Soluciones a los ejercicios
|
|
|
- Francisco Molina Aguilera
- hace 7 años
- Vistas:
Transcripción
1 Soluciones a los ejercicios PROBLEMA 1: Sea la gramática G = {V, T, S, P }, donde V = {a, b, A, A, B, S}, T = {a, b}, S es el símbolo inicial y P = {S ::= ABa, A ::= BB, B ::= ab, AB ::= b}. ¾Se deriva la cadena Aaba de ABa?, ¾cómo?, ¾y la cadena abababa? Efectivamente la cadena Aaba se deriva directamente de ABa en dicha gramática, puesto que B ::= ab es una producción de dicha gramática. La cadena abababa se deriva de ABa, puesto que ABa Aaba BBaba Bababa bababa usando las producciones B ::= ab, A ::= BB, B ::= ab y B ::= ab sucesivamente. PROBLEMA 2: Sea la gramática con vocabulario V = {S, A, a, b}, conjunto terminales T = {a, b}, símbolo inicial S y las producciones P = {S ::= aa, S ::= b, A ::= aa}. ¾Cuál es el lenguaje L(G) generado por esta gramática? A partir del estado inicial S, se puede derivar aa utilizando la producción S ::= aa. También se puede usar la producción S ::= b para derivar b. De aa, mediante la producción A ::= aa se deriva aaa. Puesto que no puede derivarse ninguna otra palabra utilizando las producciones, se tiene que L(G) = {b, aaa} PROBLEMA 3: Determina si la palabra cbab pertenece o no al lenguaje generado por la gramática G = {V, T, S, P }, donde V = {a, b, c, A, B, C, S}, el subconjunto terminal es T = {a, b, c}, S es el símbolo inicial y las producciones S ::= AB, A ::= Ca, B ::= Ba, B ::= Cb, B ::= b, C ::= cb y C ::= b. Hay dos maneras de solucionar este problema. La primera utilizando una estrategia de análisis descendente y otra con un análisis ascendente. Utilizando la primera podemos partir del símbolo inicial y utilizar las producciones hasta llegar a cbab. De este modo S AB y usar la producción A ::= Ca para obtener S AB CaB cbab. Puesto que cbab comienza por cb utilizamos la producción C ::= cb. Esto da lugar a A ::= Ca para obtener S AB CaB cbab cbab. También se podría haber partido de cbab y usar producciones en hasta llegar a S (análisis ascendente). PROBLEMA 4: Determina si las palabras de la lista de abajo pertenecen o no al lenguaje generado por la gramática G = {V, T, S, P }, donde V = {a, b, c, A, B, C, S}, el subconjunto terminal es T = {a, b, c}, S es el símbolo inicial y las producciones S ::= AB, A ::= Ca, B ::= Ba, B ::= Cb, B ::= b, C ::= cb y C ::= b. 1
2 a) baba b) abab c) cbaba d) bbbcba Sí, No, Sí, No. PROBLEMA 5: ¾Qué conjunto genera la gramática G = {V, T, S, P } en donde V = {0, 1, S}, T = {0, 1} y S es el símbolo inicial? Las producciones son S ::= 0S1 y S ::= λ. Notación: Podemos denotar un conjunto C = {0 n 1 n n = 0, 1, 2,...} como el conjunto de cadenas del tipo 000.., en donde hay n ceros seguidos de n unos. Será precisamente C = {0 n 1 n n = 0, 1, 2,...} PROBLEMA 6: ¾Qué conjunto genera la gramática G = {V, T, S, P } en donde V = {0, 1, S}, T = {0, 1} y S es el símbolo inicial? Las producciones son S ::= 0S, S ::= S1 y S ::= λ. El conjunto pedido es {0 m 1 n m y n enteros no negativos} PROBLEMA 7: ¾Qué conjunto genera la gramática G = {V, T, S, P } en donde V = {0, A, 1, S}, T = {0, 1} y S es el símbolo inicial? Las producciones son S ::= 0S, S ::= 1 S ::= 1, A ::= 1A, A ::= 1, y S ::= λ. El conjunto pedido es {0 m 1 n m y n enteros no negativos} PROBLEMA 8: decir si la gramática G = {V, T, S, P } en donde V = {S, A, B, a, b}, T = {a, b} es una gramática de tipo 0, pero no de tipo 1; de tipo 1, pero no de tipo 2, o una gramática de tipo 2 pero no de tipo 3, etc, si P, el conjunto de producciones, es: a) S ::= aab, A ::= Bb, B ::= λ b) S ::= aa, A ::= a, A ::= b c) S ::= ABa, AB ::= a d) S ::= ABA, A ::= ab, B ::= ab e) S ::= ba, A ::= B, B ::= a a) de tipo 2 pero no de tipo 3. b) de tipo 3. c) de tipo 0, pero no de tipo 1. d) de tipo 2, pero no de tipo 3. e) de tipo 2.
3 PROBLEMA 9: Las tablas de transición y de salida de una máquina de estado nito son las siguientes: f Entrada s 0 s 1 s 0 s 1 s 3 s 0 s 2 s 1 s 2 s 3 s 1 s 2 g Entrada s s s s De las que se puede deducir el siguiente diagrama de estados: Hállese el diagrama de estados para una máquina de estado nito cuyas tablas son: f Entrada s 0 s 1 s 3 s 1 s 1 s 2 s 2 s 3 s 4 s 3 s 1 s 0 s 4 s 3 s 4 g Entrada s s s s s 4 0 0
4 PROBLEMA 10: Hallar la cadena de salida generada por la máquina de estado nito del ejercicio anterior si la cadena de entrada es Los sucesivos estados con sus salidas son: Entrada Estado s 0 s 3 s 1 s 2 s 3 s 0 s 3 Salida PROBLEMA 11: Calcula los duales de x(y + 0) y x 1 + (y + z). Basta con intercambiar los signos y +, así como los ceros y los unos. Es decir, x + (y 1) y (x + 0) (y z) respectivamente. PROBLEMA 12: Calcula las tablas de valores de las siguiente funciones booleanas: a) F (x, y, z) = xy + (xyz) b) F (x, y, z) = x(xy + yz) Demuestra, usando una tabla, que se cumple la siguiente relación: a) x y = (x + y)(xy) b) x y = (xy) + (xy) a) x y z xy + xyz b) x y z x(xy + yz) x y x y x + y xy (xy) (x + y)(xy) xy xy xy + xy a) La tercera columna y la séptima por la izquierda tienen los mismos valores, así que son equivalentes.
5 b) La tercera columna y la décima por la izquierda tienen los mismos valores, así que son equivalentes. PROBLEMA 13: Demuestra la falsedad de estas armaciones con un contraejemplo: a) x + (y z) = (x + y) (x + z) b) x (y + z) = (x y) + (x z) a) Basta tomar x = 1, y = 1, z = 1, por ejemplo. b) Basta tomar x = 1, y = 1, z = 0, por ejemplo. PROBLEMA 14: Si por ejemplo tenemos una función como F (x, y, z) = (x + y)z, podemos calcular su forma normal disyuntiva utilizando las propiedades del álgebra de Boole: F (x, y, z) = (x + y)z = xz + yz = x1z + 1yz = x(y + y)z + (x + x)yz = xyz + xyz + xyz + xyz = xyz + xyz + xyz También podemos construir una tabla calculando los vales de F para todos los posibles valores: x y z x + y z (y + z)z La forma normal disyuntiva será la suma booleana de los tres minitérminos correspondientes a las tres las de la tabla en la que la función vale 1, y que en este caso corresponden a las las 2, 4 y 6. Es decir F (x, y, z) = xyz + xyz + xyz Teniendo en cuenta todo esto, hallar la forma normal disyuntiva de: a) F (x, y, z) = (x + z)y b) f(x, y, z) = xy a) F (x, y, z) = xyz + xyz + xyz b) F (x, y, z) = xyz + xyz
6 PROBLEMA 15: Demuestra con una tabla la siguiente expresión: x + y = (x y) (x y) x y x + y (x y) (x y) (x y) Como se puede observar la segunda y quinta columna tienen las mismas entradas.
UNIDAD 4. Álgebra Booleana
UNIDAD 4 Álgebra Booleana ÁLGEBRA BOOLEANA El Álgebra Booleana se define como una retícula: Complementada: existe un elemento mínimo 0 y un elemento máximo I de tal forma que si a esta en la retícula,
Multiplicación de Polinomios. Ejercicios de multiplicación de polinomios. www.math.com.mx. José de Jesús Angel Angel. [email protected].
Multiplicación de Polinomios Ejercicios de multiplicación de polinomios www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 2007-2008 Contenido 1. Antecedentes 2 2. Multiplicación de monomios
EJERCICIOS del TEMA 3: Lenguajes independientes del contexto
EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )
Expresiones Regulares y Derivadas Formales
y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas
Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad
Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,[email protected] Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean
Operaciones Booleanas y Compuertas Básicas
Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener
ÁLGEBRAS DE BOOLE. En un álgebra de Boole (B, +,, ) se cumplen las siguientes propiedades, para todo x, y, z B: Doble Complemento
ÁLGEBRAS DE BOOLE CARACTERIZACIÓN DE UN ÁLGEBRA DE BOOLE Un álgebra de Boole (o álgebra booleana) consiste en un conjunto B = {0, 1}, operadores binarios + y en S y un operador unario en S. Estas operaciones
Ampliación Matemática Discreta. Justo Peralta López
Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.
Escribir la expresión regular de un número entero que no acepte que el primer dígito sea cero salvo el número 0. Solución: 0 [1-9][0-9]*
Procesadores de lenguaje Ejercicios del Tema 2 Ejercicio 2.1 Sean L = {a, aa, b} y M = {ab, b }. Describe LM y M 3 por enumercaión LM = { aab, ab, aaab, bab, bb } M 3 = { ababab, ababb, abbab, abbb, babab,
COMPUERTAS LÓGICAS. Tabla de verdad. Es una representación en forma tabular de todas las combinaciones posibles de las variables de entrada.
I.P.N. ESIME Unidad Culhuacan 14 DEFINICIONES: COMPUERTAS LÓGICAS Circuitos digitales electrónicos. Se llaman circuitos lógicos, ya que con las entradas adecuadas establecen caminos de manipuleo lógico.
Espacios Vectoriales www.math.com.mx
Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................
Una cadena sobre Σ es cualquier secuencia de elementos de longitud finita sobre Σ.
Alfabetos, Cadenas y Lenguajes Definición 1 Un Alfabeto es cualquier conjunto finito, no vacío. Ejemplo 1 Sea Σ = {0, 1, 2, 3,..., 9} donde 0 Σ Definición 2 Una cadena sobre Σ es cualquier secuencia de
ESTRUCTURAS ALGEBRAICAS. Parte 1
ESTRUCTURAS ALGEBRAICAS Parte 1 ESTRUCTURAS ALGEBRAICAS Una estructura algebraica es una n-tupla (a 1,a 2,...,a n ), donde a 1 es un conjunto dado no vacío, y {a 2,...,a n } un conjunto de operaciones
k k N b Sistemas Númericos Sistemas con Notación Posicional (1) Sistemas con Notación Posicional (2) Sistemas Decimal
Sistemas con Notación Posicional (1) Sistemas Númericos N b = a n-1 *b n-1 + a n-2 *b n-2 +... + a 0 *b 0 +a -1 *b - 1 + a -2 *b -2 +... + a -m *b -m Sistemas con Notación Posicional (2) N b : Número en
Materia: Matemática de Octavo Tema: Conjunto Q (Números Racionales)
Materia: Matemática de Octavo Tema: Conjunto Q (Números Racionales) Vamos a recordar los conjuntos numéricos estudiados hasta el momento. (1.) Conjunto de los números Naturales Son aquellos que utilizamos
Autómatas de Pila y Lenguajes Incontextuales
Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia
Operaciones con monomios y polinomios
Operaciones con monomios y polinomios Para las operaciones algebraicas se debe de tener en cuenta que existen dos formas para representar cantidades las cuales son números o letras. Al representar una
Lenguajes y Gramáticas
Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas
Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.
0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)
GUIA DE CIRCUITOS LOGICOS COMBINATORIOS
GUIA DE CIRCUITOS LOGICOS COMBINATORIOS 1. Defina Sistema Numérico. 2. Escriba la Ecuación General de un Sistema Numérico. 3. Explique Por qué se utilizan distintas numeraciones en la Electrónica Digital?
Tema 3 : Algebra de Boole
Tema 3 : Algebra de Boole Objetivo: Introducción al Algebra de Boole 1 INTRODUCCIÓN George Boole creó el álgebra que lleva su nombre en el primer cuarto del siglo XIX. Pretendía explicar las leyes fundamentales
Capítulo 1 Lenguajes formales 6
Capítulo 1 Lenguajes formales 6 1.8. Operaciones entre lenguajes Puesto que los lenguajes sobre Σ son subconjuntos de Σ, las operaciones usuales entre conjuntos son también operaciones válidas entre lenguajes.
Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003
Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Interrogación 2 IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Esta interrogación
Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria.
Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria. Operación Binaria Se conoce una operación binaria
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
José de Jesús Ángel Ángel, c 2010. Factorización
José de Jesús Ángel Ángel, c 2010. Factorización Contenido 1. Introducción 2 1.1. Notación.................................. 2 2. Factor común 4 2.1. Ejercicios: factor común......................... 4
http://ingenieros.sitio.net
SISTEMAS DIGITALES Version Inicial: 13-06-05 Modificando 1-1 CONTENIDO CONTENIDO... 1-2 1 SISTEMAS NUMERICOS... 1-3 UNIDAD II 2 ALGEBRA DE BOOLE... 2-22 UNIDAD III 3 FAMILIAS LOGICAS DE CIRCUITOS INTEGRADOS...
Clase 8 Matrices Álgebra Lineal
Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas
ALGEBRA BOOLEANA (ALGEBRA LOGICA)
ALGEBRA BOOLEANA Un sistema axiomático es una colección de conocimientos ordenados jerárquica-mente mediante reglas o leyes lógicas aplicadas a un número limitado de conceptos o principios básicos. Un
Numeración. Número Es la idea que tenemos sobre la cantidad de los elementos de la naturaleza.
Numeración Denominamos Numeración al capítulo de la Aritmética que estudia la correcta formación, lectura y escritura de los números. Número Es la idea que tenemos sobre la cantidad de los elementos de
Procesadores de Lenguaje
Procesadores de Lenguaje Analizadores sintácticos descendentes: LL(1) Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 Analizadores sintácticos
Circuitos lógicos combinacionales. Tema 6
Circuitos lógicos combinacionales Tema 6 Qué sabrás al final del capítulo? Implementar funciones con dos niveles de puertas lógicas AND/OR OR/AND NAND NOR Analizar sistemas combinacionales, obteniendo
ESTRUCTURAS ALGEBRAICAS
ESTRUCTURAS ALGEBRAICAS Se ha trabajado con números complejos, polinomio y matrices y hemos efectuado con ellos ciertas operaciones: sin embargo no todas las operaciones se comportan de la misma manera,
Material N 15 GUÍA TEÓRICO PRÁCTICA Nº 12
C u r s o : Matemática Material N 5 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una epresión algebraica consiste en sustituir
Operaciones con Polinomios
www.matebrunca.com Prof. Waldo Márquez González Álgebra 1 Operaciones con Polinomios TEMAS A EVALUAR Sumas y restas de monomios. Sumas de polinomios. Resta de polinomios. Eliminación de paréntesis. Multiplicaciones
DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.
DERIVADAS Tema: La derivada como pendiente de una curva Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto. La pendiente de la curva en el punto
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.
TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares
Clase 10: Extremos condicionados y multiplicadores de Lagrange
Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función
Expresiones regulares, gramáticas regulares
Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde
Límites y continuidad de funciones reales de variable real
Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. [email protected], [email protected], [email protected] Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 191 EJERCICIOS Epresiones algebraicas 1 Haz corresponder cada enunciado con su epresión algebraica: La mitad de un número. El triple de la mitad de un número. La distancia recorrida en horas
Matrices 1 (Problemas). c
º Bachillerato Matrices 1 (Problemas) 1.- Efectúa las siguientes operaciones con matrices: a) 1 4 5 6 + b) 5 7 9 11 1 1 1 1 1 1 c). 4 d) 6. 1 6 1 18 1 g) 0 0 0 0 a 0 b 0. 0 b 0 0 0 c c 0 0.- Siendo A =
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa
IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide
Productos Notables. Ejercicios de productos y cocientes notables. www.math.com.mx. José de Jesús Angel Angel. [email protected]
Productos Notables Ejercicios de productos y cocientes notables www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 2007-2008 Contenido 1. Introducción 2 2. El cuadrado de una suma (a
UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :
III 1 / 8 Ejercicios sugeridos para : los temas de las clases del 5 y 7 de mayo de 2009. Temas : Matriz transpuesta. Matriz simétrica. Determinantes; propiedades de los determinantes. Matriz adjunta de
DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es:
ENCUENTRO # 10 TEMA:Operaciones con polinomios CONTENIDOS: 1. Multiplicación de polinomios. 2. Productos notables. DESARROLLO Ejercicio Reto x 2 1. Al racionalizar el denominador de la fracción 3 + se
Teoría de Autómatas y Lenguajes Formales.
Teoría de Autómatas y Lenguajes Formales Ejercicios de Lenguajes Regulares Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso
Existen diferentes compuertas lógicas y aquí mencionaremos las básicas pero a la vez quizá las más usadas:
Compuertas lógicas Las compuertas lógicas son dispositivos electrónicos utilizados para realizar lógica de conmutación. Son el equivalente a interruptores eléctricos o electromagnéticos. para utilizar
Matemáticas. ticas Discretas. Lenguajes y Gramáticas. Tenemos dos clases de lenguaje: Lenguaje Formal
Matemáticas ticas Discretas y Gramáticas y Gramáticas Tenemos dos clases de lenguaje: Lenguaje Natural Lenguaje Formal Lenguaje Formal De acuerdo al diccionario Webster, un lenguaje es un cuerpo de palabras
Introducción al Álgebra
Capítulo 3 Introducción al Álgebra L a palabra álgebra deriva del nombre del libro Al-jebr Al-muqābāla escrito en el año 825 D.C. por el matemático y astrónomo musulman Mohamad ibn Mūsa Al-Khwārizmī. El
BLOQUE 1. LOS NÚMEROS
BLOQUE 1. LOS NÚMEROS Números naturales, enteros y racionales. El número real. Intervalos. Valor absoluto. Tanto el Cálculo como el Álgebra que estudiaremos en esta asignatura, descansan en los números
Guía 3 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE
Guía 3 Del estudiante Modalidad a distancia Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE DATOS DE IDENTIFICACION TUTOR Luis Enrique Alvarado Vargas Teléfono 435 29 52 CEL. 310 768 90 67
[email protected]
Titulo: OPERACIONES CON POLINOMIOS (Reducción de términos semejantes, suma y resta de polinomios, signos de agrupación, multiplicación y división de polinomios) Año escolar: 2do: año de bachillerato Autor:
Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional
página 1/11 Teoría Tema 9 Ecuaciones de la recta en el espacio tridimensional Índice de contenido Ecuación vectorial, paramétrica y continua de la recta...2 Ecuación general o implícita de la recta...5
es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no
El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i
Área: Matemática ÁLGEBRA
Área: Matemática ÁLGEBRA Prof. HENRY AYTE MORALES FICHA DE TRABAJO RECUPERACIÓN 1ro SEC A, B y C I. TEORÍA DE EXPONENTES 1. DEFINICIÓN Es un conjunto de fórmulas que relaciona a los exponentes de las expresiones
Conjuntos, Relaciones y Grupos. Problemas de examen.
Conjuntos, Relaciones y Grupos. Problemas de examen. Mayo 2006 1. La función f es definida por (a) Halle el recorrido exacto, A, de f. f : R R donde f(x) = e senx 1. (b) (i) Explique por qué f no es inyectiva.
El lenguaje C. 1. Identificadores, constantes y variables
Principios de Programación El lenguaje C 1. Identificadores, constantes y variables 1.1. Conceptos de memoria Los nombres de variable como x, y, suma corresponden a localizaciones o posiciones en la memoria
PRODUCTO CARTESIANO RELACIONES BINARIAS
PRODUCTO CARTESIANO RELACIONES BINARIAS Producto Cartesiano El producto cartesiano de dos conjuntos A y B, denotado A B, es el conjunto de todos los posibles pares ordenados cuyo primer componente es un
MATEMÁTICAS DISCRETAS. UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios
MATEMÁTICAS DISCRETAS UNIDAD 2 Algebras Booleanas y Circuitos Combinatorios 2.1 CIRCUITOS COMBINATORIOS Inicie dando lectura a la subunidad 11.1, deténgase en el ejemplo 11.1.4, compare las tablas de los
D.I.I.C.C Arquitectura de Sistemas Computacionales
CAPITULO 6.- ÁLGEBRA DE BOOLE INTRODUCCIÓN. En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra
ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario "
ÁLGEBRA BOOLEANA El álgebra booleana es un sistema matemático deductivo centrado en los valores cero y uno (falso y verdadero). Un operador binario " " definido en éste juego de valores acepta un par de
SISTEMAS DE ECUACIONES LINEALES
SISTEMAS DE ECUACIONES LINEALES Índice: 1.Introducción--------------------------------------------------------------------------------------- 2 2. Ecuaciones lineales------------------------------------------------------------------------------
Fundamentos de JAVA. Angel Kuri Enero, /2/2006
Fundamentos de JAVA Angel Kuri Enero, 2006 Enunciados y Expresiones Los siguientes son enunciados sencillos: int i = 1 import java.awt.font System.out.println( Esta moto es una + color + + marca); m.enginestate
MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.
MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.
Conjuntos, relaciones y funciones Susana Puddu
Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también
Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )
Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder
GRAMATICAS LIBRES DEL CONTEXTO
GRMTICS LIBRES DEL CONTEXTO Estas gramáticas, conocidas también como gramáticas de tipo 2 o gramáticas independientes del contexto, son las que generan los lenguajes libres o independientes del contexto.
Semana 6. Factorización. Parte I. Semana Productos 7 notables. Parte II. Empecemos! Qué sabes de...? El reto es...
Semana Productos 7 notables. Parte II Semana 6 Empecemos! El tema que estudiarás en esta sesión está muy relacionado con el de productos notables, la relación entre estos y la factorización, dado que son
DERIVACIÓN DE LAS FUNCIONES ELEMENTALES
DERIVACIÓN DE LAS FUNCIONES ELEMENTALES 2 El procedimiento mediante el cuál se obtiene la derivada de una función se conoce como derivación. Llamaremos funciones elementales a las funciones polinómicas,
UNIVERSIDAD POPULAR DEL CESAR DEPATAMENTO DE MATEMATICA Y ESTADISTICA ALGEBRA DE BOOLE
UNIVERSIDAD POPULAR DEL CESAR DEPATAMENTO DE MATEMATICA Y ESTADISTICA ALGEBRA DE BOOLE GERMAN ISAAC SOSA MONTENEGRO EJERCICIOS 3. Escriba en notación expandida los siguientes numerales : a) 2375 b) 110111
Algoritmos y programas. Algoritmos y Estructuras de Datos I
Algoritmos y programas Algoritmos y Estructuras de Datos I Primer cuatrimestre de 2012 Departamento de Computación - FCEyN - UBA Programación funcional - clase 1 Funciones Simples - Recursión - Tipos de
Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.
Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en
Capítulo 4. Productos notables y factorización
Capítulo 4 Productos notables y factorización Las siguientes fórmulas de multiplicación de expresiones algebraicas ayudan a factorizar muchas expresiones, sin embargo se debe aprender a reconocer cuál
El número decimal 57, en formato binario es igual a:
CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. NÚMEROS BINARIOS EJEMPLO En el cuadro anterior, está la representación de los números binarios en formato
Factorización de Polinomios. Profesora Ericka Salas González
Factorización de Polinomios Profesora Ericka Salas González 19 de marzo de 2006 Índice general 0.1. QUE ES FACTORIZAR UN POLINOMIO..... 2 0.1.1. Factor............................ 2 0.1.2. Factorizar..........................
Factorización. Ejercicios de factorización. www.math.com.mx. José de Jesús Angel Angel. [email protected]
Factorización Ejercicios de factorización www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 2007-2008 Contenido 1. Introducción 2 1.1. Notación...........................................
MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES)
MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES) Introducción: El alumno comprenderá qué estudia el algebra, así como algunas definiciones importantes como son: expresión
Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002
Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto
TEMA II: ÁLGEBRA DE CONMUTACIÓN
TEMA II: ÁLGEBRA DE CONMUTACIÓN En este capítulo veremos los métodos matemáticos que se disponen para las operaciones relacionadas con los circuitos digitales, así como las funciones más básicas de la
TEMA III TEMA III. Circuitos Digitales 3.1 REPRESENTACIÓN DE LA INFORMACIÓN 3.2 ALGEBRA DE BOOLE 3.3 MODULOS COMBINACIONALES BÁSICOS
TEMA III Circuitos Digitales Electrónica II 9- TEMA III Circuitos Digitales 3. REPRESENTACIÓN DE LA INFORMACIÓN 3. ALGEBRA DE BOOLE 3.3 MODULOS COMBINACIONALES BÁSICOS 3. REPRESENTACIÓN DE LA INFORMACIÓN.
Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática
Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: [email protected]
Propiedades de la adición de vectores y la multiplicación de un vector por un escalar
ÁLGEBRA MATRICIAL PROF. MARIELA SARMIENTO SESIÓN : ESPACIO VECTORIAL Propiedades de la adición de vectores y la multiplicación de un vector por un escalar Teorema.1: Si A, B y C son vectores cualesquiera
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la
EJERCICIO. Dadas las rectas y
EJERCICIO Dadas las rectas x4 y1 z y z 8 r : y s: x1 1 3 se pide: a) Comprueba que las rectas r y s se cruzan. b) Determina la ecuación de la perpendicular común. c) Calcula la distancia entre ambas. Perpendicular
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso Universidad Rey Juan Carlos
TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso 202-203 Universidad Rey Juan Carlos GUÍA PARA LA REALIZACIÓN DE LA HOJA DE PROBLEMAS No 3 (Tema 3: Expresiones Regulares)
Álgebra. Curso de junio de Grupo B
Álgebra. Curso 2008-2009 9 de junio de 2009. Grupo B Primera parte Ejercicio. 1. Sea D un dominio noetheriano que no es un cuerpo. Demuestra que son equivalentes: (a) D es un dominio de Dedekind. (b) Todo
PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.
PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia
AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO
Autómatas de pila y lenguajes independientes del contexto -1- AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO AUTÓMATAS DE PILA - Son autómatas finitos con una memoria en forma de pila. - Símbolos
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Relaciones entre Conjuntos: Propiedades Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Relaciones entre Conjuntos: Propiedades Matemáticas Discretas - p.
Guía número 1. Métodos numéricos. Universidad de san buenaventura de Cali
Guía número 1 Métodos numéricos Universidad de san buenaventura de Cali Mathematic Alpha 2016 CONVERSIÓN DE BASES CONVERSIÓN DE UN NÚMERO DECIMAL A BINARIO: El sistema de números binarios, de base dos,
Anillos Especiales. 8.1 Conceptos Básicos. Capítulo
Capítulo 8 Anillos Especiales 8.1 Conceptos Básicos En este capítulo nos dedicaremos al estudio de algunos anillos especiales que poseen ciertas condiciones adicionales, aparte de las propias de la definición,
GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS
1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo
ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas
ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I TEMA 4 Algebra booleana y puertas lógicas TEMA 4. Algebra booleana y puertas lógicas 4.1 Definición de álgebra de Boole 4.2 Teoremas del álgebra de Boole 4.3
APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES
APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES PROFESOR: CHRISTIAN CORTES D. I) LOS NUMEROS REALES. Designaremos por R, al conjunto de los números reales. En R existen
Ordenación parcial Conjunto parcialmente ordenado Diagrama de Hasse
Ordenación parcial Un orden parcial es una relación binaria R sobre un conjunto X, que cumple las propiedades: Reflexiva: R es reflexiva sii para todo a A ara Antisimétrica: R es antisimétrica sii para
Números Reales. MathCon c 2007-2009
Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................
decir de las funciones f g. Posteriormente se obtienen los términos independientes
4.8. EJERCICIOS DEL CAPÍTULO 157 decir de las funciones f g. Posteriormente se obtienen los términos independientes para cada función. fg2, 3 =dcb f4, 5, 6, 7 =dc f0, 2, 4, 6 =da g0, 2, 8, 10 =ca g2, 6,
Matrices y determinantes
Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna
