OPCIÓN A. dependiente del parámetro real a.
|
|
|
- María Ángeles Arroyo Quintana
- hace 7 años
- Vistas:
Transcripción
1 UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II MODELO INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN Después de leer atentamente todas las preguntas, el alumno deberá escoger una de las dos opciones propuestas y responder razonadamente a las cuestiones de la opción elegida. Para la realización de esta prueba se puede utilizar calculadora científica, siempre que no disponga de capacidad de representación gráfica o de cálculo simbólico. CALIFICACIÓN: Cada pregunta se valorará sobre 2 puntos. TIEMPO: 90 minutos. Ejercicio 1. (Calificación máxima: 2 puntos) Se considera la matriz A = 0 a a a 0 a a a 0 OPCIÓN A dependiente del parámetro real a. a) Determínense los valores de a para los que la matriz A es invertible. b) Para a = 1, despéjese y determínese la matriz X de la ecuación matricial A X = A + 2Id, donde Id representa la matriz identidad de orden 3. Ejercicio 2. (Calificación máxima: 2 puntos) Una bodega desea fijar el precio de venta al público de las 250 botellas de vino blanco y de las 500 de vino tinto que tiene en stock. Para no incurrir en pérdidas saben que el precio de venta al público de la botella de vino blanco debe ser como mínimo de 3 euros, de la misma manera el precio de venta al público de la botella de vino tinto debe ser de, como mínimo, 4 euros. Además saben que, para ser competitivos con esos precios de venta al público, el coste de 2 botellas de vino blanco y una de tinto debería ser a lo sumo 15 euros. Por el mismo motivo, el coste total de una botella de vino blanco y una de tinto no debe sobrepasar los 10 euros. Determínense los respectivos precios de venta al público por unidad de las botellas de vino blanco y de las de vino tinto, para que el ingreso total al vender el stock de 250 botellas de vino blanco y 500 de vino tinto sea máximo. Ejercicio 3. (Calificación máxima: 2 puntos) Se considera la función real de variable real f (x) = 4x 3 12x a) Calcúlese la ecuación de la recta tangente a la gráfica de f (x) en el punto de abscisa x = 1. b) Calcúlese el área de la región limitada por la gráfica de f (x), el eje de abscisas y las rectas x = 2 y x = 3. Ejercicio 4. (Calificación máxima: 2 puntos) Se consideran los sucesos A y B de un experimento aleatorio tales que: Calcúlese: a) P(A B). b) P(A B). P(A) = 0 4; P(B) = 0 5; P(A B) = 0 7. Nota: S denota el suceso complementario del suceso S. Ejercicio 5. (Calificación máxima: 2 puntos) Un determinado partido político desea estimar la proporción de votantes, p, que actualmente se decantaría por él. a) Asumiendo que p = 0 5, detérminese el tamaño mínimo necesario de una muestra de votantes para garantizar que, con una confianza del 90 %, el margen de error en la estimación no supere el 2 % (± 2 %). b) Se tomó una muestra aleatoria simple de 1200 votantes de los cuales 240 afirmaron que votarían por el partido en cuestión. Obténgase un intervalo de confianza del 95 % para la proporción de votantes de ese partido en la población.
2 OPCIÓN B Ejercicio 1. (Calificación máxima: 2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a: x + y + z = 3 2x + y + z = 2 5x + 3y + az = a + 4 a) Discútase en función de los valores del parámetro a. b) Resuélvase para a = 1. Ejercicio 2. (Calificación máxima: 2 puntos) Se considera la función real de variable real f (x) = 3x x a) Calcúlense el dominio y las asíntotas de f (x). b) Determínense sus intervalos de crecimiento y decrecimiento. Ejercicio 3. (Calificación máxima: 2 puntos) El beneficio diario (en miles de euros) de una empresa productora de cemento viene dado por la función: f (x) = 2x x 12 donde x expresa las toneladas de cemento producidos al día. Se sabe que la producción diaria de cemento está entre 0 y 8 toneladas, es decir, x [0, 8]. a) Calcúlense f (0) y f (8) e interprétense los resultados en el contexto del problema. Hállense las toneladas de cemento que deben producirse diariamente para obtener el máximo beneficio posible. b) Determínese entre qué valores debe estar la producción diaria de cemento para que la empresa no tenga pérdidas. Ejercicio 4. (Calificación máxima: 2 puntos) Se consideran los sucesos A y B de un experimento aleatorio tales que: Calcúlese: a) P(A B). b) P(A B). P(A) = 0 3; P(B) = 0 8; P(A B) = 0 9. Nota: S denota el suceso complementario del suceso S. Ejercicio 5. (Calificación máxima: 2 puntos) El peso, en kilogramos, de los niños de diez años en la comunidad de Madrid se puede aproximar por una variable aleatoria con distribución normal de media µ desconocida y desviación típica σ = 3 kilogramos. a) Calcúlese un intervalo de confianza al 95 % para µ si se ha tomado una muestra aleatoria simple de 9 niños de diez años y se han obtenido los siguientes pesos en kilogramos: 37, 40, 42, 39, 41, 40, 39, 42, 40. b) Determínese el tamaño mínimo que debe tener una muestra aleatoria simple para que el error máximo cometido en la estimación de la media muestral sea menor que 1 kilogramo con un nivel de confianza del 98 %.
3 Matemáticas Aplicadas a las Ciencias Sociales ÁREAS BAJO LA DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESTÁNDAR Los valores en la tabla representan el área bajo la curva normal hasta un valor positivo de z. z z,00,01,02,03,04,05,06,07,08,09 0,0 0,5000 0,5040 0,5080 0,5120 0,5160 0,5199 0,5239 0,5279 0,5319 0,5359 0,1 0,5398 0,5438 0,5478 0,5517 0,5557 0,5596 0,5636 0,5675 0,5714 0,5753 0,2 0,5793 0,5832 0,5871 0,5910 0,5948 0,5987 0,6026 0,6064 0,6103 0,6141 0,3 0,6179 0,6217 0,6255 0,6293 0,6331 0,6368 0,6406 0,6443 0,6480 0,6517 0,4 0,6554 0,6591 0,6628 0,6664 0,6700 0,6736 0,6772 0,6808 0,6844 0,6879 0,5 0,6915 0,6950 0,6985 0,7019 0,7054 0,7088 0,7123 0,7157 0,7190 0,7224 0,6 0,7257 0,7291 0,7324 0,7357 0,7389 0,7422 0,7454 0,7486 0,7517 0,7549 0,7 0,7580 0,7611 0,7642 0,7673 0,7703 0,7734 0,7764 0,7794 0,7823 0,7852 0,8 0,7881 0,7910 0,7939 0,7967 0,7995 0,8023 0,8051 0,8078 0,8106 0,8133 0,9 0,8159 0,8186 0,8212 0,8238 0,8264 0,8289 0,8315 0,8340 0,8365 0,8389 1,0 0,8413 0,8438 0,8461 0,8485 0,8508 0,8531 0,8554 0,8577 0,8599 0,8621 1,1 0,8643 0,8665 0,8686 0,8708 0,8729 0,8749 0,8770 0,8790 0,8810 0,8830 1,2 0,8849 0,8869 0,8888 0,8907 0,8925 0,8944 0,8962 0,8980 0,8997 0,9015 1,3 0,9032 0,9049 0,9066 0,9082 0,9099 0,9115 0,9131 0,9147 0,9162 0,9177 1,4 0,9192 0,9207 0,9222 0,9236 0,9251 0,9265 0,9279 0,9292 0,9306 0,9319 1,5 0,9332 0,9345 0,9357 0,9370 0,9382 0,9394 0,9406 0,9418 0,9429 0,9441 1,6 0,9452 0,9463 0,9474 0,9484 0,9495 0,9505 0,9515 0,9525 0,9535 0,9545 1,7 0,9554 0,9564 0,9573 0,9582 0,9591 0,9599 0,9608 0,9616 0,9625 0,9633 1,8 0,9641 0,9649 0,9656 0,9664 0,9671 0,9678 0,9686 0,9693 0,9699 0,9706 1,9 0,9713 0,9719 0,9726 0,9732 0,9738 0,9744 0,9750 0,9756 0,9761 0,9767 2,0 0,9772 0,9778 0,9783 0,9788 0,9793 0,9798 0,9803 0,9808 0,9812 0,9817 2,1 0,9821 0,9826 0,9830 0,9834 0,9838 0,9842 0,9846 0,9850 0,9854 0,9857 2,2 0,9861 0,9864 0,9868 0,9871 0,9875 0,9878 0,9881 0,9884 0,9887 0,9890 2,3 0,9893 0,9896 0,9898 0,9901 0,9904 0,9906 0,9909 0,9911 0,9913 0,9916 2,4 0,9918 0,9920 0,9922 0,9925 0,9927 0,9929 0,9931 0,9932 0,9934 0,9936 2,5 0,9938 0,9940 0,9941 0,9943 0,9945 0,9946 0,9948 0,9949 0,9951 0,9952 2,6 0,9953 0,9954 0,9956 0,9957 0,9959 0,9960 0,9961 0,9962 0,9963 0,9964 2,7 0,9965 0,9966 0,9967 0,9968 0,9969 0,9970 0,9971 0,9972 0,9973 0,9974 2,8 0,9974 0,9975 0,9976 0,9977 0,9977 0,9978 0,9979 0,9979 0,9980 0,9981 2,9 0,9981 0,9982 0,9982 0,9983 0,9984 0,9984 0,9985 0,9985 0,9986 0,9986 3,0 0,9987 0,9987 0,9987 0,9988 0,9988 0,9989 0,9989 0,9989 0,9990 0,9990
4 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II CRITERIOS ESPECÍFICOS DE CORRECCIÓN Y CALIFICACIÓN ATENCIÓN: La calificación debe hacerse en múltiplos de 0,25 puntos OPCIÓN A Ejercicio 1. (Puntuación máxima: 2 puntos) Cálculo correcto del determinante... 0,50 puntos. Solución correcta... 0,50 puntos. Despejar correctamente la matriz X... 0,50 puntos. Determinar correctamente la matriz X... 0,50 puntos. Ejercicio 2. (Puntuación máxima: 2 puntos) Planteamiento correcto del problema de programación lineal... 0,75 puntos. Representación correcta región factible y localización correcta vértices... 0,75 puntos. Localización del máximo... 0,50 puntos. Ejercicio 3. (Puntuación máxima: 2 puntos) Cálculo correcto de la pendiente de la recta tangente... 0,50 puntos. Obtención de la ordenada en el origen de la recta tangente... 0,25 puntos. Expresión correcta de la ecuación de la recta tangente... 0,25 puntos. Planteamiento correcto de la integral... 0,25 puntos. Cálculo correcto de la primitiva... 0,50 puntos. Cálculo del área... Ejercicio 4. (Puntuación máxima: 2 puntos) Apartado b) 1 punto. Ejercicio 5. (Puntuación máxima: 2 puntos) Expresión correcta de la fórmula del error... 0,25 puntos. Determinación correcta del tamaño... 0,50 puntos. Expresión correcta de la fórmula del intervalo de confianza... 0,25 puntos. Determinación correcta del intervalo... 0,50 puntos. NOTA: La resolución de ejercicios por cualquier otro procedimiento correcto, diferente al propuesto por los coordinadores, ha de valorarse con los criterios convenientemente adaptados.
5 OPCIÓN B Ejercicio 1. (Puntuación máxima: 2 puntos) Cálculo correcto del determinante de A y del valor crítico... 0,50 puntos. Discusión correcta... 0,50 puntos. Solución correcta del sistema... 1,00 punto. Ejercicio 2. (Puntuación máxima: 2 puntos) Cálculo del dominio... Obtención de la asíntota vertical... 0,25 puntos. Obtención de la asíntota oblicua... 0,50 puntos. Apartado b): 1 punto Obtención correcta de la derivada... 0,50 puntos. Obtención correcta de los intervalos de crecimiento/decrecimiento... 0,50 puntos. Ejercicio 3. (Puntuación máxima: 2 puntos) Obtención de f(0) y f(8).. Obtención del máximo relativo... 0,50 puntos. Obtención del máximo absoluto... 0,25 puntos. Obtención de los puntos de corte con el eje OX... 0,50 puntos. Determinación correcta del signo de la función... 0,25 puntos. Interpretación de la solución en el contexto del problema... 0,25 puntos. Ejercicio 4. (Puntuación máxima: 2 puntos) Ejercicio 5. (Puntuación máxima: 2 puntos) Expresión correcta de la fórmula del intervalo de confianza... 0,25 puntos. Determinación correcta del intervalo... 0,50 puntos. Expresión correcta de la fórmula del error... 0,25 puntos. Determinación correcta del tamaño mínimo de la muestra... 0,50 puntos. NOTA: La resolución de ejercicios por cualquier otro procedimiento correcto, diferente al propuesto por los coordinadores, ha de valorarse con los criterios convenientemente adaptados.
MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:
Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 1) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = x y z y B = 1, se pide: 1 1 3 1 k, X = 1.
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2014) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2014) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Considérese el siguiente sistema de ecuaciones dependiente del parámetro
Aplicaciones de la integral definida al cálculo de áreas
Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano
OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:
dada por c(x) = donde x indica el tamaño de los pedidos para renovar existencias
FUNCIONES +, si
ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO
ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO El examen presentará dos opciones diferentes entre las que el alumno deberá elegir una y responder
JUNIO Bloque A
Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES
2 4. c d. Se verifica: a + 2b = 1
Pruebas de Acceso a la Universidad. SEPTIEMBRE 0. Bachillerato de Ciencias Sociales. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.
Pruebas de Acceso a las Universidades de Castilla y León
Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas 2 Tablas OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR
PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS
PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS MODELO 2000: OPCIÓN A: a. Calcúlense p y q de modo que la curva y = x $ + px + q contenga al punto ( 2, 1) y presente un mínimo
Propuesta A B = M = (
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (016) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A ó B. Se
EJERCICIOS DE SELECTIVIDAD
EJERCICIOS DE SELECTIVIDAD INFERENCIA 1998 JUNIO OPCIÓN A Un fabricante de electrodomésticos sabe que la vida media de éstos sigue una distribución normal con media μ = 100 meses y desviación típica σ
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
DE 00 OPCIÓN A a) (.5 puntos) Resuelva el siguiente sistema y clasifíquelo atendiendo al número de soluciones: x + y + z = 0 x + 3y z = 17 4x + 5y + z = 17 b) (0.75 puntos) A la vista del resultado anterior,
Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 2011) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 20) Selectividad-Opción A Tiempo: 90 minutos Problema (3 puntos) Un estudiante ha gastado un total de 48 euros en la compra de una mochila,
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA JUNIO (RESUELTOS por Antonio Menguiano)
I.E.S. CSTELR BDJOZ. Menguiano PRUEB DE CCESO (LOGSE) UNIVERSIDD DE VLENCI JUNIO (RESUELTOS por ntonio Menguiano) MTEMÁTICS II Tiempo máimo: horas Se elegirá el Ejercicio o el B, del que sólo se harán
Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo
EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.
EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones
UNIVERSIDAD COMPLUTENSE DE MADRID
TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN Una hora y treinta minutos. INSTRUCCIONES: El examen presenta dos opciones A y B; el alumno deberá elegir una de ellas y contestar razonadamente a los cuatro
La concentración de ozono contaminante, en microgramos por metro cúbico, en una
ANÁLISIS MATEMÁTICO. PAU CASTILLA Y LEÓN A) EJERCICIOS DE APLICACIÓN A LAS CCSS La concentración de ozono contaminante, en microgramos por metro cúbico, en una ciudad viene dada por la función C ( ) 90
= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x
Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas
RECOMENDACIONES Y ORIENTACIONES PARA LA MATERIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II (CURSO )
RECOMENDACIONES Y ORIENTACIONES PARA LA MATERIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II (CURSO 01-013) MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II ÍNDICE 1. Contenidos. Criterios de evaluación.1.
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?
Pruebas de Acceso a las Universidades de Castilla y León
Pruebas de Acceso a las Universidades de Castilla y León MATMÁTICAS APLICADAS A LAS CINCIAS SOCIALS JRCICIO Nº páginas 2 Tablas OPTATIVIDAD: L ALUMNO/A DBRÁ SCOGR UNO D LOS DOS BLOQUS Y DSARROLLAR LAS
UNIVERSIDAD COMPLUTENSE DE MADRID
INSTRUCCIONES GENERALES Y VALORACIÓN TIEMPO: Una hora y treinta minutos. INSTRUCCIONES: El examen presenta dos opciones A y B; el alumno deberá elegir una de ellas y contestar razonadamente a los cuatro
IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio 1.
IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio. ( puntos) Se desea invertir una cantidad de dinero menor o igual que 000 euros,
APLICADAS A LAS CIENCIAS SOCIALES
IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Enunciado Germán-Jesús Rubio Luna e) Si obtiene resultados directamente con la calculadora, explique con detalle los pasos necesarios para su obtención
Estadística. 3) (Sept-99) Una variable aleatoria tiene una distribución normal de media y desviación típica. Si se extraen
Estadística 1) (Junio-95) La duración de unas bombillas sigue una distribución normal de media desconocida y desviación típica de 50 horas. Para estimar la media, se experimenta con una muestra de tamaño
Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos.
MATEMÁTICAS I Contenidos. Aritmética y álgebra: Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. Resolución e interpretación gráfica de ecuaciones e
Selectividad Septiembre 2006 SEPTIEMBRE 2006
Bloque A SEPTIEMBRE 2006 1.- En una fábrica trabajan 22 personas entre electricistas, administrativos y directivos. El doble del número de administrativos más el triple del número de directivos, es igual
= -6 0 A-1 A -1 = 1 A A = A d t Ad A-1 = X = A d = -5 2 A-1 =
www.clasesalacarta.com.- Universidad de Castilla la Mancha PAU/LOGSE Reserva-2 2.0 Opción A RESERVA _ 2 _ 20 a) Despeja la matriz X en la siguiente ecuación matricial: I - 2X + XA = B, suponiendo que todas
MATEMÁTICAS 2º DE BACHILLERATO
MATRICES 1. Matrices y tipos de matrices 2. Operaciones con matrices 3. Producto de matrices 4. Matriz traspuesta 5. Matriz inversa 6. Rango de matrices DETERMINANTES 7. Determinantes de orden 2 y 3 8.
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
CBC. Matemática (51) universoexacto.com 1
CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)
TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A
Prueba de Acceso a la Universidad SEPTIEMBRE Bachillerato de Ciencias Sociales El alumno debe responder a una de las dos opciones propuestas, A o B En cada pregunta se señala la puntuación máima OPCIÓN
Matemáticas II PRUEBA DE ACCESO A LA UNIVERSIDAD 2012 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR.
PRUEBA DE ACCESO A LA UNIVERSIDAD 2012 Matemáticas II BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR Examen Criterios de Corrección y Calificación UNIBERTSITATERA SARTZEKO PROBAK
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un
JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A
Bloque A JUNIO 2003 1.- Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: 1 0 A = 1 0 A Cuántas matrices A existen con esa condición? Razona tu respuesta.
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 2015
CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL JUNIO 201 Apellidos Nombre Centro de examen Instrucciones Generales PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
a) (1 punto) Dada la matriz a 1 A, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M, calcule la matriz M M. 1 1 x 1 Sea la función f definida mediante f ( x).
JUNIO Opción A
Junio 010 (Prueba Específica) JUNIO 010 Opción A 1.- Discute y resuelve según los distintos valores del parámetro a el siguiente sistema de ecuaciones: a x + a y + az 1 x + a y + z 0.- Una panadería se
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
DE 00 OPCIÓN A (3 puntos) Una fábrica produce dos tipos de relojes: de pulsera, que vende a 90 euros la unidad, y de bolsillo, que vende a 10 euros cada uno. La capacidad máxima diaria de fabricación es
IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]
EXTRACTO DE PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º BACHILLERATO CONTENIDOS MÍNIMOS
MATERIA: CURSO: MATEMÁTICAS 2º BACHILLERATO CONTENIDOS MÍNIMOS ÁLGEBRA LINEAL 1) Realizar operaciones con matrices (con un número de filas y columnas no superior a tres) así como obtener la traspuesta
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales 1º) Resuelve, si es posible, cada uno de los siguientes sistemas: a) b) c) a) Sistema incompatible b) Sistema compatible indeterminado: c) Sistema compatible indeterminado:
PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.
PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y CALIFICACIÓN Después
EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA
EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x
Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x
Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que
Representaciones gráficas: Método del Paralelogramo
Representaciones gráficas: Método del Paralelogramo La relación funcional más simple entre dos variables es la línea recta. Sea entonces la variable independiente x y la variable dependiente y que se relacionan
Matemáticas II PRUEBA DE ACCESO A LA UNIVERSIDAD 2014 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR.
PRUEBA DE ACCESO A LA UNIVERSIDAD 014 Matemáticas II BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR Examen Criterios de Corrección y Calificación UNIBERTSITATERA SARTZEKO PROBAK
INTEGRAL DEFINIDA. APLICACIONES
COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del
Propuesta A. 2 0 b) Dada la ecuación matricial: X = , despeja y calcula la matriz X. (0.75 ptos) 2 1
Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (015) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B. Se
Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación.
Matemáticas Distribución de ítems para la prueba nacional Modalidad Académica (Diurnos Nocturnos) Convocatorias 016 ESTIMADO DOCENTE: En la modalidad de colegios académico, la Prueba de Bachillerato 016
UNIDAD 7: PROGRESIONES OBJETIVOS
UNIDAD 7: PROGRESIONES Reconocer sucesiones y deducir su regla de formación en los casos en que sea posible. Obtener distintos términos en sucesiones recurrentes. Distinguir si una sucesión es una progresión
Profesor: Fernando Ureña Portero
MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)
INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES.
Nombre y apellidos : Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 2ª entrega Fecha: Curso: 1º BACHILLERATO INSTRUCCIONES: Para la realización del primer examen deberás entregar en un cuaderno
MATEMATICAS aplicadas a las CIENCIAS SOCIALES II. Mayores de 25 años Normas de la UCLM sobre el modelo de examen para mayores de 25 años
MATEMATICAS aplicadas a las CIENCIAS SOCIALES II Mayores de 25 años 2013 Normas de la UCLM sobre el modelo de examen para mayores de 25 años 1. Los contenidos de referencia serán los del Decreto 85/2008,
CONTENIDOS MÍNIMOS BACHILLERATO
CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión
REPRESENTACIÓN DE FUNCIONES
8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta
18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.
PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto
APELLIDOS Y NOMBRE:...
1º BACHILLERATO Fecha: 6-09-011 PRUEBA INICIAL APELLIDOS Y NOMBRE:... NORMAS El eamen se realizará con tinta de un solo color: azul ó negro No se puede usar corrector Se valorará potivamente: ortografía,
13. Utilizar la fórmula del término general y de la suma de n términos consecutivos
Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma
INTRODUCCIÓN AL ANÁLISIS DE DATOS
INTRODUCCIÓN AL ANÁLISIS DE DATOS HORARIOS: Lunes, 12:00-13:30 Martes, 8:15-9:45 Jueves, 8:15-9:45 Tema 1. Introducción. El análisis de datos dentro de la estadística. Características de los datos socioeconómicos.
SOLUCIÓN REPASO EXAMEN
SOLUCIÓN REPASO EXAMEN 1. El gráfico muestra la distribución de las cargas máximas (toneladas) que soportan ciertos cables producidos por una empresa: 35 30 30 25 n de clables 20 15 15 20 18 11 5 6 0 9,2-9,8
PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C)
PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) I.E.S. Universidad Laboral de Málaga Curso 2015/2016 PROGRAMACIÓN DE LA
LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.
LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante
1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:
RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II
EXAMEN DE SELECTIVIDAD JUNIO 2015. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN A Problema 1. Se dispone de 200 hectáreas de terreno en las que se desea cultivar patatas y zanahorias. Cada hectárea
UNIVERSIDAD ALAS PERUANAS FACULTAD DE CIENCIAS DE LA COMUNICACIÓN SILABO POR COMPETENCIA
UNIVERSIDAD ALAS PERUANAS FACULTAD DE CIENCIAS DE LA COMUNICACIÓN SILABO POR COMPETENCIA I. DATOS INFORMATIVOS 1.1 Asignatura : Estadística para el Comunicador Social 1.2 Código : 1001-1023 1.3 Pre-requisito
REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x
1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.
La distribución de Probabilidad normal, dada por la ecuación:
La distribución de Probabilidad normal, dada por la ecuación: Donde: x = X -, la distancia entre X y en el eje de las X. = la media de la población o universo ( de las X ) fx= La altura de la ordenada
Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad
Ejercicios con solución de todo hasta probabilidad Problema 1: Se considera la función siendo a y b parámetros reales. a) Determina los valores de los parámetros a y b para que f(2) = 4 y la recta tangente
CRITERIOS DE EVALUACIÓN BLOQUE I: ESTADISTICA Y PROBABILIDAD
CRITERIOS DE EVALUACIÓN BLOQUE I: ESTADISTICA Y PROBABILIDAD Clasificar los tipos de caracteres y las variables estadísticas para una determinada población. Elaborar tablas de frecuencias absolutas, relativas
Ejercicios de representación de funciones
Ejercicios de representación de funciones Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.
Selectividad Septiembre 2008 SEPTIEMBRE 2008
Bloque A SEPTIEMBRE 008.- Una ONG organiza un convoy de ayuda humanitaria con un máimo de 7 camiones, para llevar agua potable y medicinas a una zona devastada por unas inundaciones. Para agua potable
GUÍA DE LA UNIDAD FUNCIONES : DERIVADAS
Funciones Límites Derivadas Aplicaciones Gráficas C ontenidos Idea de Función. Elementos notables de la gráfica de una función. Funciones lineales. Función definida por intervalos. Función Valor Absoluto.
Propuesta A. b) Resuelve el sistema planteado en el apartado anterior. (0 5 puntos)
Propuesta A 1. Considera el siguiente problema de programación lineal: Maximiza la función z = x + 3y sujeta a las siguientes restricciones: x + y 2 x + y 4 x 0 y 0 a) Dibuja la región factible. (1 punto)
PROBLEMAS DE INTEGRALES INDEFINIDAS
PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su
MATEMÁTICA DE CUARTO 207
CAPÍTULO 1 CONJUNTOS NUMÉRICOS 1 Introducción... pág. 9 2 Números naturales... pág. 10 3 Números enteros... pág. 10 4 Números racionales... pág. 11 5 Números reales... pág. 11 6 Números complejos... pág.
ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua
ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:
MATEMÁTICAS APLICADAS A LAS CC. SOCIALES I. Examen de la tercera evaluación. Nombre y apellidos Fecha: 10 de junio de 2010
IES ATENEA San Sebastián de los Rees MATEMÁTICAS APLICADAS A LAS CC. SOCIALES I Eamen de la tercera evaluación Nombre apellidos Fecha: 0 de junio de 00.- (, 5 puntos) En seis modelos de zapatillas deportivas
3. ANÁLISIS DE DATOS DE PRECIPITACIÓN.
3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. Teniendo en cuenta que la mayoría de procesos estadísticos se comportan de forma totalmente aleatoria, es decir, un evento dado no está influenciado por los demás,
La distribución normal
La Distribución Normal Es una distribución continua que posee, entre otras, las propiedades siguientes: Su representación gráfica tiene forma de campana ( campana de Gauss ) -6-4 -2 0 2 4 6 2 4 6 8 10
