Física 102 Total de Créditos: 4 Teoría: 3 Practica: 2 Prerrequisitos: FIS-011
4. Refuerzo a cortante
4. Refuerzo a cortante La adhesión del Sistema MBrace en elementos tales como vigas, permite el incremento de su resistencia a cortante, al aportar cuantía resistente a tracción en las almas y tirantes
QUÉ ES LA TEMPERATURA?
1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente
MODIFICACIÓN DE LAS PROPIEDADES DE LOS METALES CONTENIDOS
MODIFICACIÓN DE LAS PROPIEDADES DE LOS METALES CONTENIDOS Generalidades Estructura interna de los metales. Defectos en la estructura cristalina Soluciones sólidas Mecanismos de endurecimiento de los metales
ELECTRODOS DE GRAFITO
ELECTRODOS DE GRAFITO Gestión de Compras suministra electrodos de grafito para el mercado nacional e internacional. Los electrodos de grafito se utilizan principalmente en la producción secundaria de acero,
