|
|
|
- Nicolás Mora Soto
- hace 7 años
- Vistas:
Transcripción
1 SOUCIOES A OS TESTS MOOTEMÁTICOS DE CIEMÁTICA II 1.- D. El lcnce máximo e en un tio pbólico in ozmiento: 0. en α 0.. en α. coα x MAX P ánulo complementio x MAX e iul y que: en α co (90-α) y tmbién co α en (90-α).- A. celeción noml, e obtiene como:. enα. y que.. enα. Tmbién e tiene que: R Combinndo mb expeione e depej R: R De dei l elocidd: d d (. i t. j) 0. i. j dt dt Sutituyendo en l expeión de R: ( + ( t) ) ( + ( t) ) ( + ( t) ) R i j k 6. k 6 0 t P t e utituye y qued: 0 0 ( + (.) ) (9 + 16) 5 R 0, 8 m Si el módulo de l elocidd e contnte no hy celeción tnencil. Todo moimiento cuy tyectoi no e ect tiene celeción noml. 4.- C. d/dt d/dt (t +t+1) (.t +1) m/ T d/dt d/dt (.t+1) m/. α T /R / d/ A. P un moimiento unifomemente celedo e eific: θ θ. 1 O + ω O t +. α. t i θ O 0 y ω O 0 entonce α θ / t. 600 e. π d 1 e α π d ( min. 60 / min) 1
2 SOUCIOES A OS TESTS MOOTEMÁTICOS DE CIEMÁTICA II 6.- D. elocidd nul ω e un ecto xil que e define pti del poducto ectoil ω. P clcul el módulo de l elocidd nul e diide el ánulo ecoido po l uj ente el tiempo empledo: Δθ 1 e π d 1 h d ω.. π Δt 1 h 1 e ecucione de l poición on: Eje X x t - Eje Y y ( t - ) 9 ecucione de l elocidd on entonce: V x ; V y dy/dt.( t - ). 8 t - 1 P un tiempo t e obtiene V x V y 4 El ecto elocidd (,4) e tnente l tyectoi y el ecto celeción noml debe e pependicul ell. Un ecto í debe tene componente popocionle (-4,) que eultn de cmbi el oden de l componente nteioe y un de ell de ino. Et condición ólo l cumple l epuet. P eole bien l cuetión tenemo que demot que el ecto pependicul l elocidd y en l diección del cento de cutu e (-4,) y no (4,-). P ello dibujemo l tyectoi y x - 9 que coeponde un pábol cuyo étice e encuent en (0,-9) En t el móil e hll en x 1 ; y - 8 En l áfic djunt e h epeentdo e itución. El ecto α T tiene l mim diección que el ecto y el ecto T etá diiido hci el cento de cutu de l tyectoi. Como e puede obe del dibujo l componente de l celeción noml no pueden e popocionle (4,-), ino en todo co (-4,). P clcul el lo de l celeción noml, e deduce del áfico:..enα ;. enα.. celeción e obtiene de dei l elocidd: d X d dy d X ( ) 0 ; Y (8t 1) 8 dt dt dt dt Con eto loe y lo clculdo nte de e obtiene : i j k P clcul el ecto e multiplic u módulo nteio po el eo obtenido pti del ecto (-4,), que y e be que poee l diección y entido de :
3 R) SOUCIOES A OS TESTS MOOTEMÁTICOS DE CIEMÁTICA II 16 ( 4i + j) 8.ˆ..( i j) 8.-. o moimiento de l bc como el - R x0 de l botell on ectilíneo y - R unifome. t'0 En el áfico djunto e obe que - R el citeio de ino e poitio l deech, l coiente del ío hci l izquied y el oien de coodend --R etá en el puente. unidde t'1/ h empled on mill y ho. P t0 x o(- R).1/ - R ecibi u ecucione pti de lo x-.1/ o einte minuto, momento en el que pondemo el eloj con t 0 cundo lo do ijn en el mimo entido, tenemo que clcul qué poición que ocupn en ee momento. botell ij con l elocidd de l coiente y etá en x o - R. 1/ bc ij con elocidd ( R) y etá en x o (. 1/ A pti de lo einte minuto (1/ h) l botell iue con elocidd R y ho l bc ij (- R ), lueo l ecucione xxo+.t on: otell : x 1 - R. 1/ R. t c: x ( R). 1/ + (- R ). t Iulndo mb expeione e clcul el tiempo del encuento: - R. 1/ R. t ( R). 1/ + (- R ). t t 1/ h Si utituimo ho en l ecución de l botell ete tiempo y biendo del enuncido que x 1 1 mill obtenemo l elocidd de l coiente : R. 1/ R. 1/ ; R / 1,5 mill/h 9.-. El moimiento del objeto e unifomemente celedo. Si conidemo poitio el entido cendente: y o 0 m o m/ Y - 10 m/. ecución del objeto e : y 100. t 5. t. Sutituyendo yh le: h h t ; t Pueto que t - t 1 10, etndo mb expeione qued: h ; h ; h 75 m D. celeción epecto de uno eje no inecile (ceno) e iul l que hy epecto de oto inecile (el uelo en pime poximción) meno l de te, o e l que poee el item no inecil epecto del inecil (en ete co l del ceno epecto del uelo). Si e tom citeio poitio hci bjo: SI SI ARRASTRE (-) C. Deindo l ecucione de l poición e obtiene l elocidd: V x dx/dt 9t + V x ()
4 SOUCIOES A OS TESTS MOOTEMÁTICOS DE CIEMÁTICA II V y dy/dt 1 t + 1 V y () iˆ + 7 ˆj 1.-A. Cundo e encuenten lo ánulo ecoido po lo do umán π d:. π θ 1 + θ ω 1. t + ω. t 1 e π d 1 h 6 º π d. π d... t +.. t h 1 e 60 min 1 min 60 º Simplificndo: 1 t / 10 + t / 60 ; 10 t + t ; t 40 min 1.- A. El lcnce máximo en un tio pbólico e coniue p un ánulo de lnzmiento de 45º. Aí i plicmo l fómul: X MAX o en α / y de ell depejmo o :. X MAX o 1000 m / en α en 90 Con et elocidd inicil en un tio eticl el tiempo de ceno eí: f o.t t t 100 Y con ello e lcnzí un ltu de: H t 1 o... t m 50 Km 14.- A. Si el objeto p dunte 1 po l entn emple po l imetí del moimiento de ube-bj 0,5 en cende y oto 0,5 en decende. Si ponemo un oien de coodend en l pte de bjo de l entn entonce l ecución del objeto cundo ube e: 1,5 + 4,9. 0,5 1,5 o.0,5 4,9. 0,5 o 5,45 m / 0,5 Con et elocidd inicil del objeto el tiempo que emple en l ubid ht el punto má lto donde 0 e clcul como: o. t 0 5,45 9,8. t t 0, 556 Conocido ee tiempo podemo be cuál eá l ltu máxim (medid dede el pie de l entn) del objeto: H o. t 1/. t 5,45. 0,556 1/. 9,8. (0,556) 1, 515 m P lle l eultdo etmo et ltu l de l entn y d : ΔH 1,515 1,5 0,015 m 1,5 cm El enuncido etá incompleto y que flt deti, p obtene l opción, que Supemán eliz do moimiento unifomemente celedo. El pimeo l mitd del cmino en l mitd del tiempo de cíd del lumno y el eundo de fendo depué. Si uponemo eto, entonce el tiempo de cíd del lumno e: 00 ½. 9,8. t ; t,85 Con ete dto l celeción de Supemán e:. ( h ) ,4 m / ( t ),85 θ θ 1 4
5 .1 SOUCIOES A OS TESTS MOOTEMÁTICOS DE CIEMÁTICA II 16.- A. Ete poblem e de do móile con moimiento ectilíneo y unifome que iuen l ecución xx o +.t. Hy que ecoe un item de coodend con un citeio de ino (poitio hci l deech) y un oien que e el del encuento inicil ente l lnch y el bote. En t 0 x 0 x 0 En t 1 l bl e muee con l elocidd del ío y l lnch con l uy meno l del ío. coodend on: x - x ( - ).1. Ente t 1 y t lo do objeto on tdo.1. En t l poición e l de t1 hbiéndole umdo -.1 : x -. x ( - ).1.1 t0 t1 t x x0 - x En ete momento ponemo el tiempo ceo y plicmo l ecución xx o +.t: - x ( - ).1 - x ( - ).1-.1 x l [( l - ).1-.1]+(- l - ).t x b -.-.t Si iulmo qued : -.. t. t. t t 1 h. Si e utituye ete tiempo en l ecución de l bl biendo demá, que el encuento e en x Km, e obtiene: Km/h D. Iul que nte lo moimiento en el eje X iuen ecucione del tipo xx o +.t. poicione hoizontle de l pelot x P y del judo x J: x P 0.co 45. t x J 50.t iulndo en el encuento qued: t 50 t ; t 10 + Po oto ldo el moimiento eticl de l pelot e unifomemente celedo y de ecución: y p 0.en 45. t 5 t Como l ltu inicil y finl de l pelot e y 0 p obtene el tiempo x0 x50 e utituye ete lo en l ecución x0.co 45 - x nteio y qued: t 5. t ; 0 ( t ). t ; t Si e utituye ete tiempo en el coneuido en l ecución del eje X qued: 5
6 SOUCIOES A OS TESTS MOOTEMÁTICOS DE CIEMÁTICA II 50, m 18.- D. Supueto un moimiento unifomemente celedo e eific: e e t t e 1 min 6 1 Δθ ω. + 1/. α /. 5 min 60 5 ( ) 17, e o A. P clcul l componente de un ecto l poyectlo obe oto e tiene que multiplic quel po el eo de éte último. Si deimo p obtene l elocidd: x t ; y - ; z 4t-1 ( t, -, 4t-1 ) Po oto ldo el eo e (,, 1) u ) ( /, /, 1/ ) u ) (t,,4t 1).( /, /, 1/ ) D. Un moimiento unifomemente celedo cumple V f V o +Δe, entonce V o V f -Δe 0.(-16) ; V o 40 m/ 40.,6 Km/h 144 Km/h 1.- C. Se tt de moimiento unifome de ecución e.t peo en el de id (po e el má ápido) e umn l elocidde del bco y de l coiente y en el de uelt e etn: En l id: 75 (V b +V c ). 5 (V b +V c ) En l uelt 75 (V b -V c ).5 15 (V b -V c ) olución de ete item de do ecucione y do incónit e de: V b 0 Km/h V c 5 Km/h..co o α.- C. El dio de cutu de un moimiento pbólico e mínimo en u étice. Allí ólo hy celeción.en o α o noml y que l edd e pependicul l.co o α tnente l pábol en ee punto, y demá l elocidd e ólo l componente hoizontl de l inicil. ( o coα ) n R R m 180.co 60 ( o coα ) R 810 m m 10 C. tyectoi del moimiento e l ect de ecución y1 z1 que e deduce de l del ecto de poición. Al e í l celeción noml le ceo como coeponde todo lo moimiento ectilíneo. 6
7 SOUCIOES A OS TESTS MOOTEMÁTICOS DE CIEMÁTICA II 4.- C. Todo moimiento ectilíneo tiene celeción noml o centípet ceo, y que ét e eponble del cmbio de diección de l elocidd. En el moimiento ectilíneo l diección no cmbi. Si ete moimiento e unifome, tmbién eá l celeción tnencil ceo. Si e celedo, entonce í hbá celeción tnencil. 5.- C. elocidd elti del eundo ten epecto del pimeo e de: Km 1 o o 1 40 ( 80) 10 h Km 1000 m 1 h x. t m h 1 Km D. El moimiento que eliz l c e pbólico y etá compueto po uno que e unifome en el eje X, y oto que e celedo en el eje Y, ddo que exite un fuez eléctic en él. En el eje X el tiempo que td en cuz e zon e: ΔxΔx/ o 0,0 m / 0, m/ 1 En el eje Y exite un celeción: Felecm. y ; q.e m. y 5 q. E m y m 5.10 y t 1 y t 1 Δ m oy 4 cm F elec + Δx V o E Δy 7
EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS
EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto
x y Si el vector está en tres dimensiones: x y coordenadas se les llama cosenos directores
Sum de ectoes Si tienen el mismo punto de plicción se tzn plels cd ecto po el extemo del oto. Si están uno continución de oto, se une el oigen del pimeo con el extemo del último. S c S - L est es un cso
CAMPO MAGNÉTICO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRIENTE y. sin
CAMPO MAGNÉTCO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRENTE dl - P X d φ φ sin sin φ φ 3/ sin d d φ Cundo l longitud del conducto es mu gnde en compción con, l ecución se conviete en: >> 8. Un lmbe ecto
8. Movimiento Circular Uniforme
8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita
FUNDAMENTOS DE FÍSICA GENERAL
Agustín E. González Moles FUNDAMENTOS DE FÍSICA GENEAL (soluciones) Y X t y(x, t) A sen t T x Agustín E. González Moles TEMA I CÁLCULO VECTOIAL Mgnitudes escles y ectoiles Sum o composición de ectoes Sistems
UNIDAD13.PRODUCTO ESCALAR, VECTORIAL Y MIXTO. APLICACIONES
6 Unidd. Podcto ecl ectoil mito. Apliccione en el epcio. UNIDAD.PRODUCTO ESCALAR VECTORIAL Y MIXTO. APLICACIONES. Podcto ecl de do ectoe libe.. Definición.. Intepetción geométic.. Epeión nlític. Podcto
Capítulo. Cinemática del Sólido Rígido
Cpítulo 1 Cinemátic del Sólido Rígido Contenido Intoducción Tslción Rotción lededo de un Eje Fijo. elocidd Rotción lededo de un Eje Fijo: celeción Rotción lededo de un Eje Fijo: Sección epesentti Ecución
GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL
8 0 GRVICIÓ I: LEY DE L GRVICIÓ UIVERSL j Sigue pcticndo Indic sobe l tyectoi de un plnet con óbit elíptic lededo del Sol, que ocup uno de los focos, los puntos de áxi y íni elocidd Rzon l espuest b t
Practico 7 Fuerza y Leyes de Newton
008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)
TEMA 5: CÁLCULO VECTORIAL
IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones
Elementos de geometría en el espacio
Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con
EJERCICIOS DE CINEMÁTICA PARA REPASAR
EJERCICIOS DE CINEMÁTICA PARA REPASAR 1. L poición de un óvil, que igue un tryectori rectilíne, qued deterind por l ecución x = 5 + t, en l que tod l gnitude etán expred en el S.I. ) Arrnc el óvil dede
Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO
Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,
la integral de línea de B alrededor de un trayecto cerrado
LEY DE AMPERE L ley de Guss de los cmpos elécticos implic el flujo de E tvés de un supeficie ced; estlece que este flujo es igul l cociente de l cg totl enced dento de l supeficie ente l constnte ε. En
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A
Examen de Evaluación. Geometía. Matemática II. Cuo 009-00 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA Cuo 009-00 -V-00 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN
PRUEBA DE ACCESO A LA UNIVERSIDAD.6 ENUNCIADO Y RESOLUCIÓN Instucciones: )Dución: 1 ho y minutos. b) Tienes que elegi ente eliz únicmente los cuto ejecicios de l Opción A o eliz únicmente los cuto ejecicios
+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m
m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6
Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:
Deptmento de Físic, UTFSM Físic Genel II / of: A. Bunel. FIS10: FÍSICA GENERAL II GUÍA #3: otencil Eléctico. Objetivos de pendizje Est guí es un hemient que usted debe us p log los siguientes objetivos:
Modelo 4 de sobrantes de 2005 - Opción A
Modelo de onte de - Opción A Ejecicio. 8 Se f : R R l función definid po f () () [ punto] Clcul lo punto de cote de l gáfic de f con lo eje coodendo. () [ punto] Hll l íntot de l gáfic de f. (c) [ punto]
GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO
GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones
TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO
Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,
avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el
/5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado
Soluciones unidad 9: Elementos del movimiento 1º Bachillerato 2007 1
Solucione unidd 9: Eleeno del oiieno º Bcilleo 007 SOLUCIONES UNIDAD 9. ELEMENTOS DEL MOVIMIENTO QUÉ SABES DE ESTO?. Qué dinci y dede el puno de coodend cein (, 6 ) el puno de coodend (5, 0 )? Aplicndo
= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS
POSICIÓN RELATIVA DE DOS RECTAS Ecuacione geneale : Ax + By + C = : Ax + By + C = A B A B RECTAS SECANTES \ Un punto en común A B C = A B C RECTAS PARALELAS Ningún punto en común A B C = = A B C RECTAS
TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES
TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o
Unidad 3 Sistemas de Ecuaciones Lineales
Unidd 3 Sistems de Ecuciones Lineles Popedéutico 8 D. Ruth M. Aguil Ponce Fcultd de Ciencis Deptmento de Electónic Popedéutico 8 Fcultd de Ciencis Popedéutico 8 Fcultd de Ciencis Sistem de Ecuciones Lineles
22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1
.6 Ls 3 esfes peueñs ue se muestn en l figu tienen cgs 4 n, -7.8 n y 3.4 n. Hlle el flujo eléctico neto tvés de cd un de ls supeficies ceds S, S, S3, S4 y S5. S S S3 S5 3 S4 4 m S 9 3 Φ.45 m 8.85 9 7.8
Tema 5B. Geometría analítica del plano
Tem 5B. Geometí nlític del plno L geometí nlític estudi ls elciones ente puntos, ects, ángulos, distncis, de un modo lgebico, medinte fómuls lgebics y ecuciones. P ello es impescindible utiliz un sistem
Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:
PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido
SELECTIVIDAD MADRID. FÍSICA Junio 2008
SELECTIVIDAD MADRID. FÍSICA Junio 008 INSTRUCCIONES GENERALES Y VALORACIÓN. La pueba conta de do pate: La pimea pate conite en un conjunto de cinco cuetione de tipo teóico, conceptual o teóico-páctico,
SOLUCIONES PROBLEMAS FÍSICA. TEMA 4: CAMPO MAGNÉTICO
acultad de Ciencias Cuso 010-011 Gado de Óptica Optoetía SOLUCIONES PROLEMAS ÍSICA. TEMA 4: CAMPO MAGNÉTICO 1. Un electón ( = 9,1 10-31 kg; q = -1,6 10-19 C) se lanza desde el oigen de coodenadas en la
Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical.
TNNI. onceptos, popieddes y noms. Po un punto psn infinits cicunfeencis tngentes. L ect tngente ells po dicho punto es su eje dicl. Po dos puntos psn infinits cicunfeencis secntes fomndo un hz. L ect que
A r. 1.5 Tipos de magnitudes
1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante
de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r
Actividad SISTEMA IÉRICO II TEMA 9 Paa eolve eta actividad, emo de tene en cuenta lo iguiente: o ecta on paalela en el epacio, i u poyeccione obe lo do plano de poyección también lo on.. Sea el punto P(-P
Tema 4: Potencial eléctrico
1/38 Tem 4: Potencil Eléctico Fátim Msot Conde Ing. Industil 2007/08 Tem 4: Potencil Eléctico 2/38 Índice: 1. Intoducción 2. Enegí potencil eléctic 1. de dos cgs puntules 2. de un sistem de cgs 3. Intepetción
Cantidad de movimiento en la máquina de Atwood.
Cntidd de movimiento en l máquin de Atwood. esumen Joge Sved y Pblo Adián Nuñez. [email protected]. [email protected]. ed pticiptiv de Cienci UNSAM - 2005 En el pesente tbjo se puso pueb l pedicción
TRIEDRO DE FRENET. γ(t) 3 T(t)
TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de
Examen de Selectividad de Física. Junio 2009. Soluciones.
Depatamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madid) Examen de Selectividad de Física. Junio 009. Soluciones. Pimea pate Cuestión 1.- Un satélite atificial de 500 kg que descibe una óbita
PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES
PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos
9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes.
826464 _ 0341-0354.qxd 12/2/07 10:04 Página 341 Ángulo y ecta INTRODUCCIÓN RESUMEN DE LA UNIDAD A nueto alededo encontamo ecta y ángulo que influyen en nueto movimiento: calle, avenida, plano, etc. El
BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas
LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes
PROBLEMAS DE GENERADORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía. Fecha : Agosto Autor : Ricardo Leal Reyes.
ROBLMA D GNRADOR NCRÓNCO. Aigntur : Converión lectromecánic de l nergí. ech : Agoto200. Autor : Ricrdo Lel Reye. 1. Un generdor incrónico de 6 polo conectdo en etrell, de 480 (), 60 (Hz), 1 (Ω/fe), 60
CAMPO GRAVITATORIO FCA 08 ANDALUCÍA
CAMPO GRAVIAORIO FCA 08 ANDALUCÍA. L atélite metelógic n un medi paa btene infmación be el etad del tiemp atmféic. Un de et atélite, de 50 kg, gia aleded de la iea a una altua de 000 km en una óbita cicula.
MAGNITUDES VECTORIALES:
Mgnitudes vectoiles 1 de 8 MAGNITUDES VECTORIALES: Índice 1 Mgnitudes escles vectoiles Sum de vectoes lies Poducto de un escl po un vecto 3 Sistem de coodends vectoiles. Vectoes unitios 3 Módulo de un
TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.
IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene
MAGNITUDES VECTORIALES:
Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de
TEMA 3 MOVIMIENTO CIRCULAR Y GRAVITACIÓN UNIVERSAL
EMA 3 MOIMIENO CICULA Y GAIACIÓN UNIESAL El movimiento cicula unifome (MCU) Movimiento cicula unifome es el movimiento de un cuepo que tiene po tayectoia una cicunfeencia y descibe acos iguales en tiempos
Colegio Villa María la Planicie ÁREA DE MATEMÁTICA
oleio Vill Mí l Plnicie ÁRE DE MEMÁI MERI N 10 Pofeso: S. los lmeid ellido Quinto de Secundi oodindo de áe: S. Gby Sáncez Fec: ctube de 2016 1. U ó HEXEDR REGUR SÓIDS GEMÉRIS Áe del cubo: = 6 2 Volumen
Leyes de Kepler. Ley de Gravitación Universal
Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER
c) La energía total (suma de energía cinética y energía potencial elástica) está dada por
ROBLM Septiembe 0 n el lbotoio de ísic tenemos un cito de ms m = 00 gmos unido un muelle hoizontl según se muest en l igu. Un estudinte desplz el cito hci l deech de modo ue el muelle se k m esti 0 cm,
I.E.S. Mediterráneo de Málaga Modelo5_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1A
Opción A Ejecicio A [ 5 puntos] Se sabe que la función f: R R definida po f ( - +b+ si ) =, es deiable. a -5+a si > Detemina los aloes de a y b Paa se deiable debe de se, pimeamente, función continua,
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2009. (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos
I.E.S. CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE EXTREMDUR JUNIO 9 (RESUELTOS po ntonio Menguino) MTEMÁTICS II Tiempo máimo: ho minutos El lumno elegiá un de ls dos opciones popuests. Cd un de
SELECCIÓN ADVERSA Y RACIONAMIENTO DE CREDITO
SCCIÓN ADVRSA Y RACIONAMINTO D CRDITO Biliofí Básic: Wlsh (003 º d.) Monety Theoy nd Policy. MIT ess. Citulo 7. SCCIÓN ADVRSA Cundo hy ieso de insolvenci l fijción del tio de inteés dee conteml tl osiilidd
UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FISICA I/11. PRACTICA Nro. 8 MASA INERCIAL Y GRAVITATORIA.
Págin 1 de 5 NÚCLEO UNIVERSITARIO RAFAEL RANGEL UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A ÁREA DE FÍSICA LABORATORIO DE FÍSICA LABORATORIO DE FISICA I/11 PRACTICA Nro. 8 MASA INERCIAL
s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.
Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura
IES Al-Ándalus. Dpto. Física y Química. Curso 2004/05 Física 2º Bachillerato - 1 -
IS Al-Ándalus. Dpto. Física y Quíica. Cuso 4/5 Física º Bachilleato - - FÍSICA º BACHIAO. XA AS 4, 5 - - 5 OPCIÓ A:. a) Caacteísticas de la inteacción anética. Difeencias con la inteacción electostática.
6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS
6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la
Solución: Solución: Longitud recorrida por la rueda exterior en una vuelta completa: Longitud recorrida por la rueda interior en una vuelta completa:
.- Si un vehíulo on m. de anho de vía toma una uva de adio m., alula la evoluione o minuto de ada lanetaio del difeenial abiendo que la oona gia a 600..m. Longitud eoida o la ueda exteio en una vuelta
INTRODUCCION AL ANALISIS VECTORIAL
JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una
FÍSICA I TEMA 0: INTRODUCCIÓN
FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg
Dinámica del movimiento circular uniforme
Dinámica del moimiento cicula unifome 1 5.1 Moimiento cicula unifome Definición: el moimiento cicula unifome es el moimiento de un objeto desplazándose con apidez constante en una tayectoia cicula. 5.1
REGULACIÓN AUTOMATICA (8)
REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para
3 La teoría de la gravitación universal: una revolución científica
teoí de l gitción uniesl: un eolución científic EECICIS UESS Solucionio. Copueb en l siguiente págin web cóo, en un óbit elíptic, en l pie itd del peíodo, el plnet h ecoido l itd de l tyectoi, ients que
ECUACIONES DE LA RECTA
RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA P hll l ecución de un ect en el espcio necesito: Dos puntos Un punto su vecto diecto Not: Nosotos utiliemos siempe un punto A(,, ) un vecto v (,b,c).
GEOMETRÍA ANALÍTICA EN EL ESPACIO
GEOMETRÍ NLÍTI EN EL ESPIO PRODUTO ESLR a b a b cosx (uando sepamos el ángulo que foman a y b). a ba b a b a b (uando sepamos las coodenadas de a y b ). uando los ectoes son pependiculaes su poducto escala
N r euros es el precio
RETABILIDADES ACTIVOS FIACIEROS Ejemplo 1: Una leta del teoo a doce mee tiene un nominal de 10.000 euo. Ha ido compada po un pecio de 9.500 euo. Cual e el endimiento implícito de dicha leta?. Rendimiento
POSICIONES RELATIVAS de RECTAS y PLANOS
POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que
Transformadas de Laplace
Semn 7 - Cle 2. Definicione pr Comenzr Trnformd de Lplce En generl vmo definir un trnformción integrl, F (), de un función, f(t) como F () = b K (, t) f(t)dt = T {f(t)} () donde K (, t) e un función conocid
q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb
Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los
VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES
VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la
200. Hallar la ecuación de la simetría ortogonal respecto de la recta:
Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto
INTERACCIÓN ELECTROMAGNÉTICA ELECTROMAGNETISMO. Campo magnético creado por un conductor
TERACCÓ ELECTROMAGÉTCA ELECTROMAGETSMO ES La Magdalena. Avilés. Astuias La unión electicidad-magnetismo tiene una fecha: 180. Ese año Oested ealizó su famoso expeimento (ve figua) en el cual hacía cicula
EJERCICIOS TEMA 9: ELEMENTOS MECÁNICOS TRANSMISORES DEL MOVIMIENTO
EJECICIOS TEMA 9: ELEMENTOS MECÁNICOS TANSMISOES DEL MOVIMIENTO 1. Dos uedas de ficción gian ente sí sin deslizamiento. Sabiendo que la elación de tansmisión vale 1/5 y que la distancia ente ejes es de
5. CINÉTICA DEL CUERPO RÍGIDO
149 5.1 Trlción pur 5. CINÉTIC DEL CUERP RÍID 1. El utomóvil repreentdo en l fiur vij hci l izquierd 7 km/h cundo comienz frenr, uniformemente, ht detenere por completo en un lonitud de 40 m. Sbiendo que
Examen de Selectividad de Física. Septiembre 2008. Soluciones.
Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000
ÓPTICA GEOMÉTRICA. ; 2s s 40 + =
ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto
PROBLEMAS DE ELECTROESTÁTICA
PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín
MATRICES DE NÚMEROS REALES
MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m
CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS
CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad
Electrostática. Campo electrostático y potencial
Electostática Campo electostático y potencial 1. Caga eléctica Electostática estudio de las cagas elécticas en eposo ++ +- -- epulsión atacción Unidad de caga el electón e 1.602177x 10-19 19 C 1.1 Constituyentes
EXAMEN RESUELTO Septiembre de 2002
EXMEN RESUELTO Sepieme de V L{ 45} ë ë Sen los suespcios de R : V ë ë V Hll: Ls dimensiones uns ses de los es suespcios. L dimensión del suespcio VV c Uns ecuciones implícis del suespcio V V. d Compo si
www.fisicaeingenieria.es Vectores y campos
www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que
TEMA 7. SUCESIONES NUMÉRICAS.
º EO Tem 7 TEMA 7. UCEIONE NUMÉRICA.. UCEIONE NUMÉRICA. Imgiemos el ecoido que efectú u bló que se h lzdo l suelo y midmos ls distcis ete bote y bote: Ls distcis fom u sucesió de úmeos: 0, 5, 0, 5,. U
Transformaciones geométricas
Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea
1.1 Carga eléctrica 1.2 Fuerzas electrostáticas. Ley de Coulomb Principio de superposición en sistemas lineales 1.3 Campo eléctrico Objetivos:
Tem. lectostátic Tem. lectostátic. Cg eléctic. Fuezs electostátics. Ley de Coulomb incipio de supeposición en sistems lineles.3 Cmpo eléctico Objetivos: Cmpo eléctico cedo po cgs puntules be clcul el cmpo
Departamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madrid) Examen de Selectividad de Física. Junio Soluciones
Examen de Selectividad de Física. Junio 2008. Soluciones imea pate Cuestión.- Un cuepo de masa m está suspendido de un muelle de constante elástica k. Se tia veticalmente del cuepo desplazando éste una
CURSO CERO DE FÍSICA APLICACIÓN DE VECTORES A LA FÍSICA
CURSO CERO DE FÍSIC PLICCIÓN DE VECTORES L FÍSIC Vness de Csto Susn i Deptmento de Físic CURSO CERO DE FÍSIC.UC3M PLICCIÓN DE VECTORES L FÍSIC CONTENIDO Mgnitudes escles vectoiles. Repesentción gáfic de
De acuerdo con esto la fuerza será: F qv B o bien F q v B sen. A esa fuerza se le denomina fuerza de Lorentz.
Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los polos
Deflexión de rayos luminosos causada por un cuerpo en rotación
14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos
Depende, en consecuencia, de la velocidad inicial del móvil y del ángulo α de lanzamiento con la horizontal.
IES Menéndez Tolosa (La Línea) Física Química - 1º Bach - Composición de moimientos 1 Indica, considerando constante el alor de la aceleración de la graedad, de qué factores depende el alcance máimo en
