Elementos de Cálculo vectorial

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Elementos de Cálculo vectorial"

Transcripción

1 Capítulo 1 Elementos de Cálculo vectorial 1.1. Álgrebra de Vectores en R 3 Esta es una lista de identidades elementales del álgebra vectorial, que se supondrán bien conocidas A B = A x B x + A y B y + A z B z A B =A y B z A z B y î +A z B x A x B z ĵ +A x B y A y B z k A A =0 A A B =0 A B C = A B C A B C = A C B A B C 1.2. Cálculo diferencial en R 3 Sea f :[R 3 ] R una función real. También es llamada campo escalar, pues a cada punto del espacio R 3 le asocia un número real un escalar. Ejemplo de un campo escalar puede ser la temperatura en cierta región del espacio T : [Ω R 3 R] Fig. 1.1: T x, y, z representa un campo escalar sobre Ω Además de la existencia de campos escalares, también existen campos vectoriales. La idea es bien simple, a cada punto del espacio se le asocia un vector. En R 3, el tipo de campos vectoriales que nos interesarán son de la forma F : [Ω R 3 ] R 3. 5

2 Fig. 1.2: La velocidad de los átomos de un objeto que rota es un ejemplo de campo vectorial Derivadas de un campo escalar Si f es un campo escalar diferenciable y por lo tanto una función continua sobre un dominio D R 3, entonces está definido el Gradiente de f fx, y, z fx, y, z fx, y, z fx, y, z = + + x y y El gradiente es un campo vectorial, pues a cada punto en D le asocia un vector. Es inmediato notar que el gradiente es perpendicular a curvas en donde el campo escalar f es constante, como las curvas que se muestran en la figura 1. Llamadas isotermas en el caso de que el campo escalar sea la temperatura. En efecto, la curva fx, y, z =C puede ser parametrizada fxt,yt,zt = C Derivando con respecto a t, se obtiene fx, y, z + x f x x t+ f y y t+ f z t =0 fx, y, z y + fx, y, z x t,y t,z t = 0 y y entonces el gradiente es perpendicular a la dirección tangente a la curva. Más aún, si û es un vector unitario, se define la derivada direccional de f en la dirección û como Dûfx, y, z = fx, y, z û Se puede demostrar que la derivada direccional se maximiza en la dirección del gradiente, es decir, el gradiente entrega la dirección de máxima variación de f. 6

3 1.3. como un operador Conviene considerar al gradiente como algo independiende de que función se está derivando. Llamamos al operador = x, y, Por supuesto que este operador así escrito no significa nada. El operador debe operar sobre una función, por ejemplo f f = x, f y, f Tiene completo sentido en este caso. Hemos multiplicado al operador por una cantidad escalar. Hay que tener ciertas precauciones con este tipo de notación, por ejemplo, del álgebra de vectores es sabido que si α es un escalar α A = Aα sin embargo, f no tiene sentido por si mismo, en efecto, es un nuevo operador f = f x,f y,f Divergencia y Rotor Si F es un campo vectorial, entonces F debe ser un escalar, y por lo tanto puede tener un sentido físico. Entendiendo como un operador vectorial, se tiene F = x, y, F x,f y,f z F = x F x + y F y + F z A esta cantidad escalar asociada a un campo vectorial se le llama divergencia de F. Veamos que más es posible definir a partir del operador gradiente. Qué ocurre con F?. Por supuesto que el resultado debe ser un campo vectorial, de hecho, muy útil en el análisis de funciones vectoriales. Desarrollando este producto cruz según el álgebra de vectores F F F x y z = F z y F y = F x F z x = F y x F x y A esta combinación se le llama rotor. En resumen, hemos definido las siguientes cantidades 7

4 f Vector F Escalar F Vector 8

5 Segundas derivadas Hasta ahora hemos definido cantidades que involucran únicamente primeras derivadas. Veamos que ocurre con las siguientes combinaciones a f b f c F d F e F Veamos la primera de ellas, es claro que debe obtenerse un campo escalar. Desarrollando f = f x, f y, f f = 2 f x + 2 f 2 y + 2 f 2 2 Se ve que esto se puede reescribir como f = f = f = 2 f Vemos a 2 como un nuevo operador, y como aparece mucho en física, tiene un nombre. Es llamado Laplaciano Laplaciano 2 = 2 x y debido a que el Laplaciano es un operador escalar, podría aplicarse sobre un vector por supuesto esto significa que el operador Laplaciano opera sobre cada componente de F 2 F = 2 F x, 2 F y, 2 F z 2 F Veamos que ocurre con la expresión b. Notemos que tiene la siguiente forma A Af = A A f =0 Esperamos que f sea cero para cualquier campo escalar f. Podemos verificarlo tomando alguna de las componentes 9

6 [ f] x = z f [ f] x = y f y y y f Del mismo modo se muestra para las demás componentes La expresión c es por supuesto un campo vectorial F z f =0 Sin embargo, no hay nada muy especial que decir acerca de él. Es simplemente un campo vectorial que podría aparecer en el futuro La expresión d tiene la forma Es decir, esperamos que A A B =0 F =0 Para cualquier campo vectorial F. Es así, y es fácil de verificar Por último, veamos que sucede con la expresión e F Ésta tiene la forma de A B C = B A C A B C Podríamos seguir utilizando esta expresión y escribir F = F F El último término es el Laplaciano F = F 2 F En resumen, hemos encontrado f = 2 f Laplaciano sobre f, campo escalar f =0 F Campo vectorial F =0 F = F 2 F campo vectorial 10

7 Dos teoremas adicionales En muchos problemas físicos, sucede que un determinado campo vectorial F tiene rotor nulo. Es decir F =0 Hemos visto que el rotor de un gradiente es siempre cero. Podría ser ciento entonces, que F fuera el gradiente de algún campo escalar, de esta forma su rotor sería siempre nulo. Lo interesante es que esto es siempre así, y enunciaremos el siguente teorema Si Existe un campo escalar ψ, tal que F =0 F = ψ Del mismo modo, hemos visto que la divergencia de un rotor es siempre cero. Luego, si la divergencia de un campo vectorial F es nula, podria tenerse que F fuera el rotor de un campo vectorial. De ser así, estaría garantizado que su divergencia sea nula. En efecto, enunciamos el segundo teorema Si Existe un campo vectorial A, tal que F =0 F = A 1.4. Cálculo Integral en R Integral de línea de un campo vectorial Sea F : [Ω R 3 ] R 3 Consideremos una curva contenida en Ω. Sea x 0, x 1,... x n una partición de, x k, y k un punto en el trazo de que va de x k 1 a x k,y x k = x k x k 1. Se define la integral de línea de F x por d x F x = lím F xk, y k x k n Esto se puede reescribir como d x F x = lím n F xk, y k x k x k x k = ds T x F x donde T x es la tangente unitaria a la curva en x. Así d x F x = ds T x F x La integral de línea de un campo vectorial sobre una curva corresponde a sumar las proyeccciones de F x en la dirección tangente a la curva en todo punto. 11

8 Integral de superficie de un campo vectorial Sea F : [Ω R 3 ] R 3 y S una superficie contenida en Ω. Se define la integral de flujo del campo F sobre S como ds x F x = ds x n x F x S corresponde a sumar la proyección del campo F sobre la normal a la superficie S en cada punto Teorema de la Divergencia S Sea Ω R 3 una región. Sea F un campo vectorial continuo y diferenciable en Ω. Entonces d 3 x F = ds x F x Ω δω Teorema de Stokes Sea S una superficie en R 3. Sea F un campo vectorial continuo y diferenciable en una región que contiene a S. Entonces d S x F x = d x F x S δs donde δs es el contorno de S una curva en R 3 12

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor.

Los lugares geométricos de todos los puntos del espacio en los cuales la magnitud escalar tiene un mismo valor. 2. 2. Introducción A lo largo del estudio de la Física surgen una serie de propiedades, tanto de magnitudes escalares como vectoriales, que se expresan por medio de nuevos conceptos tales como gradiente,

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables 1. Conceptos elementales Funciones IR n IR m. Definición Una función f (también f o f): A IR n IR m es una aplicación que a cada x (también x o x) A IR n le hace corresponder

Más detalles

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial.

Definición. Tema 12: Teoremas de Integración del Cálculo Vectorial. Gradiente de un campo escalar. Rotacional de un campo vectorial. Tema 12: Teoremas de Integración del Cálculo Vectorial El operador nabla e conoce como operador nabla al pseudo-vector = ( x, y, ) Juan Ignacio Del Valle Gamboa ede de Guanacaste Universidad de Costa Rica

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Operador Diferencial y Ecuaciones Diferenciales

Operador Diferencial y Ecuaciones Diferenciales Operador Diferencial y Ecuaciones Diferenciales. Operador Diferencial Un operador es un objeto matemático que convierte una función en otra, por ejemplo, el operador derivada convierte una función en una

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales Derivadas parciales y direccionales 1 Derivadas parciales 2 Derivadas direccionales 3 Derivadas parciales de orden superior Derivadas parciales (de campos escalares de dos variables) Sea A = [a 1, b 1

Más detalles

TEMA 0: Herramientas matemáticas

TEMA 0: Herramientas matemáticas 1 TEMA 0: Herramientas matemáticas Tema 0: Herramientas matemáticas 1. Campos escalares y vectoriales 2. Gradiente 3. Divergencia 4. Rotacional 5. Teoremas de Gauss y de Stokes 5. Representación gráfica

Más detalles

Dinámica de la partícula: Energía y Leyes de Conservación

Dinámica de la partícula: Energía y Leyes de Conservación Dinámica de la partícula: Energía y Leyes de Conservación Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2011/2012 Dpto.Física Aplicada III Universidad

Más detalles

Repaso de Vectores. Autor: Dra. Estela González. flecha. La longitud de la línea indica la magnitud del vector, y su

Repaso de Vectores. Autor: Dra. Estela González. flecha. La longitud de la línea indica la magnitud del vector, y su Autor: Dra. Estela González Algunas cantidades físicas como tiempo, temperatura, masa, densidad y carga eléctrica se pueden describir plenamente con un número y una unidad, pero otras cantidades (también

Más detalles

Derivadas Parciales de Orden Superior

Derivadas Parciales de Orden Superior Capítulo 9 Derivadas Parciales de Orden Superior La extensión a funciones de varias variables del concepto de derivada de orden superior, aunque teóricamente no ofrece ninguna dificultad, presenta ciertas

Más detalles

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos ECUACIONES EN DERIVADAS PARCIALES Tópicos previos Para tomar el curso de ecuaciones en derivadas parciales es importante la familiaridad del alumno con los conceptos que se detallan a continuación. Sugerimos

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Elementos de Cálculo en Varias Variables

Elementos de Cálculo en Varias Variables Elementos de Cálculo en Varias Variables Departamento de Matemáticas, CSI/ITESM 5 de octubre de 009 Índice Introducción Derivada parcial El Jacobiano de una Función 5 Derivadas Superiores 5 5 Derivada

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. octubre 2013 En esta Presentación... En esta Presentación veremos: Rectas En esta Presentación... En esta Presentación veremos:

Más detalles

1. Algunas deniciones y resultados del álgebra lineal

1. Algunas deniciones y resultados del álgebra lineal . Algunas deniciones y resultados del álgebra lineal Denición. (Espacio vectorial o espacio lineal sobre R) Un espacio vectorial o espacio lineal sobre el campo de los números reales, R, es un conjunto

Más detalles

Funciones de dos variables: Gradiente. Derivadas direccionales. Plano tangente. Linealización.

Funciones de dos variables: Gradiente. Derivadas direccionales. Plano tangente. Linealización. Funciones de dos variables:. Derivadas direccionales... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Contenidos Introducción 1 Introducción 2 3 4 5 Índice Introducción 1 Introducción

Más detalles

Tema 06: Derivación implícita, vector gradiente y derivadas direccionales

Tema 06: Derivación implícita, vector gradiente y derivadas direccionales Tema 06: Derivación implícita, vector gradiente y derivadas direccionales Juan Ignacio Del Valle Gamboa Sede de Guanacaste Universidad de Costa Rica Ciclo I - 2014 MA-1003 Cálculo III (UCR) Derivadas implícitas

Más detalles

Superficies paramétricas

Superficies paramétricas SESIÓN 7 7.1 Introducción En este curso ya se han estudiando superficies S que corresponden a gráficos de funciones de dos variables con dos tipos de representaciones: Representación explícita de S, cuando

Más detalles

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero

CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE

Más detalles

Espacios Vectoriales. Matemáticas. Espacios Vectoriales CARACTERIZACION COMBINACIONES LINEALES REDUCCION DE GAUSS SISTEMA GENERADOR, BASES

Espacios Vectoriales. Matemáticas. Espacios Vectoriales CARACTERIZACION COMBINACIONES LINEALES REDUCCION DE GAUSS SISTEMA GENERADOR, BASES Espacios Vectoriales Matemáticas Espacios Vectoriales CARACTERIZACION COMBINACIONES LINEALES REDUCCION DE GAUSS SISTEMA GENERADOR, BASES 5 ESPACIO VECTORIAL Dados: (E,+) Grupo Abeliano (K,+, ) Cuerpo :

Más detalles

Breviario de cálculo vectorial

Breviario de cálculo vectorial Apéndice A Breviario de cálculo vectorial versión 16 de octubre de 2006 Este apéndice no pretende ser mas que un resumen de definiciones y fórmulas útiles acerca de la función delta de Dirac, cálculo vectorial

Más detalles

INTRODUCCIÓN AL CONCEPTO DE CAMPOS

INTRODUCCIÓN AL CONCEPTO DE CAMPOS 1. CONCEPTO DE CAMPO. INTRODUCCIÓN AL CONCEPTO DE CAMPOS Una magnitud definida en un cierto espacio (p.ej. el euclídeo) y que pueda expresarse analíticamente como una función de las coordenadas espaciales

Más detalles

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil. DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley

Más detalles

Matrices. Álgebra de matrices.

Matrices. Álgebra de matrices. Matrices. Álgebra de matrices. 1. Definiciones generales Definición 1.1 Si m y n son dos números naturales, se llama matriz de números reales de orden m n a una aplicación A : {1, 2, 3,..., m} {1, 2, 3,...,

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

1. Funciones diferenciables

1. Funciones diferenciables 1. diferenciables Volvamos sobre el significado de la derivada de una función real de una variable real, Como vimos en el capítulo anterior, f : (a, b) R derivable en x 0, equivale a que f(x) f(x 0 ) =

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

1. Lección 9 - Continuidad y Derivabilidad

1. Lección 9 - Continuidad y Derivabilidad 1. Lección 9 - Continuidad y Derivabilidad 1.1. Continuidad El concepto de continuación es el mismo que el visto en el primer cuatrimestre pero generalizado al caso de los campos escalares. Así, sea la

Más detalles

Guía n 0: Herramientas de Física y Matemáticas

Guía n 0: Herramientas de Física y Matemáticas Guía n 0: Herramientas de Física y Matemáticas Problema Dadas dos partículas en el espacio ubicadas en los puntos de coordenadas p = (0,5, 2) y p 2 = (2,3,). Hallar el vector posición de la partícula respecto

Más detalles

FISICA 1º y 2º BACHILLERATO TRABAJO Y ENERGÍA

FISICA 1º y 2º BACHILLERATO TRABAJO Y ENERGÍA A) Trabajo de fuerzas constantes y trayectoria rectilínea. Cuando sobre una partícula actúa una fuerza constante, y esta partícula describe una trayectoria rectilínea, definimos trabajo realizado por la

Más detalles

TEORÍA ELECTROMAGNÉTICA APÉNDICE A INTRODUCCIÓN AL CÁLCULO VECTORIAL

TEORÍA ELECTROMAGNÉTICA APÉNDICE A INTRODUCCIÓN AL CÁLCULO VECTORIAL Página Principal del Profesor: Luis Gerardo Guerrero Ojeda Ir al Capítulo 1 Página Principal de Apuntes de Cursos Pág. Principal de los Apuntes de Teoría TEORÍA ELECTROMAGNÉTICA APÉNDICE A INTRODUCCIÓN

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular El campo magnético de las corrientes estacionarias ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones

Más detalles

ELECTROMAGNETISMO I El Rotor de H. ELECTROMAGNETISMO I El Rotor de H

ELECTROMAGNETISMO I El Rotor de H. ELECTROMAGNETISMO I El Rotor de H El Rotor de H Escribamos la expresión para Iy.. =? + + + + + + = = esto es igual a la corriente dentro del área analizada 139 El Rotor de H Dividiendo ambos miembros por el área dxdz y tomando el límite

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

, la ley anterior se convierte en la ecuación de movimiento de la partícula: una ecuación diferencial para la posición r,

, la ley anterior se convierte en la ecuación de movimiento de la partícula: una ecuación diferencial para la posición r, Repaso de la mecánica de Newton Arrancamos de la segunda ley de Newton sin aclaraciones que vendrán más tarde. (1.1) Especificada la fuerza, la ley anterior se convierte en la ecuación de movimiento de

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

TEMA 2. ESPACIOS VECTORIALES

TEMA 2. ESPACIOS VECTORIALES TEMA 2. ESPACIOS VECTORIALES CÉSAR ROSALES GEOMETRÍA I En este tema comenzaremos el estudio de los objetos que nos interesarán en esta asignatura: los espacios vectoriales. Estos son estructuras básicas

Más detalles

Electromagnetismo. Introducción. Líneas de campo magnético. Experimento de Oersted. El campo magnético de las corrientes estacionarias

Electromagnetismo. Introducción. Líneas de campo magnético. Experimento de Oersted. El campo magnético de las corrientes estacionarias El campo magnético de las corrientes estacionarias Electromagnetismo Andrés Cantarero Sáez Curso 25-26 Grupo C ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo

Más detalles

CAMPOS: CIRCULACIÓN Y FLUJO

CAMPOS: CIRCULACIÓN Y FLUJO AMPO: IRULAIÓN Y FLUJO Dado el vector a ( x + y) i ˆ + xy ˆ j calcular su circulación a lo largo de la recta y x+ desde el punto A (, ) al B (, 2). olución: I.T.I. 99, 5, I.T.T. 2 En la trayectoria que

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1) Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : Se pide: v = x yē x + x tē y (3.1) a. A qué tipo de formalismo corresponde este análisis del escurrimiento, lagrangeano o eulereano?

Más detalles

Planos y Rectas. 19 de Marzo de 2012

Planos y Rectas. 19 de Marzo de 2012 el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos

Más detalles

Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99, 01, curso cero de física

Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99, 01, curso cero de física VECTORES: TRIÁNGULOS Demostrar que en una semicircunferencia cualquier triángulo inscrito con el diámetro como uno de sus lados es un triángulo rectángulo. Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99,

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

GUIA 4: ALGEBRA DE BOOLE

GUIA 4: ALGEBRA DE BOOLE GUIA 4: ALGEBRA DE BOOLE En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra de Boole nos

Más detalles

son dos elementos de Rⁿ, definimos su suma, denotada por

son dos elementos de Rⁿ, definimos su suma, denotada por 1.1 Definición de un vector en R², R³ y su Interpretación geométrica. 1.2 Introducción a los campos escalares y vectoriales. 1.3 La geometría de las operaciones vectoriales. 1.4 Operaciones con vectores

Más detalles

INDICE Capitulo 1. Números Capitulo 2. Secuencias Capitulo 3. Funciones, Límites y Continuidad

INDICE Capitulo 1. Números Capitulo 2. Secuencias Capitulo 3. Funciones, Límites y Continuidad INDICE Capitulo 1. Números 1 Conjuntos 1 Números reales 1 Representación decimal de los números reales 2 Representación geométrica de los números reales 2 Operación con los números reales 2 Desigualdades

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Tema 2: Álgebra vectorial

Tema 2: Álgebra vectorial Tema 2: Álgebra vectorial FISICA I, 1º Grado en Ingeniería Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Magnitudes escalares y vectoriales Definición de vector Vectores

Más detalles

RESUMEN TEORIA MATEMATICAS 5

RESUMEN TEORIA MATEMATICAS 5 RESUMEN TEORIA MATEMATICAS 5 LIMITES Definición. Sea :, lim,,, Significa que cuando, esta cerca de, entonces, esta cerca de L. De otra forma se dice que, pertenece a una bola centrada en, por otro lado,

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que

Más detalles

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales 3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables.

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables. Derivadas. Contenido 1. Introducción. (α) 2. Definición de Derivada. (α) 3. Pendiente de la recta tangente. (α) 4. Funciones diferenciables. (α) 5. Función derivada. (α) 6. Propiedades de la derivada.

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

f y h lim (, ) Derivadas parciales de una función de dos variables INTERPRETACIóN GEOMéTRICA DE LAS DERIVADAS PARCIALES f(x,y)= f x = = D x

f y h lim (, ) Derivadas parciales de una función de dos variables INTERPRETACIóN GEOMéTRICA DE LAS DERIVADAS PARCIALES f(x,y)= f x = = D x DERIVADAS PARCIALES En las aplicaciones de las funciones de varias variables surge una pregunta: Cómo será afectada la función por una variación de una de las variables independientes?. Podemos responder

Más detalles

Integración por fracciones parciales

Integración por fracciones parciales Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Coordinación de Matemáticas III (MAT 023) 1 er Semestre de 2013 1. Funciones de varias variables 1.1. Definiciones básicas Definición 1.1. Consideremos una función f : U R n R m. Diremos que: 1. f es una

Más detalles

Integral de Fourier y espectros continuos

Integral de Fourier y espectros continuos 9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES PREGRADO EN MATEMÁTICAS

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES PREGRADO EN MATEMÁTICAS UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES PREGRADO EN MATEMÁTICAS Código: CNM- 517 Nombre: Análisis vectorial Prerrequisitos: CNM-295 Duración del semestre: 16 semanas Intensidad

Más detalles

GF = I V. G(v ) = v 1

GF = I V. G(v ) = v 1 7- Inversas a Izquierda y Derecha Sea F : V V una transformación lineal. G : V V lineal se denomina inversa a izquierda de F si GF = I V donde I V : V V denota el operador identidad en V. En tal caso F

Más detalles

* e e Propiedades de la potenciación.

* e e Propiedades de la potenciación. ECUACIONES DIFERENCIALES 1 REPASO DE ALGUNOS CONCEPTOS PREVIOS AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES 1. Cuando hablamos de una función en una variable escribíamos esta relación como y = f(x), esta

Más detalles

Unidad IV. 4.1 Conceptos de incremento y de razón de cambio. La derivada de una función.

Unidad IV. 4.1 Conceptos de incremento y de razón de cambio. La derivada de una función. Unidad IV Derivadas 4.1 Conceptos de incremento y de razón de cambio. La derivada de una función. Derivada de una función en un punto. Dada la función f(x) continúa en el intervalo abierto I, se define

Más detalles

Derivadas Parciales y Derivadas Direccionales

Derivadas Parciales y Derivadas Direccionales Tema 3 Derivadas Parciales y Derivadas Direccionales En este tema y en el siguiente presentaremos los conceptos fundamentales del Cálculo Diferencial para funciones de varias variables. Comenzaremos con

Más detalles

«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto»

«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto» TEMA 10 DERIVADA DE UNA FUNCIÓN EN UN PUNTO f (a): Consideremos una función f(x) y un punto P de su gráfica (ver figura), de abscisa x=a. Supongamos que damos a la variable independiente x un pequeño incremento

Más detalles

[ ] 2, 2, 3 [ ( )] 2, 2, 3 CAMPOS: SUPERFICIES ( ) Hallar un vector unitario normal a la superficie x 2 y + 2xz = 4 en el punto (2, 2,3).

[ ] 2, 2, 3 [ ( )] 2, 2, 3 CAMPOS: SUPERFICIES ( ) Hallar un vector unitario normal a la superficie x 2 y + 2xz = 4 en el punto (2, 2,3). CAMPOS SUPERFICIES Hallar un vector unitario normal a la superficie x 2 y + 2xz 4 en el punto (2, 2,3). Solución I.T.I. 98, I.T.T. 99, 02 En primer lugar deberíamos verificar que el punto (2, 2,3) pertenece

Más detalles

Límites y Derivadas 2d. Matemáticas para Ingeniería I Otono 2016 Lilia Meza Montes IFUAP

Límites y Derivadas 2d. Matemáticas para Ingeniería I Otono 2016 Lilia Meza Montes IFUAP Límites y Derivadas d Matemáticas para Ingeniería I Otono 016 Lilia Meza Montes IFUAP Función de una variable Función : regla que asocia un único valor a cada elemento de un conjunto. R y() R 0 Dominio:

Más detalles

Integrales sobre superficies

Integrales sobre superficies Capítulo 12 Integrales sobre superficies En este capítulo estudiaremos la noción de área de superficies en R 3, y las integrales de campos escalares y vectoriales definidos sobre éstas. Una superficie

Más detalles

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Ecuaciones diferenciales de primer orden. Traectorias ortogonales. Muchas aplicaciones problemas de la ciencia, la ingeniería la economía se formulan en términos

Más detalles

Cinética. 1. Introducción Cantidad de movimiento Teorema del centro de masas... 2

Cinética. 1. Introducción Cantidad de movimiento Teorema del centro de masas... 2 Índice Cinética 1. Introducción. Cantidad de movimiento.1. Teorema del centro de masas................................ 3. Momento cinético 3 3.1. Teorema de König relativo al momento cinético.....................

Más detalles

TEMA 11. VECTORES EN EL ESPACIO

TEMA 11. VECTORES EN EL ESPACIO TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo

Más detalles

Campo de velocidades se puede representar mediante una función potencial φ, escalar

Campo de velocidades se puede representar mediante una función potencial φ, escalar Flujo Potencial Campo de velocidades se puede representar mediante una función potencial φ, escalar Condición necesaria flujo irrotacional, V=0. Hipótesis: Flujo irrotacional, incompresible y permanente

Más detalles

Tema 7: Derivada de una función

Tema 7: Derivada de una función Tema 7: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia

Más detalles

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2 1. Usando la definición correspondiente demostrar que la función es diferenciable en todo R 2. z = f(x, y = 3x xy 2 Se debe verificar que para todo (a, b en R 2, existen funciones, de = x y k = y, ɛ 1

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1 1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1.1. DERIVADAS DIRECCIONALES Y PARCIALES Definición 1.1. Sea f : R n R, ā R n y v R n. Se define la derivada direccional de f en ā y en la dirección de v como:

Más detalles

Unidad 5. La derivada. 5.2 La derivada de una función

Unidad 5. La derivada. 5.2 La derivada de una función Unidad 5 La derivada 5. La derivada de una función A continuación trataremos uno de los conceptos fundamentales del Cálculo, que es el de la derivada. Este concepto es un ite que está estrecamente ligado

Más detalles

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS SESIÓN 0 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS I. CONTENIDOS:. Derivadas de funciones trigonométricas directas. Ejercicios resueltos. Estrategias Centradas en el Aprendizaje: Ejercicios propuestos

Más detalles

Materia: Matemática de 5to Tema: Producto Punto. Marco Teórico

Materia: Matemática de 5to Tema: Producto Punto. Marco Teórico Materia: Matemática de 5to Tema: Producto Punto Marco Teórico En términos comunes, el producto punto de dos vectores es un número que describe la cantidad de fuerza que dos vectores diferentes contribuyen

Más detalles

DERIVADA DE UNA FUNCIÓN

DERIVADA DE UNA FUNCIÓN DERIVADA DE UNA FUNCIÓN 3URI/XLV~xH] Se estudia aquí uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. Además de la definición y su interpretación, se allarán las

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

Unidad 3: Vectores. c) Cuándo dos vectores son equipolentes? Mismo módulo, dirección y sentido

Unidad 3: Vectores. c) Cuándo dos vectores son equipolentes? Mismo módulo, dirección y sentido Unidad 3: Vectores Ejercicio 1 a) Dibuja dos vectores con distinto módulo, misma dirección y mismo sentido que el vector dado: b) Dibuja dos vectores con distinto módulo, misma dirección y sentido contrarios

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles