Transformación de coordenadas
|
|
|
- Juan Manuel Muñoz Ramos
- hace 10 años
- Vistas:
Transcripción
1 Anexo A Transformación de coordenadas Para realizar las transformaciones entre sistemas de coordenadas astronómicos, se utilizarán giros en el espacio, ya que todos los sistemas se suponen con el mismo centro, de no ser así se realizaría primero una traslación entre orígenes y posteriormente se realizaría el giro. A.1. Tranformación entre coordenadas Horizontales y Ecuatoriales horarias Estos dos sistemas comparten un eje común, el eje Y dirigido hacia el Oeste, por tanto la matriz del giro en el espacio se simplifica; según la figura A.1 se tiene que para transformar las coordenadas de Horizontales a Ecuatoriales Horarias el giro debe ser de ángulo (90 ϕ), siendo ϕ la latitud del lugar. Dadas las coordenadas de un astro en el sistema Horizontal expresadas en función del Acimut (A) y la altura (h)como: X Y Z = cos A cos h sin A cos h sin h y en el sistema Ecuatorial Horario expresadas en función del ángulo horario (H) y la declinación (δ) como: 1
2 2 Anexo A. Transformación de coordenadas Figura A.1: Transformación entre Horizontales y Ecuatoriales Horarias X Y Z = cos H cos δ sin H cos δ La transformación entre los sistemas viene dada a través del giro mencionado tal y como se expresa a continuación en forma matricial: cos H cos δ sin H cos δ = cos(90 ϕ) 0 sin(90 ϕ) sin(90 ϕ) 0 cos(90 ϕ) cos A cos h sin A cos h sin h Expresando lo anterior como tres ecuaciones se obtienen las ecuaciones de la transformación dadas por: cos H cos δ = cos(90 ϕ) cos A cos h + sin(90 ϕ) sin h sin H cos δ = sin A cos h
3 A.1. Tranformación entre coordenadas Horizontales y Ecuatoriales horarias 3 = sin(90 ϕ) cos A cos h + cos(90 ϕ) sin h Y transformando las ecuaciones se tiene: cos H cos δ = sin(ϕ) cos A cos h + cos(ϕ) sin h sin H cos δ = sin A cos h (A.1) = cos(ϕ) cos A cos h + sin(ϕ) sin h De forma que la tercera ecuación nos permite obtener δ y dividiendo la segunda entre la primera obtenemos H: tan H = sin A cos h sin(ϕ) cos A cos h + cos(ϕ) sin h La elección de la solución adecuada para cada ángulo debe hacerse teniendo en cuenta lo siguiente: 1. Para δ la solución correcta debe estar entre [0, 90] o [0, 90], se rechaza aquella que no cumpla la condición 2. Para H, se analiza el signo del numerador que corresponde al sin H y el del denominador que corresponde al cos H, según estos signos sabremos el cuadrante en que se encuentra la tangente y elegiremos aquella solución que coincida con ese cuadrante. Para transformar las coordenadas de Ecuatoriales Horarias a Horizontales el giro debe ser de ángulo ( (90 ϕ)), quedando la transformación en forma matricial como: cos A cos h sin A cos h sin h = cos( (90 ϕ)) 0 sin( (90 ϕ)) ( sin(90 ϕ)) 0 cos( (90 ϕ)) cos H cos δ sin H cos δ Expresando lo anterior como tres ecuaciones se obtienen las ecuaciones de la transformación dadas por: cos A cos h = cos( (90 ϕ)) cos H cos δ + sin( (90 ϕ)) sin A cos h = sin H cos δ
4 4 Anexo A. Transformación de coordenadas sin h = sin( (90 ϕ)) cos H cos δ + cos( (90 ϕ)) Y transformando las ecuaciones se tiene: cos A cos h = sen(ϕ) cos H cos δ cos(ϕ) sin A cos h = sin H cos δ sin h = cos(ϕ) cos H cos δ + sin(ϕ) (A.2) De forma que la tercera ecuación nos permite obtener h y dividiendo la segunda entre la primera obtenemos A: tan A = sin H cos δ cos(ϕ) cos H cos δ + cos(ϕ) La elección de la solución adecuada para cada ángulo debe hacerse teniendo en cuenta lo mismo comentado en el caso anterior: 1. Para h la solución correcta debe estar entre [0, 90] o [0, 90], se rechaza aquella que no cumpla la condición 2. Para A, se analiza el signo del numerador que corresponde al sin A y el del denominador que corresponde al cos A, según estos signos sabremos el cuadrante en que se encuentra la tangente y elegiremos aquella solución que coincida con ese cuadrante. Para poder realizar esta transformación es necesario conocer la latitud del lugar, esquemáticamente podemos poner: (A, h) (90 ϕ) (H, δ) (H, δ) (90 ϕ) (A, h) La tranformación descrita anteriormente puede realizarse mediante el triángulo de posición del astro, sin utilizar el giro, y aplicando las tres formulas de Bessel. En ese caso se obtienen también tres ecuaciones que son equivalentes a las obtenidas con el giro, y de las que se pueden calcular las coordenadas de forma similar. La obtención de la tranformación mediante el triángulo de posición se propone como ejercicio.
5 A.2. Tranformación entre coordenadas Ecuatoriales Absolutas y Eclípticas 5 A.2. Tranformación entre coordenadas Ecuatoriales Absolutas y Eclípticas Estos dos sistemas comparten un eje común, el eje X dirigido hacia el punto Aries (γ), por tanto la matriz del giro en el espacio se simplifica; según la figura A.2 se tiene que para transformar las coordenadas de Ecuatoriales Horarias a Eclípticas el giro debe ser de ángulo ε, siendo ε la oblicuidad de la eclíptica. Figura A.2: Transformación entre Ecuatoriales Absolutas y Eclípticas Dadas las coordenadas de un astro en el sistema Ecuatorial Absoluto expresadas en función de la Ascensión Recta (α) y la declinación (δ)como: X Y Z = cos α cos δ y en el sistema Eclíptico expresadas en función de la Longitud Eclíptica (λ) y Latitud Eclíptica (β) como:
6 6 Anexo A. Transformación de coordenadas X Y Z = cos λ cos β sin λ cos β sin β La transformación entre los sistemas viene dada a través del giro mencionado tal y como se expresa a continuación en forma matricial: cos λ cos β sin λ cos β sin β = cos(ε) sin(ε) 0 sin(ε) cos(ε) cos α cos δ Expresando lo anterior como tres ecuaciones se obtienen las ecuaciones de la transformación dadas por: cos λ cos β = sin λ cos β = cos(ε) + sin(ε) (A.3) sin β = sin(ε) + cos(ε) De forma que la tercera ecuación nos permite obtener β y dividiendo la segunda entre la primera obtenemos λ: tan λ = cos(ε) + sin(ε) La elección de la solución adecuada para cada ángulo debe hacerse teniendo en cuenta lo mismo comentado anteriormente. Para transformar las coordenadas de Eclípticas a Ecuatoriales Absolutas el giro debe ser ahora de ángulo ( ε), quedando la transformación en forma matricial como: cos α cos δ = cos( ε) sin( ε) 0 sin( ε) cos( ε) cos λ cos β sin λ cos β sin β
7 A.3. Tranformación entre coordenadas Ecuatoriales Horarias y Ecuatoriales Absolutas 7 Expresando lo anterior como tres ecuaciones se obtienen las ecuaciones de la transformación dadas por: cos λ cos β = sin λ cos β = cos( ε) + sin( ε) sin β = sin( ε) + cos( ε) Y transformando las ecuaciones se tiene: cos λ cos β = sin λ cos β = cos(ε) sin(ε) sin β = sin(ε) + cos(ε) (A.4) De forma que la tercera ecuación nos permite obtener δ y dividiendo la segunda entre la primera obtenemos α: tan α = cos(ε) sin(ε) Sobre la elección de la solución adecuada para cada ángulo se tendrá en cuenta lo ya apuntado en anteriores transformaciones. Para realizar esta transformación es necesario conocer la oblicuidad de la eclíptica, esquemáticamente podemos poner: (α, δ) (ε) (λ, β) (λ, β) (ε) (A, h) La tranformación descrita anteriormente puede también realizarse mediante el triángulo de posición del astro, tal y como se comentó en la sección anterior para el caso de Ecuatoriales Horarias y Horizontales. A.3. Tranformación entre coordenadas Ecuatoriales Horarias y Ecuatoriales Absolutas En esta transformación se comparte una coordenada; la declinación, por ello se simplifica mucho la transformación ya que si recurrimos a la ecuación
8 8 Anexo A. Transformación de coordenadas fundamental de astronomía que relaciona la hora sidérea (θ) con la ascensión recta y el ángulo horario dada por: θ = H + α directamente podemos; conocida la hora sidérea; realizar el paso de Ecuatoriales Absolutas a Eclípticas y viceversa sin más que despejar de la ecuación anterior.
9 A.3. Tranformación entre coordenadas Ecuatoriales Horarias y Ecuatoriales Absolutas 9
LA ESFERA CELESTE. Atlas sosteniendo la esfera celeste
LA ESFERA CELESTE. Atlas sosteniendo la esfera celeste Introducción: A simple vista, el cielo parece una inmensa cúpula que nos cubre. Durante el día se presenta de color azul con el Sol y en ciertas ocasiones
Medición del radio de la Tierra
Metodología del Álgebra y la Geometría en la Enseñanza Secundaria Metodología de los Recursos en la Enseñanza de las Matemáticas en Secundaria Medición del radio de la Tierra Facultad de Matemáticas 26
Sistemas de coordenadas en la esfera celeste
astronomia.org Documentación Sistemas de coordenadas en la esfera celeste Carlos Amengual Barcelona, 1989 Revisado febrero 2010 Este documento se encuentra en la dirección http://astronomia.org/doc/esfcel.pdf
En la siguiente gráfica se muestra una función lineal y lo que representa m y b.
FUNCIÓN LINEAL. La función lineal o de primer grado es aquella que se representa gráficamente por medio de una línea recta. Dicha función tiene una ecuación lineal de la forma f()= =m+b, en donde m b son
Astronomía de Posición. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 100
Astronomía de Posición. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 100 Índice. 1. Repaso de Trigonometría Esférica. 2. Coordenadas Horizontales: (A,a). 3. Coordenadas Ecuatoriales:
Recordando la experiencia
Recordando la experiencia En el Taller de Relojes de Sol aprendimos a construir uno de los instrumentos de medición del tiempo más antiguos del mundo. Se basa en la observación de la sombra que crea sobre
COORDENADAS CURVILINEAS
CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un
Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =
T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente
SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).
SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el
RELOJES DE SOL. 1. Movimiento diurno del Sol. 2. Variaciones anuales del movimiento del Sol
1. Movimiento diurno del Sol RELOJES DE SOL Sin necesidad de utilizar instrumento alguno, todo el mundo sabe que el Sol, por la mañana sale por algún lugar hacia el Este, que hacia el mediodía está en
Tema 1.1 La bóveda celeste. Fundamentos geométricos.
Módulo 1. La bóveda celeste. Astronomía observacional. Tema 1.1 La bóveda celeste. Fundamentos geométricos. Objetivos del tema: En este tema aprenderemos los fundamentos geométricos del movimiento de la
Figura 5.1 a: Acimut de una dirección de mira
Tema N 5 Determinación del Acimut de una dirección 5.1- Acimut de una dirección El acimut de una línea cualquiera es el ángulo que forma el meridiano del lugar con el plano vertical que contiene dicha
SOBRE LA CONSTRUCCIÓN DE RELOJES DE SOL
SOBRE LA CONSTRUCCION DE RELOJES DE SOL 1. Construyamos un Reloj de Sol. 2. El reloj de Cuadrante Ecuatorial. 3. El reloj de Cuadrante Horizontal. 4. El reloj de Cuadrante Vertical. 5. Otros tipos de relojes
SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL
SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,
Reloj de Sol analemático.
Reloj de Sol analemático. IES de Llerena Curso 20122013 Juan Guerra Bermejo Un reloj de sol analemático es un reloj de sol horizontal dibujado en el suelo en el que el gnomon es perpendicular a éste. El
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado
Tipos de funciones. Clasificación de funciones
Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,
3.1 DEFINICIÓN. Figura Nº 1. Vector
3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado
Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8
Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características
Ejercicios de Trigonometría
Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple
MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.
ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta
c) ( 1 punto ). Hallar el dominio de definición de la función ( ). Hallar el conjunto de puntos en los que la función tiene derivada.
Materiales producidos en el curso: Curso realizado por Escuelas Católicas del 7 de noviembre al 19 de diciembre de 2011 Título: Wiris para Matemáticas de ESO y Bachilleratos. Uso de Pizarra Digital y Proyector
RELOJ SOLAR VERTICAL Esteban Esteban Atrévete con el Universo
RELOJ SOLAR VERTICAL Esteban Esteban Atrévete con el Universo Importancia de los relojes verticales y sus tipos Los relojes verticales son los más habituales que podemos encontrar en paredes de iglesias,
FUNCIONES CUADRÁTICAS Y RACIONALES
www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro
Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim
) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los
Cálculo del radio de la Tierra. Método de Eratóstenes ( Siglo III a.c.)
Cálculo del radio de la Tierra. Método de Eratóstenes ( Siglo III a.c.) Introducción histórica El griego Eratóstenes vivió en Alejandría entre los años 276 a. C. y 194 a. C. Era un conocido matemático,
Curso Energía Solar Fotovoltaica. Conceptos Generales
Curso Energía Solar Fotovoltaica Conceptos Generales Temario Introducción Coordenadas y Movimiento de la Tierra Coordenadas Solares Orientación de los módulos Introducción La energía solar fotovoltaica
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre
El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales
El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales By Luis Mederos Como todos sabemos, alrededor del 21 de Diciembre se produce el solsticio de invierno (en el hemisferio norte).
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa
1. Definición 2. Operaciones con funciones
1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de
Funciones definidas a trozos
Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad
ASTRONOMÍA DE POSICIÓN
ASTRONOMÍA DE POSICIÓN 1) DATOS GENERALES: Titulación: Ingeniero técnico en topografía Curso: Segundo Semestre: Segundo Asignatura: ASTRONOMÍA DE POSICIÓN Tipo (Troncal, Obligatoria, Optativa):Troncal
TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO
TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO Para medir el tiempo se necesita un fenómeno periódico, que se repita continuamente y con la misma fase, lo que sucede con fenómenos astronómicos basado
PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables
Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver
Curso Básico de Astronomía 2011-1
Curso Básico de Astronomía 2011-1 Sistemas de Coordenadas Astronómicas Dr. Lorenzo Olguín Ruiz 1 Sistemas de Coordenadas 1. Sistema Horizontal 2. Sistema Ecuatorial 4. Coordenadas Galácticas 2 Coordenadas
Sistema Diédrico (I). Verdadera magnitud. Abatimientos
Sistema Diédrico (I). Verdadera magnitud. Abatimientos Cuando dibujamos las proyecciones diédricas (planta, alzado y perfil) de una figura, superficie, sólido, etc.., observamos cómo sus elementos (aristas
Aplicaciones Lineales
Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las
Selectividad Septiembre 2006 SEPTIEMBRE 2006
Bloque A SEPTIEMBRE 2006 1.- En una fábrica trabajan 22 personas entre electricistas, administrativos y directivos. El doble del número de administrativos más el triple del número de directivos, es igual
6. VECTORES Y COORDENADAS
6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación
1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica
1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:
Profr. Efraín Soto Apolinar. Función Inversa
Función Inversa Una función es una relación entre dos variables, de manera que para cada valor de la variable independiente eiste a lo más un único valor asignado a la variable independiente por la función.
RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES
RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES 1 La ecuación 2x - 3 = 0 se llama ecuación lineal de una variable. Obviamente sólo tiene una solución. La ecuación -3x + 2y = 7 se llama ecuación lineal de
TALLER DE CONSTRUCCIÓN DE RELOJES DE SOL
TALLER DE CONSTRUCCIÓN DE RELOJES DE SOL 1. Algunas consideraciones elementales a) Suponemos que la Tierra permanece fija y son los astros quienes se mueven en torno a ella. Es decir, en nuestro modelo
Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:
Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado
Parcial I Cálculo Vectorial
Parcial I Cálculo Vectorial Febrero 8 de 1 ( Puntos) I. Responda falso o verdadero justificando matematicamente su respuesta. (i) La gráfica de la ecuación cos ϕ = 1, en coordenadas esféricas en R3, es
Covarianza y coeficiente de correlación
Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción
Escuela Técnica Superior de Ingeniería Universidad de Sevilla. GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II
Escuela Técnica Superior de Ingeniería Universidad de Sevilla GradoenIngenieríadelas Tecnologías de Telecomunicación EJERCICIOS DE MATEMÁTICAS II CURSO 2015-2016 Índice general 1. Derivación de funciones
1. Dominio, simetría, puntos de corte y periodicidad
Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele
EJERCICIOS SOBRE : NÚMEROS ENTEROS
1.- Magnitudes Absolutas y Relativas: Se denomina magnitud a todo lo que se puede medir cuantitativamente. Ejemplo: peso de un cuerpo, longitud de una cuerda, capacidad de un recipiente, el tiempo que
Determinación del acimut por observación al Sol
Astronomía Geodésica Práctica Número 3 Determinación del acimut por observación al Sol ADVERTENCIA DE SEGURIDAD: en esta práctica nunca miréis al Sol directamente con el teodolito!!! 1 Objetivos En la
M a t e m á t i c a s I I 1
Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la
SISTEMAS DE ECUACIONES LINEALES
SISTEMAS DE ECUACIONES LINEALES INTRODUCCIÓN En el presente documento se explican detalladamente dos importantes temas: 1. Descomposición LU. 2. Método de Gauss-Seidel. Se trata de dos importantes herramientas
Dra.Julia Bilbao Universidad de Valladolid, Departamento Física Aplicada Laboratorio de Física de la Atmósfera [email protected]
CURSO de FÍSICA DE LA ATMÓSFERA RADIACIÓN SOLAR Dra.Julia Bilbao Universidad de Valladolid, Departamento Física Aplicada Laboratorio de Física de la Atmósfera [email protected] ÍNDICE SOL Y LA CONSTANTE
GEOMETRÍA ANALÍTICA GIRO DE LOS EJES
GIRO DE LOS EJES CONTENIDO. Ecuaciones de giro. Ejercicios Ya tratamos el procedimiento, mediante el cual, con una translación paralela de ejes, simplificamos las ecuaciones en particular de las curvas
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco
b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:
1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el
Funciones de varias variables
Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial
Aplicaciones de vectores
Aplicaciones de vectores Coordenadas del punto medio de un segmento Las coordenadas del punto medio de un segmento son la semisuma de las coordenadas de los extremos. Ejemplo: Hallar las coordenadas del
RELOJ SOLAR HORIZONTAL Esteban Esteban Atrévete con el Universo
RELOJ SOLAR HORIZONTAL Esteban Esteban Atrévete con el Universo Características y ventajas de este tipo de reloj Está claro que si se va a trabajar en la escuela con relojes solares, el primer paso debe
Aproximación local. Plano tangente. Derivadas parciales.
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación
(Tomado de: http://www.liccom.edu.uy/bedelia/cursos/metodos/material/estadistica/var_cuanti.html)
VARIABLES CUANTITATIVAS (Tomado de: http://www.liccom.edu.uy/bedelia/cursos/metodos/material/estadistica/var_cuanti.html) Variables ordinales y de razón. Métodos de agrupamiento: Variables cuantitativas:
ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.
ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura
Código/Título de la Unidad Didáctica: MATEMÁTICAS BASICAS APLICADAS EN EL MECANIZADO. Actividad nº/título: REGLA DE TRES y SISTEMAS DE COORDENADAS
Código/Título de la Unidad Didáctica: MATEMÁTICAS BASICAS APLICADAS EN EL MECANIZADO Actividad nº/título: REGLA DE TRES y SISTEMAS DE COORDENADAS Introducción a la actividad Material Didáctico: Tiempo:
http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17
http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la
De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.
3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder
Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA
Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro
INTERACCIÓN DE UNA CIMENTACIÓN PROFUNDA CON LA ESTRUCTURA
INTERACCIÓN DE UNA CIMENTACIÓN PROFUNDA CON LA ESTRUCTURA Fernando MUZÁS LABAD, Doctor Ingeniero de Caminos Canales y Puertos Profesor Titular de Mecánica del Suelo ETSAM RESUMEN En el presente artículo
2. Vector tangente y gráficas en coordenadas polares.
GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 Vector tangente y gráficas en coordenadas polares De la misma forma que la ecuación cartesiana y = yx ( ) define una curva en el plano, aquella formada por los
FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal.
FRACCIONES Las fracciones representan números (son números, mucho más exactos que los enteros o los decimales), Representa una o varias partes de la unidad. Una fracción tiene dos términos, numerador y
Clave: 107-5-V-2-2013
Clave: 107-5-V-2-2013 Universidad de San Carlos de Guatemala Facultad de Ingeniería Departamento de Matemática Clave de Examen: 107-5-V-2-2013 Curso: Matemática Intermedia 1 Semestre: Segundo Código del
5. RESULTADOS. 5.1 Resultados obtenidos de Visual Basic.
5. RESULTADOS. 5.1 Resultados obtenidos de Visual Basic. Para poder obtener los resultados que arrojan las ecuaciones programadas de sobrepresión, es necesaria la creación de una base de datos que contenga
BÚSQUEDA POR COORDENADAS CELESTE
BÚSQUEDA POR COORDENADAS CELESTE El objetivo de este pequeño manual es que podamos encontrar cualquier objeto celeste partiendo de sus coordenadas ecuatoriales celestes. Para ello hay que hacer uso de
Ejercicio de ejemplo - Diagramas de solicitaciones. Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula:
Ejercicio de ejemplo - Diagramas de solicitaciones Se plantea el problema de hallar los diagramas de solicitaciones de la siguiente ménsula: 1- Reacciones: En primer lugar determinamos el valor de las
Tránsito del Sol por el Meridiano del Lugar
La técnica más simple para obtener nuestra situación por procedimientos de navegación astronómica, es sin duda la meridiana del Sol o paso del Sol por el meridiano superior del lugar del observador ( ).
Traslación de puntos
LECCIÓN CONDENSADA 9.1 Traslación de puntos En esta lección trasladarás figuras en el plano de coordenadas definirás una traslación al describir cómo afecta un punto general (, ) Una regla matemática que
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
Ejercicios resueltos de cinemática
Ejercicios resueltos de cinemática 1) Un cuerpo situado 50 metros por debajo del origen, se mueve verticalmente con velocidad inicial de 20 m/s, siendo la aceleración de la gravedad g = 9,8 m/s 2. a) Escribe
1. Hallar los extremos de las funciones siguientes en las regiones especificadas:
1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el
Características de funciones que son inversas de otras
Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =
1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j.
IES ARQUITECTO PEDRO GUMIEL BA1 Física y Química UD 1: Cinemática 1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t t) j. a) Determina los
Construimos un CUADRANTE y aprendemos a utilizarlo.
Construimos un CUADRANTE y aprendemos a utilizarlo. El cuadrante es un sencillo instrumento que sirve para medir, generalmente, ángulos de elevación. Fue utilizado, sobretodo, en los comienzos de la navegación
A RG. Giro de un punto A respecto del eje vertical, e. Giro de un punto A respecto del eje de punta, e.
Giro de un punto A respecto del eje vertical, e. A''' A''' 2 e A'' 60 El giro es otro de los procedimietos utilizados en diédrico para resolver construcciones. Aquí vamos a ver solo uno de sus aspectos:
SISTEMAS DE ECUACIONES LINEALES
Capítulo 7 SISTEMAS DE ECUACIONES LINEALES 7.1. Introducción Se denomina ecuación lineal a aquella que tiene la forma de un polinomio de primer grado, es decir, las incógnitas no están elevadas a potencias,
ACTIVIDAD: RELOJES DE SOL (información sobre relojes de Sol).
Relojes de Sol Los relojes de Sol nos han acompañado desde hace milenios (ya existía un tipo de reloj de Sol en el antiguo Egipto) y siguen con nosotros aunque pasen un poco desapercibidos. Continúan mostrándonos
x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos
Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B. (35 m Sur)
VECTORES: OPERACIONES BÁSICAS Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B (0 m Este 30º Norte) y C (35 m Sur) Solución: I.T.I. 94, I.T.T. 05 A
PRISMA OBLICUO > REPRESENTACIÓN Y DESARROLLO POR EL MÉTODO DE LA SECCIÓN NORMAL
1. CARACTERÍSTICAS GENERALES DEL PRISMA OBLICUO Desde el punto de vista de la representación en SISTEMA DIÉDRICO, el prisma oblicuo presenta dos características importantes que lo diferencian del prisma
Las funciones trigonométricas
Las funciones trigonométricas Las funciones trigonométricas Las funciones trigonométricas son las funciones derivadas de las razones trigonométricas de un ángulo. En general, el ángulo sobre el cual se
Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas
Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas Videoconferencias semana de estadística Universidad Latina, Campus Heredia Costa Rica Universidad del Valle
4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS
4 4.1 EL SISTEMA POLAR 4. ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES.
ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física
ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.
