SOLUCIÓN REPASO EXAMEN
|
|
|
- Milagros Fuentes Fernández
- hace 9 años
- Vistas:
Transcripción
1 SOLUCIÓN REPASO EXAMEN 1. El gráfico muestra la distribución de las cargas máximas (toneladas) que soportan ciertos cables producidos por una empresa: n de clables ,2-9,8 9,8 -,4,4-11,0 11,0-11,6 11,6-12,2 12,2-13,0 Carga Máxima (ton) a) Basándose en la información que proporciona el gráfico, complete la siguiente tabla de frecuencias con: Intervalos, marca de clase, frecuencia absoluta, frecuencia absoluta acumulada, frecuencia relativa y frecuencia relativa acumulada. Carga máxima (Ton) mc f F h H 9,2-9,8 9, ,8 -,4, ,4-11,0, ,0-11,6 11, ,6-12,2 11, ,2-13,0 12, Totales 0 0
2 b) Interprete f 1, h3, F6, H 4. f 1: Hay 6 cables que soportan entre 9,2 y 9,8 toneladas de carga h 3 : El 20% de los cables soportan entre,4 y 11 toneladas de carga F 6 : Los 0 cables soportan como máximo 13 toneladas de carga H 4 : El 71% de los cables soporta como máximo 11,6 toneladas de carga c) Calcule la media. Interprete el resultado. 1114,3 x = = 11,143 0 La carga máxima promedio de los cables es 11,143ton. d) Cuánto soportan como mínimo el 25% de los cables más resistentes? Explique P 11, = + 0,6 = 11,73 18 El 25% de los cables más resistentes soportan por lo menos 11,73ton. 2. Se llevó a cabo un estudio para ver cómo afecta la privación del sueño la habilidad de los individuos para resolver problemas sencillos. La cantidad de horas sin dormir (X) varía entre 8 y 24. Después del periodo de privación del sueño se asignó a cada uno de los individuos un conjunto de problemas sencillos y se registró el número de errores cometidos (Y). La tabla siguiente resume los resultados obtenidos: X Y
3 a) En cuál grupo la variable correspondiente al número de errores cometidos (Y) presenta mayor homogeneidad, en el de las personas con menor privación del sueño (8 a 14 horas) o en el de las personas con mayor privación del sueño (20 a 24 horas)? Explique ( y / 8 x < 14) = 8, 875 ( Sy / 8 x < 14) = 1, 516 1, ( CVy / 8 x < 14) = 0 = 17,082% ( y / 20 x 24) = 13, 375 ( Sy / 20 x 24) = 1, 083 1,083 13,375 ( CVy / 20 x 24) = 0 = 8,097% La distribución del número de errores cometidos por aquellas personas con mayor privación de sueño presenta mayor homogeneidad que en los que fueron sometidos a menor privación de sueño, pues: ( CVy / 8 x < 14) > ( / 20 x 24) CVy. b) Calcule el coeficiente correlación lineal, r. Interprete su valor numérico y su signo. S 9,89 r = = = 0,75 S S 4,92 2,69 x y Luego, existe una cierta relación lineal entre las variables: número de errores cometidos y cantidad de horas sin dormir. Además r >0, por lo que la relación entre las variables es creciente. c) Determine el modelo lineal, Y = a + b X, y según éste calcule cuántos errores cometería una persona que ha pasado 18 horas sin dormir. = S b = 0,41 a = y b x = 4, 33 2 S x y = 4,33 + 0, 41x y ( 18) = 4,33 + 0,41 18 = 11,71
4 Según el modelo lineal, el número de errores que cometería una persona que ha pasado 18 horas sin dormir sería aproximadamente Hay dos métodos A y B para enseñar cierta destreza industrial. Como el método B es más caro, se aplica sólo el 30% del tiempo (el otro 70% se emplea el A). El porcentaje de fracaso del método A es de 20% y el de B de %. Sean: A: Se usa el método A B: Se usa el método B F: El método fracasa NF: El método no fracasa a) Un empleado fue capacitado con uno de estos métodos. Cuál es la probabilidad de que fracase? F) = F / A) A) + F / B) B) = 0,2 0,7 + 0,1 0,3 = 0,14 + 0, 03 = 0, 17 La probabilidad de que un empleado fracase después de la capacitación es 0,17 b) Una trabajadora que recibió capacitación, no aprendió la destreza correctamente. Cuál es la probabilidad de que se le haya enseñado con el método A? F / A) A) 0,2 0,7 A / F) = = = 0, 82 F) 0,17 La probabilidad que la empleada que no aprendió correctamente la destreza haya sido capacitada con el método A es 0,82.
5 4. Una empresa de jugo de naranja emplea una máquina para envasarlo que llena automáticamente botellas de vidrio de 500ml de capacidad. a) Antes de ser llenadas con el jugo las botellas pasan por un control de calidad, pues en general el 2% de estas posee algún defecto. Sea X la v.a. discreta con distribución binomial correspondiente al número de botellas defectuosas que se detectan. Si se someten a control botellas, determine el recorrido y los parámetros de la distribución de la v.a. X. n = Rec X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, } p = 0,02 q = 0,98 b) Hallar la probabilidad que de las botellas al menos 2 sean defectuosas. P ( X 2) = 1 [ X < 2)] = 1 [ X = 0) + X = 1)] = 1 0, , ,02 0,98 = 0, La probabilidad que de las botellas al menos 2 sean defectuosas es 0,0161 c) Se observó que la cantidad de líquido contenido en las botellas se aproxima a una distribución normal con media μ =500ml y desviación estándar σ =ml. Cuál es la probabilidad que una botella se llene con menos de 480ml? Sea 500 = X Z, luego: X < 480) = P Z < = Z < 2) = 0,0227 La probabilidad que una botella se llene con menos de 480ml es 0,0227 d) Los distribuidores de este producto hacen un pedido de botellas con este jugo. Cuántas de estas botellas contendrán más de 480ml? La probabilidad de que una botella contenga más de 480ml es 1-0,0227, esto es 0,9773. El 97,73% de es 977,3 Aproximadamente, 977 botellas contendrán más de 480ml de jugo de naranja
Conceptos Básicos de Inferencia
Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos
DISTRIBUCIÓN N BINOMIAL
DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina
Dispone de 1 hora para resolver las siguientes cuestiones planteadas.
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE ECONOMÍA Y NEGOCIOS EXAMEN TEÓRICO DE ESTADÍSTICA COMPUTARIZADA NOMBRE: PARALELO: Dispone de 1 hora para resolver las siguientes cuestiones planteadas.
La distribución de Probabilidad normal, dada por la ecuación:
La distribución de Probabilidad normal, dada por la ecuación: Donde: x = X -, la distancia entre X y en el eje de las X. = la media de la población o universo ( de las X ) fx= La altura de la ordenada
Ejercicio 1(10 puntos)
ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Segundo Parcial Montevideo, 4 de julio de 2015. Nombre: Horario del grupo: C.I.: Profesor: Ejercicio 1(10 puntos) La tasa de desperdicio en una empresa
Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.
Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada
FINAL DE PROBABILIDAD Y ESTADÍSTICA 27 de MAY Nombre y apellido: Nota
FINAL DE PROBABILIDAD Y ESTADÍSTICA 27 de MAY0 2015 Nombre y apellido: Legajo: 1 2 3 4 5 Nota / / / / / 1.- El gobierno de la ciudad ha construido senderos especiales para bicicletas en un barrio de la
Discretas. Continuas
UNIDAD 0. DISTRIBUCIÓN TEÓRICA DE PROBABILIDAD Discretas Binomial Distribución Teórica de Probabilidad Poisson Normal Continuas Normal Estándar 0.1. Una distribución de probabilidad es un despliegue de
Definición de probabilidad
Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total
Objetivos. Epígrafes 3-1. Francisco José García Álvarez
Objetivos Entender el concepto de variabilidad natural de un procesos Comprender la necesidad de los gráficos de control Aprender a diferenciar los tipos de gráficos de control y conocer sus limitaciones.
Grupo 23 Semestre Segundo examen parcial
Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige
JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas
JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme
Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7.
Distribuciones Continuas de Probabilidad 1 Contenido 1. Ejemplo. 2. Diferencia entre variables aleatorias discretas y continuas. 3. Diferencia de f(x) entre variables aleatorias discretas y continuas.
ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua
ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:
matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4
PS0401 - Probabilidad y Estadística DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0401 Cuatrimestre: 4 UNIVERSIDAD AUTÓNOMA DE Área
Distribuciones de Probabilidad
Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica
ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN
CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas
Guía de Ejercicios Estadística. Nombre del Estudiante:
Colegio Raimapu Departamento de Matemática Guía de Ejercicios Estadística Nombre del Estudiante: V Medio Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta
478 Índice alfabético
Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión
SESION 12 LA DISTRIBUCIÓN BINOMIAL
SESION LA DISTRIBUCIÓN BINOMIAL I. CONTENIDOS:. La distribución omial.. Variables aleatorias en una distribución omial. 3. Descripciones de la distribución omial. 4. Distribución de Poisson. II. OBJETIVOS:
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES
DEPARTAMENTO DE MATEMÁTICAS. IES GALLICUM
UNIDAD I: NÚMEROS (6 Horas) 1.- Repasar el cálculo con números racionales y potencias de exponente entero. 2.- Resolver problemas de la vida cotidiana en los que intervengan los números racionales. 1.-
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2014) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2014) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Considérese el siguiente sistema de ecuaciones dependiente del parámetro
INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos
INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos
INFERENCIA DE LA PROPORCIÓN
ESTADISTICA INFERENCIA DE LA PROPORCIÓN DISTRIBUCIÓN MUESTRAL DE PROPORCIONES En una población la proporción de elementos (personas, animales, cosas o entes) que posee una cierta característica es p. En
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA
UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA NIVEL : LICENCIATURA CRÉDITOS : 7 CLAVE : ICAE13001731 HORAS TEORÍA : 3 SEMESTRE : QUINTO HORAS PRÁCTICA : 1 REQUISITOS
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística
Tema 6. Estadística Descriptiva e Introducción a la Inferencia Estadística Fuente de los comics: La Estadística en Comic. LarryGonicky Woollcatt Smith. Ed. ZendreraZariquiey, 1999 ESTADÍSTICA ESTADÍSTICA
1. La Distribución Normal
1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando
ESTADISTICA Y PROBABILIDAD. 1. Encuentra la media, moda, mediana, desviación estándar y varianza de la siguiente distribución de números
ESTADISTICA Y PROBABILIDAD 1. Encuentra la media, moda, mediana, desviación estándar y varianza de la siguiente distribución de números a. 22 24 25 27 32 45 65 34 23 23 23 12 42 34 23 23 18 34 23 12 34
Probabilidad y Estadística
Probabilidad y Estadística Grupo Lunes jueves 1PM22 11:00-12:00 11:00-13:00 Prof. Miguel Hesiquio Garduño. Depto. De Ingeniería Química Petrolera ESIQIE-IPN [email protected] 1 de Agosto de 2011 OBJETIVO
unidad 12 Estadística
Qué es una tabla de frecuencias Página 1 Al número de veces que se repite un dato se le denomina frecuencia de ese dato. Una tabla de frecuencias es una tabla en la que cada valor de la variable tiene
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS UCS THS/SEM
UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ciencias Básicas CODIGO SEMESTRE DENSIDAD HORARIA HT
Pruebas de Hipótesis H0 : μ = 6 H1 : μ 6 α = 0.05 zα/2 = 1.96 (6-1,96 0,4 ; 6+1,96 0,4) = (5,22 ; 6,78) 5,6 Aceptamos la hipótesis nula H 0 2.
Pruebas de Hipótesis 1. Se sabe que la desviación típica de las notas de cierto examen de Matemáticas es,4. Para una muestra de 6 estudiantes se obtuvo una nota media de 5,6. Sirven estos datos para confirmar
Indicaciones para el lector... xv Prólogo... xvii
ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:
VARIABLES ALEATORIAS DISCRETAS
VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:
Distribuciones de probabilidad discretas
Lind, Douglas; William G. Marchal y Samuel A. Wathen (2012). Estadística aplicada a los negocios y la economía, 15 ed., McGraw Hill, China. Distribuciones de probabilidad discretas Capítulo 6 FVela/ McGraw-Hill/Irwin
Tema Contenido Contenidos Mínimos
1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.
INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso
INDICE Capítulo I: Conceptos Básicos 1.- Introducción 3 2.- Definición de calidad 7 3.- Política de calidad 10 4.- Gestión de la calidad 12 5.- Sistema de calidad 12 6.- Calidad total 13 7.- Aseguramiento
ÍNDICE CAPÍTULO 1. INTRODUCCIÓN
ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.
PRUEBA ESPECÍFICA PRUEBA 2009
PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES DE 25 AÑOS PRUEBA ESPECÍFICA PRUEBA 2009 PRUEBA SOLUCIONARIO UNIBERTSITATERA SARTZEKO HAUTAPROBAK 25 URTETIK GORAKOAK 2009ko MAIATZA ESTATISTIKA PRUEBAS DE ACCESO
Tema 13: Distribuciones de probabilidad. Estadística
Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número
Tema 2. Regresión Lineal
Tema 2. Regresión Lineal 3.2.1. Definición Mientras que en el apartado anterior se desarrolló una forma de medir la relación existente entre dos variables; en éste, se trata de esta técnica que permite
FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional
FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros
Matemáticas. Selectividad ESTADISTICA COU
Matemáticas Selectividad ESTADISTICA COU 1. Un dentista observa el Nº de Caries en cada uno de los 100 niños de cierto colegio. La información obtenida aparece resumida en la siguiente tabla. Nº Caries
Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:
Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz
Variables Aleatorias. Introducción
Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,
Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico
Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más
Tema 6. Variables aleatorias continuas
Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),
Teoría de la decisión
1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia
Precio de la gasolina regular (colones por litro, promedio anual)
CATÁLOGO MATERIALES DE APOYO PARA BACHILLERATO POR MADUREZ Educación Abierta 800 700 600 500 400 300 200 100 0 Pantallazo Precio de la gasolina regular (colones por litro, promedio anual) 2009 2010 2011
ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA
ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA Descripción de la asignatura Estadística I El objetivo de la asignatura es proporcionar al estudiante conocimiento Departamento de Estadística y comprensión
El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A
Prueba de Acceso a la Universidad SEPTIEMBRE Bachillerato de Ciencias Sociales El alumno debe responder a una de las dos opciones propuestas, A o B En cada pregunta se señala la puntuación máima OPCIÓN
Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros:
STATGRAPHICS Re. 4/d/yyyy Pruebas de Hipótesis (Una Muestra) Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros: 1. la media μ de una distribución normal.. la desiación
CM0244. Suficientable
IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE
3 PROBABILIDAD Y DISTRIBUCION NORMAL
3 PROBABILIDAD Y DISTRIBUCION NORMAL La probabilidad puede ser considerada como una teoría referente a los resultados posibles de los experimentos. Estos experimentos deben ser repetitivos; es decir poder
OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO. Facultad de Medicina Veterinaria y Zootecnia. Licenciatura en Medicina Veterinaria y Zootecnia
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Medicina Veterinaria y Zootecnia Licenciatura en Medicina Veterinaria y Zootecnia Clave 1212 Modalidad del curso: Carácter Métodos estadísticos en medicina
TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA CALIDAD Y AHORRO DE ENERGÍA EN COMPETENCIAS PROFESIONALES
TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA CALIDAD Y AHORRO DE ENERGÍA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE PROBABILIDAD Y ESTADÍSTICA 1. Competencias Plantear y solucionar problemas
Se considera el siguiente sistema, dependiente del parámetro k:
IES la Serna Matemáticas Aplicadas a las Ciencias Sociales II Comunidad de Madrid. Año. Septiembre. Opción B Ejercicio. puntos) Se considera el siguiente sistema, dependiente del parámetro : - - a) Discútase
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2015-2016 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES
INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)
INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que
La distribución normal
La Distribución Normal Es una distribución continua que posee, entre otras, las propiedades siguientes: Su representación gráfica tiene forma de campana ( campana de Gauss ) -6-4 -2 0 2 4 6 2 4 6 8 10
UNIDAD 6. Estadística
Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos
1. Indica el resultado de cada división y justifica tu respuesta.
Matemáticas 2 Bloque I Instrucciones. Lee y contesta correctamente lo que se te pide. 1. Indica el resultado de cada división y justifica tu respuesta. a) (+p) (+q) = b) (+p) ( q) = c) ( p) (+q) = 2. Si
Probabilidad y Estadística
Probabilidad y Estadística Grupo Jueves Viernes 13:00-15:00 14:00-15:00 Prof. Miguel Hesiquio Garduño. Depto. De Ingeniería Química Petrolera ESIQIE-IPN [email protected] [email protected] http://hesiquiogm.wordpress.com
INDICE. Prólogo a la Segunda Edición
INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.
EJERCICIOS RESUELTOS DE ESTADÍSTICA II
EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE I POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS
GRAFICOS DE CONTROL DATOS TIPO VARIABLES
GRAFICOS DE CONTROL DATOS TIPO VARIABLES OBJETIVO DEL LABORATORIO El objetivo del presente laboratorio es que el estudiante conozca y que sea capaz de seleccionar y utilizar gráficos de control, para realizar
ESTADÍSTICA. Individuo. Es cada uno de los elementos que forman la población o muestra.
ESTADÍSTICA La estadística tiene por objeto el desarrollo de técnicas para el conocimiento numérico de un conjunto de datos empíricos (recogidos mediante experimentos o encuestas). Según el colectivo a
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)
TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de
Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/991 SP XII
Distribuciones de probabilidad con la calculadora científica Classwiz FX-570/99 SP XII José Mª Chacón Íñigo IES Llanes, Sevilla Te explicamos como realizar la operación de distribución de probabilidad
CRITERIOS DE EVALUACIÓN ESTÁNDARES DE APRENDIZAJE EVALUABLES
Matemáticas hasta 6º de Primaria CONTENIDOS Bloque 5. Estadística y probabilidad CRITERIOS DE EVALUACIÓN ESTÁNDARES DE APRENDIZAJE EVALUABLES Gráficos y parámetros estadísticos. Recogida y clasificación
MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES
EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.
EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones
Planificación didáctica de MATEMÁTICAS 3º E.S.O.
Planificación didáctica de MATEMÁTICAS 3º E.S.O. (Orientadas a las enseñanzas aplicadas) Julio de 2016 Rev.: 0 Índice 1.- INTRODUCCIÓN... 1 2.- BLOQUE I. PROCESOS, MÉTODOS Y ACTITUDES EN MATEMÁTICAS...
EJERCICIOS RESUELTOS DE ESTADÍSTICA II
EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS Grupo
PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.
1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto
UNIVERSIDAD AUTONOMA DE SANTO DOMINGO
UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)
Prof. Eliana Guzmán U. Semestre A-2015
Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos
4 Estos son los resultados de una encuesta realizada en una comunidad autónoma sobre la actuación de su presidente.
1 Di, en cada caso, cuál es la población y cuál la variable que se quiere estudiar. Especifica si es una variable cualitativa o cuantitativa, determinando, en este último caso, si es discreta o continua:
2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...
Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................
PROBABILIDAD Y ESTADÍSTICA
FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro [email protected] T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la
UNIVERSIDAD NACIONAL SAN LUIS GONZAGA DE ICA
UNIVERSIDAD NACIONAL SAN LUIS GONZAGA DE ICA Facultad de Ingeniería Mecánica y Eléctrica Escuela Académico Profesional de Ingeniería Mecánica y Eléctrica Departamento de Ciencias de Investigación de la
Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.
1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Electromecánica EMM - 0528 3 2 8 2.- HISTORIA
LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.
LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante
Medidas descriptivas I. Medidas de tendencia central A. La moda
Medidas descriptivas I. Medidas de tendencia central A. La moda Preparado por: Roberto O. Rivera Rodríguez Coaching de matemática Escuela Eduardo Neuman Gandía 1 Introducción En muchas ocasiones el conjunto
TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES
TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES ASIGNATURA DE PROBABILIDAD Y ESTADÍSTICA 1. Competencias Plantear y solucionar
Medidas de dispersión
Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia
CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...
CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................
ANGEL FRANCISCO ARVELO LUJAN
ANGEL FRANCISCO ARVELO LUJAN Angel Francisco Arvelo Luján es un Profesor Universitario Venezolano en el área de Probabilidad y Estadística, con más de 40 años de experiencia en las más reconocidas universidades
Distribuciones de probabilidad
Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir
Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev
PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación
Tema 8. Muestreo. Indice
Tema 8. Muestreo Indice 1. Población y muestra.... 2 2. Tipos de muestreos.... 3 3. Distribución muestral de las medias.... 4 4. Distribución muestral de las proporciones.... 6 Apuntes realizados por José
JUNIO Bloque A
Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.
DISTRIBUCIÓN DE POISSON
DISTRIBUCIÓN DE POISSON P O I S S O N Siméon Denis Poisson, (1781-1840), astronauta francés, alumno de Laplace y Lagrange, en Recherchés sur la probabilité des jugements..., un trabajo importante en probabilidad
