Límites y Derivadas 2d. Matemáticas para Ingeniería I Otono 2016 Lilia Meza Montes IFUAP

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Límites y Derivadas 2d. Matemáticas para Ingeniería I Otono 2016 Lilia Meza Montes IFUAP"

Transcripción

1 Límites y Derivadas d Matemáticas para Ingeniería I Otono 016 Lilia Meza Montes IFUAP

2 Función de una variable Función : regla que asocia un único valor a cada elemento de un conjunto. R y() R 0 Dominio: Conunto de números donde se evalúa la unción 0 Rango o Codominio: Conjunto de valores asignados y

3 lim a Límite () L δ > 0 ε > 0 tal que () L < ε si a < δ () VECINDAD () L < ε L ε δ VECINDAD a a < δ

4 Teoremas sobre límites 0 ; / )] ( )]/[lim ( [lim )] ( ) / ( )lim[ )] ( )][lim ( [lim )] ( ) ( )lim[ ) ( lim ) ( lim )] ( ) ( )lim[ ) ( lim ; ) ( lim ± ± ± l l l c l l b l l a l l a a a a a a a a a a a

5 (,y):r à R Límites en R VECINDAD alrededor de (a,b) VECINDAD alrededor de L

6 Deinición de límite Sea una unción de dos variables cuyo dominio incluye puntos arbitrariamente cercanos a (a,b). El límite de (,y) cuando (,y) se aproima a (a,b) es L lim (,y) (a,b) (, y) L Si para cada ε>0 eiste δ>0 tal que si (,y) está en el dominio de y entonces

7 VECINDAD alrededor de L Intervalo abierto alrededor de L de longitud ε>0 VECINDAD alrededor de (a,b) Bola abierta alrededor de (a,b) de radio δ>0

8 Teorema sobre eistencia de límite Se aplican teoremas de límites Teorema. Si (,y) à L 1 cuando (,y)à (a,b) a lo largo de la trayectoria C 1 y (,y) à L cuando (,y)à (a,b) a lo largo de la trayectoria C, donde L 1 L, entonces el límite no eiste. Solo sirve para demostrar que no eiste el límite.

9 Continuidad Una unción (,y) es continua en (a,b) si lim (,y) (a,b) (, y) (a, b) Una unción (,y) es continua en la región D si es continua en cada punto de D

10 Teorema Si k es un número real y,g son unciones continuas en ( 0,y 0 ), las unciones siguientes son continuas en ( 0,y 0 ) 1. Producto k 3. Producto g. Suma ±g 4. Cociente /g si g(( 0,y 0 ) 0

11 Teorema. Funciones compuestas Si h es continua en ( 0,y 0 ) y g es continua en h(( 0,y 0 ), la unción compuesta (g h)(,y) es continua en ( 0,y 0 ). Es decir lim (,y) ( 0,y 0 ) g(h(, y)) g(h( 0, y 0 ))

12 Ejemplo unción discontinua y 1/ 1 Discontinua En 0

13 Derivadas

14 derivada de y() y() dy d lim Δ 0 Δy Δ y + Δy Δy y Δ 0 + Δ

15 Derivadas parciales

16 Límites L ( 0,y 0 )

17 Deinición de derivada parcial Dos variables. Sea (,y) una unción de dos variables, la derivada parcial con respecto a es (, y) ( + Δ, y) (, y) lim Δ 0 Δ Interpretación: Es una medida de la razón de cambio de la unción cuando la variable y permanece constante al variar. Similarmente (, y + Δy) (, y) y (, y) lim Δ y 0 Δy Notación: D D 1

18 Una variable varía, las demás Ejemplo. Una unción de dos variables,y (, y) 9 y ijas Para un valor ijo de y deine una curva en el espacio

19 Una variable varía, las demás ijas La unción se comporta como una unción de una sola variable cuando y toma el valor ijo 3 (, y 3) 9 (3) 9 9

20 La derivada en un punto de la curva La derivada en un punto da la pendiente de la recta tangente a la curva en ese punto. Derivada (, y) 18 Evaluada en 3,y3 ( 3, y 3) 54 tanθ 54 θ tan * Programa en Matlab derivada_parcial_.m

21 Similarmente para y Se ija el valor de 3, se obtiene una curva al variar y Ojo: notar cambio de escala en z(,y)

22 Similarmente para parcial respecto a y La derivada en un punto da la pendiente de la recta tangente a la curva en ese punto. Derivada respecto a y y (, y) y Evaluada en 3, y3 y (3,3) *3 6 tanθ 6 θ tan 1 ( 6) ( ) Programa en Matlab derivada_parcial_y.m Nota: Las escalas en,y son dierentes, por eso el ángulo no corresponde en la gráica con el calculado

23 Deinición: Dierencial total d d + y Si del punto (,y) pasamos al punto (+Δ,y+Δy), la unción cambia del valor (,y) a (+Δ,y+Δy). Si Δ,Δy son pequeños, podemos aproimar el cambio de la unción por dy Δ d Δ + y Δy

24 DERIVADA DIRECCIONAL

25 Gráicamente: el cambio de puntos en el plano (,y) y y+δy y P(,y) Δ Q(+Δ,y+ Δy) Δy +Δ

26 Cambio de la unción a lo largo del vector unitario (al cambiar de P a Q) Valores que toma la unción a lo largo de PQ, al variar t z(,y) θ (P) P û P(,y) Q (+t cosθ, y+ t sen θ) Δ (Q) (P) t α (Q) Δ Q y En triángulo deinido por Δ y t tanα ( Q) Δ t t ( P) Tomamos el límite cuando t tiende a cero

27 Triángulo en el plano y Cambio a lo largo de una dirección dada, la cual se especiica por un vector unitario y uˆ cosθ iˆ + senθ ˆj y+δy y P(,y) û t θ Δ t cosθ Q(+Δ,y+ Δy) Δ y t sen θ +Δ Q(+Δ,y+ Δy) Q(+t cosθ, y+ t sen θ)

28 Razón de cambio de a lo largo de t z(,y) (Q) Sustituimos Q en el triángulo deinido por Δ y t θ (P) P û P(,y) Q (+t cosθ, y+ t sen θ) Δ (Q) (P) t α Δ y Δ tanα t ( Q) ( P) t ( + t cosθ, y + tsenθ ) t Tomamos el límite cuando t tiende a cero (, y)

29 Derivada direccional Deinición. Sea una unción de dos variables e y,! sea u cosθ iˆ + senθˆ j un vector unitario, la derivada direccional de en la dirección de u! D! u (, y) lim0 t ( + t cosθ, y + tsenθ ) t (, y) si el límite eiste. Teorema. Si es una unción dierenciable de e y, su derivada direccional en la dirección de D! u (, y) (, y)cosθ + (, y) senθ y

30 Ejemplo 4 / 4 ), ( y y j i j sen i u ˆ ˆ ˆ ˆ cos ˆ 3 / θ θ π θ P (-1,) P (-1,) u Plano y y curvas de nivel (escala de colores y rellenas) θ

31 Gráica de la unción

32 Gráica de la unción a lo largo de u

33 Derivada direccional da pendiente de la línea tangente a la unción en el punto dado, es decir, ahora (t) (t) t

34 Procedimiento para calcular la derivada direccional Datos. Función (,y) un vector unitario! u cosθ iˆ + senθˆ j (Note que no necesitamos conocer θ para el cálculo, solo las componentes de ) u! 1. Calcular parciales de. Sustituir en D! u (, y) (, y)cosθ + (, y) senθ y Nota: Es una unción escalar y da la pendiente de la línea tangente a la unción en el punto (,y)

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA (Apuntes en revisión para orientar el aprendizaje) DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA f( t) f: ; t a, b y g() t De la regla de la cadena dy dy dt d dt d En donde dt se puede calcular

Más detalles

Trigonometría Analítica. Sección 6.6 Funciones trigonométricas inversas

Trigonometría Analítica. Sección 6.6 Funciones trigonométricas inversas 6 Trigonometría Analítica Sección 6.6 Funciones trigonométricas inversas Funciones Inversas Recordar que para una función, f, tenga inversa, f -1, es necesario que f sea una función uno-a-uno. o Una función,

Más detalles

DERIVADAS. TVM (a, b) = = h. La tasa de variación media se puede interpretar como la pendiente de la recta AB de la figura siguiente:

DERIVADAS. TVM (a, b) = = h. La tasa de variación media se puede interpretar como la pendiente de la recta AB de la figura siguiente: Tasa de variación media DERIVADAS La tasa de variación media TVM de una unción ( en un intervalo (x, x se deine como: TVM (a, b ( x ( x x x Si consideramos x x + h, podemos expresar la TVM como: Interpretación

Más detalles

CÁLCULO VECTORIAL I. B, es un nuevo vector que se define del siguiente modo: Si A ybson (LI), entonces el vector A. B se caracteriza por:

CÁLCULO VECTORIAL I. B, es un nuevo vector que se define del siguiente modo: Si A ybson (LI), entonces el vector A. B se caracteriza por: PRODUCTO VECTORIAL DE DOS VECTORES El producto vectorial de dos vectores A y, y escribimos A, es un nuevo vector que se define del siguiente modo: Si A yson (LI), entonces el vector A se caracteriza por:

Más detalles

(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos

(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos (Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de unciones. Etremos INTRODUCCIÓN En múltiples problemas de ingeniería se requiere optimizar una o varias de las variables que intervienen

Más detalles

Elementos de Cálculo en Varias Variables

Elementos de Cálculo en Varias Variables Elementos de Cálculo en Varias Variables Departamento de Matemáticas, CSI/ITESM 5 de octubre de 009 Índice Introducción Derivada parcial El Jacobiano de una Función 5 Derivadas Superiores 5 5 Derivada

Más detalles

(Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones

(Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones (Apuntes en revisión para orientar el aprendizaje) Capítulo III La derivada y algunas aplicaciones INTRODUCCIÓN Uno de los problemas fundamentales del Cálculo Diferencial se refiere a la determinación

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.

Más detalles

Límites de funciones de varias variables.

Límites de funciones de varias variables. Límites continuidad de funciones de varias variables Límites de funciones de varias variables. En este apartado se estudia el concepto de límite de una función de varias variables algunas de las técnicas

Más detalles

Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99, 01, curso cero de física

Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99, 01, curso cero de física VECTORES: TRIÁNGULOS Demostrar que en una semicircunferencia cualquier triángulo inscrito con el diámetro como uno de sus lados es un triángulo rectángulo. Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99,

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA A. HERRAMIENTAS MATEMÁTICAS DE LA FÍSICA R. Artacho Dpto. de Física y Química ÍNDICE 1. Áreas y volúmenes de figuras geométricas. Funciones trigonométricas 3. Productos de vectores

Más detalles

TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL

TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL 6.1. TASAS DE VARIACIÓN MEDIA E INSTANTÁNEA 6.1.1. Tasa de variación media La tasa de variación media de una unción en un intervalo a, b es el cociente: b a TVM,

Más detalles

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales Derivadas parciales y direccionales 1 Derivadas parciales 2 Derivadas direccionales 3 Derivadas parciales de orden superior Derivadas parciales (de campos escalares de dos variables) Sea A = [a 1, b 1

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1- Se construe un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto Epresar el volumen V de ese depósito en función del radio r del cilindro de su altura h - Determinar

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

Función derivada. lim

Función derivada. lim Pro. Enrique Mateus Nieves Función derivada TASA DE VARIACIÓN: Muchas leyes de la Física, la Química, la Bioloía o la Economía, son unciones que relacionan una variable dependiente y con otra variable

Más detalles

Unidad 5. La derivada. 5.2 La derivada de una función

Unidad 5. La derivada. 5.2 La derivada de una función Unidad 5 La derivada 5. La derivada de una función A continuación trataremos uno de los conceptos fundamentales del Cálculo, que es el de la derivada. Este concepto es un ite que está estrecamente ligado

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

TEMA 4 FUNCIONES ELEMENTALES

TEMA 4 FUNCIONES ELEMENTALES TEMA 4 FUNCIONES ELEMENTALES 4.1. Funciones lineales, cuadráticas y polinómicas 4.1.1. Funciones lineales. Las unciones lineales o aines tienen por epresión analítica ( m n. Si m > 0, la unción aín tiene

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Probabilidades y stadística Computación Facultad de Ciencias actas y Naturales Universidad de uenos ires na M ianco y lena J Martínez 004 Variables aleatorias continuas jemplo: Con el in de realizar un

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

FUNCIÓN RACIONAL. 1 es racional x. es racional. es racional. es racional. es racional. El dominio de toda función racional es igual al conjunto ( ) 0

FUNCIÓN RACIONAL. 1 es racional x. es racional. es racional. es racional. es racional. El dominio de toda función racional es igual al conjunto ( ) 0 FUNCIÓN RACIONAL Función Racional. Dados polinomios p( ) q( ) tales que no tienen actores comunes, se deine la unción racional como la unción ormada por el cociente de los polinomios Ejemplos de unciones

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Espacios conexos. Capítulo Conexidad

Espacios conexos. Capítulo Conexidad Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio

Más detalles

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto

Más detalles

Limites: Definición: lim

Limites: Definición: lim Limites: Definición: El concepto de límite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Por ejemplo: Consideremos la función yy

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

(Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA

(Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA (Apuntes en revisión para orientar el aprendizaje) FUNCIONES INYECTIVA, SUPRAYECTIVA Y BIYECTIVA Esta clasiicación obedece a la orma en que están relacionados los elementos del dominio con los del codominio.

Más detalles

CÁLCULO DIFERENCIAL. Máximos y Mínimos. Equipo 2

CÁLCULO DIFERENCIAL. Máximos y Mínimos. Equipo 2 CÁLCULO DIFERENCIAL Equipo 2 Máximos y Mínimos Estos son los ejercicios que deberá el equipo explicar dentro de la clase, este equipo tendrá un máximo de 5 integrantes, y deberá valerse de materiales o

Más detalles

(x a) f (n) (a) Los polinomios de Taylor en el punto a = 0, suelen denominarse polinomios de McLaurin. n,a(a) = f (k) (a):

(x a) f (n) (a) Los polinomios de Taylor en el punto a = 0, suelen denominarse polinomios de McLaurin. n,a(a) = f (k) (a): 0 Matemáticas I : Cálculo diferencial en IR Tema 0 Polinomios de Taylor Hemos visto el uso de la derivada como aproimación de la función (la recta tangente) y como indicadora del comportamiento de la función

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

Tema 9. Funciones de varias variables.

Tema 9. Funciones de varias variables. Tema 9. Funciones de varias variables. 9.1 Introducción 9.2 Límite continuidad. 9.3 Derivadas parciales. Derivadas de orden superior. Teorema Schwart. 9.4 Diferencial. 9.5 Regla de la cadena. Derivación

Más detalles

CARACTERÍSTICAS DE UNA FUNCIÓN

CARACTERÍSTICAS DE UNA FUNCIÓN . DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente.

Más detalles

PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP).

PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP). PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP. Optimización con restricciones La presencia de restricciones reduce la región en la cual buscamos el óptimo. Los criterios

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bac TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación

Más detalles

SUBSECRETARÍA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO 4/2 LIC: JESÚS REYES HEROLES

SUBSECRETARÍA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO 4/2 LIC: JESÚS REYES HEROLES SUBSECRETARÍA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN GENERAL DEL BACHILLERATO CENTRO DE ESTUDIOS DE BACHILLERATO / LIC: JESÚS REYES HEROLES GUÍA PARA EL EXAMEN EXTRAORDINARIO DE CÁLCULO DIFERENCIAL JULIO

Más detalles

VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector

VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector VECTORES Un vector (Vector posición) en el plano es un par ordenado de números reales A(a, b). Se representa geométricamente por un segmento de recta dirigido, cuyo punto inicial es el origen del sistema

Más detalles

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química UAM I Grupo 911 Febrero 213 Ejercicios Resueltos del Tema 2.2.6 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: 1 7 y 9 12. Nota: Los ejercicios pueden contener errores,

Más detalles

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}. SECCIÓN 5. Funciones inversas 5. Funciones inversas Verificar que una función es la inversa de otra. Determinar si una función tiene una función inversa. Encontrar la derivada de una función inversa. f

Más detalles

Sucesiones y Suma Finita

Sucesiones y Suma Finita Sucesiones y Suma Finita Hermes Pantoja Carhuavilca Centro Pre-Universitario CEPRE-UNI Universidad Nacional de Ingeniería Algebra Hermes Pantoja Carhuavilca 1 de 21 CONTENIDO Convergencia de una sucesión

Más detalles

2. Vector tangente y gráficas en coordenadas polares.

2. Vector tangente y gráficas en coordenadas polares. GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 Vector tangente y gráficas en coordenadas polares De la misma forma que la ecuación cartesiana y = yx ( ) define una curva en el plano, aquella formada por los

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Prof. J. Contreras S. Prof. C. del Pino O. U de Talca

Prof. J. Contreras S. Prof. C. del Pino O. U de Talca Sesión 7 Regla de L Hopital Temas Regla de L Hopital. Aplicaciones de la Regla de L Hopital a otras formas indeterminadas. 7. Introducción Johann Bernoulli Suizo. (667-748) Capacidades Conocer y comprender

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera:

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera: Funciones cuadráticas Función cuadrática Deinición: Una unción cuadrática es una unción : R R deinida por la ormula = a + b + c Donde a, b y c son números reales y a 0. Esta epresión de la unción cuadrática

Más detalles

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables.

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables. Derivadas. Contenido 1. Introducción. (α) 2. Definición de Derivada. (α) 3. Pendiente de la recta tangente. (α) 4. Funciones diferenciables. (α) 5. Función derivada. (α) 6. Propiedades de la derivada.

Más detalles

Guía de Ejercicios Funciones. Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta en la guía 2-1-

Guía de Ejercicios Funciones. Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta en la guía 2-1- Colegio Raimapu Departamento de Matemática Guía de Ejercicios Funciones Nombre del Estudiante: IV Medio Debes copiar cada enunciado en tu cuaderno realizar el desarrollo, indica la respuesta correcta en

Más detalles

El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : 8. 1(x 1, x 2,, x n ) = (x 1, x 2,, x n )

El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : 8. 1(x 1, x 2,, x n ) = (x 1, x 2,, x n ) El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : n = {(x 1,x,, x n ) / x 1,x,, x n } A cada uno de los números reales x 1,x,, x n que conforman la

Más detalles

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES TRIGONOMÉTRICAS. La función f(x) = 1 x 2 es continua en el intervalo [ 1, 1]. Su gráfica como vimos es la semicircunferencia de radio uno centro el origen de coordenadas.

Más detalles

«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto»

«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto» TEMA 10 DERIVADA DE UNA FUNCIÓN EN UN PUNTO f (a): Consideremos una función f(x) y un punto P de su gráfica (ver figura), de abscisa x=a. Supongamos que damos a la variable independiente x un pequeño incremento

Más detalles

Límites y continuidad

Límites y continuidad 9 Matemáticas I : Cálculo diferencial en IR Tema 9 Límites y continuidad 9. Límite y continuidad de una función en un punto Definición 9.- Un punto IR se dice punto de acumulación de un conjunto A si,

Más detalles

Expliquemos con exactitud qué queremos decir con valores máximos y mínimos.

Expliquemos con exactitud qué queremos decir con valores máximos y mínimos. Introducción: Ahora que conocemos las reglas de derivación nos encontramos en mejor posición para continuar con las aplicaciones de la derivada. Veremos cómo afectan las derivadas la forma de la gráfica

Más detalles

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2.

Evidentemente, la superficie es un triángulo rectángulo de base 1 y altura también la unidad, por tanto su área es 1/2. LA INTEGRAL DEFINIDA En los dos temas anteriores se ha hecho el estudio de las primitivas de una función, descubriendo distintos procedimientos para el cálculo de primitivas, es decir, se han encontrado

Más detalles

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS.

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS. I. CONTENIDOS: 1. Interpretación geométrica de la derivada 2. Regla general

Más detalles

Asíntotas en una función.

Asíntotas en una función. Asíntotas en una unción. Las asíntotas son rectas a las cuales la unción se va aproimando indeinidamente, cuando por lo menos una de las variables ( o y) tienden al ininito. Deinición: Si un punto, y )

Más detalles

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución: RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función

Más detalles

Notas Docentes. Matemática Aplicada a la Economía. Material de Consulta y Casos Prácticos. David Glejberman. Nota Docente No. 20

Notas Docentes. Matemática Aplicada a la Economía. Material de Consulta y Casos Prácticos. David Glejberman. Nota Docente No. 20 Notas Docentes Matemática Aplicada a la Economía. Material de Consulta Casos Prácticos David Glejberman Nota Docente No. . FUNCIONES DE UNA VARIABLE GRÁFICAS DE FUNCIONES ELEMENTALES OPERACIONES CON FUNCIONES

Más detalles

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean

Más detalles

VALORES EXTREMOS Y PUNTOS DE SILLA.

VALORES EXTREMOS Y PUNTOS DE SILLA. 1 VALORES EXTREMOS Y PUNTOS DE SILLA. DEFINICION: Sea ( x, y ) una unción deinida sobre una región R que contiene el punto ( a, b ),entonces: a) (a, b ) es un máximo local de si ( a, b ) (x, y ) para todos

Más detalles

MATE 3013 RAZON DE CAMBIO INSTANTANEO Y LA DERIVADA DE UNA FUNCION

MATE 3013 RAZON DE CAMBIO INSTANTANEO Y LA DERIVADA DE UNA FUNCION MATE 3013 RAZON DE CAMBIO INSTANTANEO Y LA DERIVADA DE UNA FUNCION Resumen razón de cambio promedio La pendiente de la recta secante que conecta dos puntos en la gráfica de una función representa la razón

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Trigonometría. Guía de Ejercicios

Trigonometría. Guía de Ejercicios . Módulo 6 Trigonometría Guía de Ejercicios Índice Unidad I. Razones trigonométricas en el triángulo rectángulo. Ejercicios Resueltos... pág. 0 Ejercicios Propuestos... pág. 07 Unidad II. Identidades trigonométricas

Más detalles

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim Límites CIT_H. Calcula los límites de las siguientes funciones en los puntos que se indican: ( ) + + + a) lim b) lim c) lim d) lim + + + + + e) lim f) lim g) lim h) lim + 0 + + 9 + j) lim k) lim l) lim

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 4: Derivadas. Primer cuatrimestre de 2009

Análisis Matemático I (Lic. en Cs. Biológicas) Práctica 4: Derivadas. Primer cuatrimestre de 2009 Análisis Matemático I (Lic. en Cs. Biológicas) Primer cuatrimestre de 2009 Práctica 4: Derivadas Notaciones: Dada una función f : R R, un punto a R y un número R que llamaremos incremento en, se define

Más detalles

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS

Aplicación: cálculo de áreas XII APLICACIÓN: CÁLCULO DE ÁREAS XII APLICACIÓN: CÁLCULO DE ÁREAS El estudiante, hasta este momento de sus estudios, está familiarizado con el cálculo de áreas de figuras geométricas regulares a través del uso de fórmulas, como el cuadrado,

Más detalles

9. Aplicaciones al cálculo de integrales impropias.

9. Aplicaciones al cálculo de integrales impropias. Funciones de variable compleja. Eleonora Catsigeras. 8 Mayo 26. 85 9. Aplicaciones al cálculo de integrales impropias. Las aplicaciones de la teoría de Cauchy de funciones analíticas para el cálculo de

Más detalles

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE GEOMETRÍA G E O M É T R Í A GUÍA ANALÍTICA A N A L Í T I C A G U

Más detalles

4.1 MONOTONÍA 4.2 MÁXIMOS Y MÍNIMOS 4.3 CONCAVIDAD 4.4 ELABORACIÓN DE GRÁFICAS SOFISTICADAS 4.5 TEOREMA DEL VALOR MEDIO PARA

4.1 MONOTONÍA 4.2 MÁXIMOS Y MÍNIMOS 4.3 CONCAVIDAD 4.4 ELABORACIÓN DE GRÁFICAS SOFISTICADAS 4.5 TEOREMA DEL VALOR MEDIO PARA Cáp. Temas Adicionales de la derivada. MONOTONÍA. MÁXIMOS Y MÍNIMOS. CONCAVIDAD. ELABORACIÓN DE GRÁFICAS SOFISTICADAS.5 TEOREMA DEL VALOR MEDIO PARA DERIVADAS.6 TEOREMA DE ROLLE.7 TEOREMA DE CAUCHY.8 TEOREMA

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

Funciones de varias variables reales

Funciones de varias variables reales Capítulo 6 Funciones de varias variables reales 6.1. Introducción En muchas situaciones habituales aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza) V =

Más detalles

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

EL PROBLEMA DE LA TANGENTE

EL PROBLEMA DE LA TANGENTE EL PROBLEMA DE LA TANGENTE El problema de definir la tangente a una curva y f (x) en un punto P ( x, y ) ha llevado al concepto de la derivada de una función en un punto P ( x, y ). Todos sabemos dibujar

Más detalles

Capítulo 4: Derivada de una función

Capítulo 4: Derivada de una función Capítulo 4: Derivada de una función Geovany Sanabria Contenido Razones de cambio 57 Definición de derivada 59 3 Cálculo de derivadas 64 3. Propiedadesdederivadas... 64 3.. Ejercicios... 68 3. Derivadasdefuncionestrigonométricas...

Más detalles

1.3.- V A L O R A B S O L U T O

1.3.- V A L O R A B S O L U T O 1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1 1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1.1. DERIVADAS DIRECCIONALES Y PARCIALES Definición 1.1. Sea f : R n R, ā R n y v R n. Se define la derivada direccional de f en ā y en la dirección de v como:

Más detalles

1 Números reales. Funciones y continuidad.

1 Números reales. Funciones y continuidad. 1 Números reales. Funciones y continuidad. En este tema nos centraremos en el estudio de la continuidad de funciones reales, es decir, funciones de variable real y valor real. Por ello es esencial en primer

Más detalles

Funciones convexas Definición de función convexa. Tema 10

Funciones convexas Definición de función convexa. Tema 10 Tema 10 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones reales de variable real definidas en

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

(Apuntes en revisión para orientar el aprendizaje)

(Apuntes en revisión para orientar el aprendizaje) (Apuntes en revisión para orientar el aprendizaje) LÍMITES DE FUNCIONES TRIGONOMÉTRICAS Para resolver límites que involucran funciones circulares directas, resulta conveniente conocer los límites de las

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

Es importante recordar el concepto de intervalo abierto notado. (a, b)={x R/a x bt} donde a y b no pertenecen al intervalo abierto

Es importante recordar el concepto de intervalo abierto notado. (a, b)={x R/a x bt} donde a y b no pertenecen al intervalo abierto INICIACION AL CALCULO LIMITE DE UNA FUNCION EN UN PUNTO Cuando se inicia un trabajo de cálculo, es importante aclarar,que históricamente a partir del siglo xviii y con los trabajos de Newton en Inglaterra

Más detalles

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2 1. Usando la definición correspondiente demostrar que la función es diferenciable en todo R 2. z = f(x, y = 3x xy 2 Se debe verificar que para todo (a, b en R 2, existen funciones, de = x y k = y, ɛ 1

Más detalles

OPTIMIZACIÓN VECTORIAL

OPTIMIZACIÓN VECTORIAL OPTIMIZACIÓN VECTORIAL Métodos de Búsqueda Directa Utilizan sólo valores de la función Métodos del Gradiente Métodos de Segundo Orden Requieren valores aproimados de la primera derivada de f) Además de

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Análisis Matemático II. Curso 2008/2009. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 2: CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES 1. Funciones de varias variables

Más detalles

INDICADOR DE DESEMPEÑO Interpreta y soluciona diferentes problemas de física, empleando conceptos de cinemática y operaciones entre vectores.

INDICADOR DE DESEMPEÑO Interpreta y soluciona diferentes problemas de física, empleando conceptos de cinemática y operaciones entre vectores. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION 0 7 DE MARZO

Más detalles