TEMA 7. SUCESIONES NUMÉRICAS.
|
|
|
- Encarnación Agüero Rodríguez
- hace 9 años
- Vistas:
Transcripción
1 º EO Tem 7 TEMA 7. UCEIONE NUMÉRICA.. UCEIONE NUMÉRICA. Imgiemos el ecoido que efectú u bló que se h lzdo l suelo y midmos ls distcis ete bote y bote: Ls distcis fom u sucesió de úmeos: 0, 5, 0, 5,. U UCEIÓN NUMÉRICA es u cojuto odedo de úmeos, que se llm TÉRMINO de l sucesió. Cd témio se epeset po u let y u subídice que idic el lug que ocup deto de ell. E uesto ejemplo, teemos: 0, 5, 0, 5,... Aquí, l distci ecoid e cd bote es 5 cm. meo que l teio. Podemos clcul sí más témios de l sucesió: 0, 5, 0, 5, 0, 5, Est sucesió tiee u úmeo fiito de témios. e dice que es u UCEIÓN FINITA. Ls que tiee ifiitos témios se dice UCEIONE INFINITA. U ejemplo de u sucesió ifiit seí l fomd po los cuddos pefectos:,, 9, 6, 5, 6, 9, 6, 8, 00,,, 69, 96, 5,.. EJERCICIO. Escibe los 0 pimeos témios de ls sucesioes fomds po: ) Los úmeos pes :,, 6, 8, 0,,, 6, 8, 0 b) L sum de cd tul y su cuddo:, 6,, 0, 0,, 56, 7, 90, 0 EJERCICIO. Complet los témios que flt e ls siguietes sucesioes: ),, 7, 0,, 6, 9, c),, 6, 0,5,, 8, 6, 5, 55 b) 05, 00, 95, 90, 85, 80, 75, 70 d), 8, 7, 6, 5, 6. TÉRMINO GENERAL DE UNA UCEIÓN. El TÉRMINO GENERAL ( ó TÉRMINO -ÉIMO ),, de u sucesió es u fómul que os pemite clcul culquie témio de l sucesió e fució del lug que ocup. Po ejemplo, e l sucesió de los cuddos pefectos, cd témio se obtiee elevdo l cuddo el lug que ocup e ell:,, 9, 6,... E est sucesió, el témio geel seá:
2 º EO Tem 7. CÁLCULO DEL TÉRMINO GENERAL DE UNA UCEIÓN. Ddos los témios de u sucesió, p clcul su témio geel teemos que busc u egl que elcioe el vlo de cd témio co el lug que ocup e l sucesió. P hll est elció debemos descompoe los témios e expesioes uméics que teg l mism estuctu depediedo del lug que ocup. Cosideemos l siguiete sucesió:, 5, 0, 7, 6, 7.. P clcul el témio geel os yudmos de l siguiete tbl: LUGAR 5 6. TÉRMINO U vez que teemos el témio geel, podemos clcul culquie témio de l sucesió, po ejemplo: A veces o es posible obtee u fómul p el témio geel, y ots veces o se cosigue de fom imedit. EJERCICIO. A pti del témio geel, clcul los pimeos témios y el témio cetésimo de cd u de ests sucesioes: ) + 0 c) b) b + d) + c e) d ( ). + f) e f + + EJERCICIO. Clcul el témio geel de ls siguietes sucesioes: ),, 5, 7, 9,, : +9 e), 9, 6, 5, 6, 9, 6,.: (+) b), 8, 7, 6, 5, : f) 0,,, 6, 8, 0,..: +8. UCEIONE RECURRENTE. U UCEIÓN es RECURRENTE cudo todos sus témios se puede clcul pti de uo ddo. L fómul medite l cul se puede clcul los témios se llm LEY DE RECURRENCIA. + i sólo os d est fómul o podemos hce d. Peo si se ñde el dto:, etoces y podemos obtee el esto de los témios de l sucesió: + + 6, L ley de ecueci seí: ; +,...
3 º EO Tem 7 5. PROGREIONE ARITMÉTICA. U PROGREIÓN ARITMÉTICA es u sucesió ecuete e l que cd témio, excepció del pimeo, se obtiee sumdo l teio u mismo úmeo, d, que se llm DIFERENCIA DE LA PROGREIÓN.,,5,7.. ; +, 6, 0,, 8, ; + 6. TÉRMINO GENERAL DE UNA PROGREIÓN ARITMÉTICA. Vmos clcul el témio geel del º ejemplo, dode u pogesió itmétic culquie: y d, y pti de él detemi el de ejemplo ( ). + cso geel + d + d + d + ( ). d + d + d + d + d + d + d El TÉRMINO GENERAL de u PROGREIÓN ARITMÉTICA que tiee como pime témio y como difeeci d, se obtiee medite l siguiete fómul: + ( ). d ; d + ( ) UMA DE LO PRIMERO TÉRMINO DE UNA PROGREIÓN ARITMÉTICA. Voy coside l pogesió itmétic:,, 6, 8, 0,,. L sum de sus 6 pimeos témios se puede expes de foms: Colocdo u expesió sobe l ot y sumdo mbs expesioes se tiee:
4 º EO Tem 7 De dode se obtiee: Este poceso se puede geeliz p clcul l sum, itmétic culquie:, de los pimeos témios de u pogesió Al igul que e el ejemplo teio, todos los sumdos so igules, y po tto:. ( + ) ( + ) L UMA de los pimeos témios de u pogesió itmétic de témio geel ( + ) um de los 50 pimeos úmeos pes: 50 ( + 00) um de los 0 pimeos témios de l sucesió 5 y 6 d : ( ) ( 5 + 9) es: 8. PROGREIONE GEOMÉTRICA. U PROGREIÓN GEOMÉTRICA es u sucesió ecuete e l que cd témio, excepció del pimeo, se obtiee multiplicdo el teio po u mismo úmeo,, que se llm RAZÓN DE LA PROGREIÓN., 6, 8, 5, 6, ;,, 6, 6, 56, ; e puede clcul l zó de l pogesió dividiedo u témio ete el teio. De l mism fom, p compob si u sucesió es u pogesió geométic, bst co dividi cd témio ete el teio y compob si se obtiee el mismo vlo:...
5 º EO Tem TÉRMINO GENERAL DE UNA PROGREIÓN GEOMÉTRICA. Vmos clcul el témio geel del º ejemplo, dode y, y pti de él detemi el de u pogesió geométic culquie: ejemplo cso geel El TÉRMINO GENERAL de u PROGREIÓN GEOMÉTRICA que tiee como pime témio y como zó, se obtiee medite l siguiete fómul: y + 0. UMA DE LO PRIMERO TÉRMINO DE UNA PROGREIÓN GEOMÉTRICA. Voy coside l P.G. dd po y :, 6,,, 8, 96, 9,. L sum de sus 7 pimeos témios es: Multiplicmos est expesió po l zó, y ell le estmos est iguldd: Despejmos l sum e est últim iguldd y se obtiee:
6 º EO Tem 7 Este poceso se puede geeliz p clcul l sum, pogesió geométic culquie:, de los pimeos témios de u Al igul que e el ejemplo, se exte fcto comú y se despej: L UMA de los pimeos témios de u pogesió geométic de témio geel es: EJEMPLO. um de los 6 pimeos témios de l PG dd po y :. 6
= 41. =, halla los términos primero, quinto, b n
Sucesioes. 00 Ejecicios p pctic co solucioes E ls sucesioes de témio geel y b, hll los témios pimeo, segudo y décimo. 0 0 b b b 0 0 0 Hll los cico pimeos témios de l sucesió 0 9 9 6 6 Compueb que es el
PROGRESIONES ARITMÉTICAS
PROGRESIONES ARITMÉTICAS Se defie como pogesió itmétic u sucesió de úmeos eles,,,...... e los que l difeeci ete témios cosecutivos es costte costte A l difeeci ete témios cosecutivos se le deomi d. Puede
Sucesiones. En resumen podemos decir que: : A R, se llama sucesión, donde an= f(n) en cada caso, y A N
Mtemátic II Cietífico IDAL 07 Sucesioes 5 Pof. F. Díz- Pof A. Glli Sucesioes E esume podemos deci que: Defiició: U fució f : A R, se llm sucesió, dode = f() e cd cso, y A N :, co A y R. E símbolos: Ejemplos:
Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino
i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto
Módulo 7. Exponentes racionales. OBJETIVO Simplificar expresiones algebraicas con exponentes racionales.
Módulo 7 Epoetes cioles OBJEIVO Simplific epesioes lgebics co epoetes cioles. Hst este mometo se h utilizdo úicmete eteos como epoetes, sí que efetemos ho cómo us otos úmeos cioles como epoetes. Peo tes
Cálculo con vectores
Uidd didáctic 1 Cálculo co vectoes 1.- Mgitudes escles vectoiles. So mgitudes escles quells, como l ms, l tempetu, l eegí, etc., cuo vlo qued fijdo po u úmeo (co su uidd coespodiete). Gáficmete se epeset
Progresiones aritméticas y geométricas
Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto
Introducción al cálculo de errores
Itoducció l cálculo de eoes 1/5 Itoducció l cálculo de eoes Los eoes idetemidos so quellos que se debe l z. Po ejemplo, l eliz l medid de u ms e u blz csi siempe os ofece vloes difeetes debido fctoes ccidetles.
TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n
TEMA 8: UCEIONE DE NÚMERO. PROGREIONE.- UCEIONE DE NÚMERO RACIONALE: U sucesió es u cojuto ordedo de úmeros reles:,,,, - Los úmeros turles se llm ídices. El subídice idic el lugr que el térmio ocup e l
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS. De ete ls sucesioes siguietes deci cuáles so pogesioes itmétics., 8,,, 0,... b., 7,,,... c. 7,, 9,,,... d., 7, 9,,... e.,,,,... f.,,, 9, g.,,,,... h. ( b), ( b), ( b),... Los
MATEMÁTICA I. Capítulo 3 SUCESIONES 1 1 1 1 1,,,,,... 2 3 4 5. 1.1. Introducción. Nociones básicas. 1. Considere los siguientes números naturales:
MATEMÁTICA I Cpítulo SUCESIONES.. Itoducció. Nocioes básics.. Cosidee los siguietes úmeos tules:,, 5, 7, 9,,... ) Los teioes úmeos tiee u ode especil? b) Existe u ptó p ce ese ode? Cuál? c) Qué úmeo seguiá
Objetivos. Sucesiones numéricas. Series numéricas.
TEMA 3 Objetivos. Sucesioes uméics. Seies uméics. Mej os coceptos de sucesió y seie y utiiz s seies de potecis p epeset s fucioes. Sucesioes de úmeos ees: mootoí, cotció y covegeci Se m sucesió de úmeos
{ }: en determinado término. Por ejemplo, en la primera sucesión el primer término ( ), es 10. El término enésimo o general es a
Pági del Colegio de Mtemátics de l ENP-UNAM Pogesioes Auto: D. José Muel Bece Espios PROGRESIONES UNIDAD I I. SUCESIÓN Y SERIE U sucesió es u list de úmeos que sigue u egl detemid: { { i Fomlmete ls sucesioes
Sucesiones de números reales
Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5
,,,, { }: en determinado término. Por ejemplo, en la primera sucesión el primer término (
Fcultd de Cotduí y Admiistció. UNAM Pogesioes Auto: D. José Muel Bece Espios MATEMÁTICAS BÁSICAS PROGRESIONES SUCESIÓN Y SERIE U sucesió es u list de úmeos que sigue u egl detemid: { { i Fomlmete ls sucesioes
Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1
Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...
RAÍCES Y EXPONENTES FRACCIONARIOS
RAÍCES Y EXPONENTES FRACCIONARIOS Defiició: L íz de ode de u úmeo es u úmeo tl que l elelo l poteci se obtiee el úmeo. Ejemplo : U íz cudd de es poque l ele l cuddo se obtiee, tmbié es u íz cudd de po
1, 4, 16, 64,. Cuál regla define esta sucesión? Puedes indicar los próximos dos elementos?
UCEIONE Prof. Evel Dávil Cálculo Reviso ABRIL 0 U sucesió o sucesió cosiste e u eumerció o listo e elemetos los cules los escribe u regl o ptró por tto el ore e sus elemetos es fumetl.,,,,. Cuál regl efie
Unidad 7: Sucesiones. Solución a los ejercicios
Mtemátics º Uidd 7: Sucesioes Uidd 7: Sucesioes. Solució los ejercicios Ejercicio Ecuetr el térmio geerl de ls siguietes sucesioes: ),,,,,... 5 6 7 b ) 0,, 8,5,, 5... b 5 6 c ) 0,,,,,,... 5 6 7 c Ejercicio
FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES.
PRODUCTOS NOTABLES. Productos Notbles: So poliomios que se obtiee de l multiplicció etre dos o más poliomios que posee crcterístics especiles o expresioes prticulres, cumple cierts regls fijs; es decir,
b) (1 punto) * = * Al intercambiar la posición de dos líneas (filas o columnas), el determinante cambia de signo
Modelo. Ejecicio. lificció máim puos Siedo que el vlo del deemie es igul clcul el vlo de los deemies: ) ( puo) ) ( puo). dos co comú e colum duo co comú e colum * * l iecmi l posició de dos líes (fils
TEMAS DE MATEMÁTICAS (OPOSICIONES DE SECUNDARIA) TEMA 8
TEMA DE MATEMÁTICA OPOICIONE DE ECUNDARIA TEMA 8 UCEIONE. TÉRMINO GENERAL Y FORMA RECURRENTE. PROGREIONE ARITMÉTICA Y GEOMÉTRICA.. ucesioes de Núeos Reles.. Pogesioes Aitétics.. Pogesioes Aóics. 4. Pogesioes
Potencias y radicales
Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de
APUNTE: Introducción a las Sucesiones y Series Numéricas
APUNTE: Itroducció ls Sucesioes y Series Numérics UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Admiistrció Lic. e Turismo Lic. e Hotelerí Profesor: Prof. Mbel Chresti Semestre: do
Integral Definida. Aplicaciones
Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució
3. Sucesiones y progresiones
0 SOLUCONARO. Sucesioes y pogesioes. SUCESONES PENSA Y CALCULA Dibuja e tu cuadeo el siguiete elemeto de las seies siguietes: a) a) b) b) a) b) CARNÉ CALCULSTA Calcula co dos decimales:,7 : 0,7 C = 588,7;
3º de ESO Capítulo 3: Sucesiones LibrosMareaVerde.tk
3º de ESO Cpítulo 3: Sucesioes Auto: Fed Rmos Rodíguez y Milgos Lts Asso Reviso: Jvie Rodigo y Nieves Zusti 64 Ídice. SUCESIONES DE NÚMEROS REALES.. DEFINICIONES.. FORMAS DE DEFINIR UNA SUCESIÓN. PROGRESIONES
SUCESIONES DE NÚMEROS REALES
SUCESIONES DE NÚMEROS REALES Sucesioes de úmeros reles Se llm sucesió de úmeros reles u plicció del cojuto N * (cojuto de todos los úmeros turles excluido el cero) e el cojuto R de los úmeros reles. N
1º ITIS Matemática discreta Relación 4 NÚMEROS NATURALES Y ENTEROS
º ITIS Mtemátic discet Relció 4 NÚMEROS NATURALES Y ENTEROS. Pob po iducció que si c es u úmeo el, c, y N, etoces ( + c) + c.. Pob ) c) c) d) ( + ) ( + )(+ ) i = 6 3 ( + ) i = 4 (i+ ) = ( + ) 7 ( ) e)
Sucesiones de Números Reales
Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u
Operaciones en el conjunto de los números racionales Q
lsteátics.eu Pedo Csto Oteg teiles de teátics Fccioes. Núeos eles. Potecis. Ríces. º ESO Opecioes e el cojuto de los úeos cioles Q Opeció Su c d bc b d bd Rest (difeeci) c d bc b d bd b) ) Ejeplo 5 5 5
TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN
TERCER PERÍODO 01 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis
= (columnas), llamamos matriz de. = i, =... A (matriz de orden n) MATRICES
TRICES INTRODUCCIÓN Observemos el siguiete ejemplo: Tbl de ots de tres lumos e el primer bimestre: ------------------ temátic Físic Químic Biologí 6 4 5 8 toio 5 7 5 5 Betriz 5 6 7 4 L tbl terior os permite
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.
Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..
POLINOMIOS, ECUACIONES, POLINOMICAS PROBLEMAS RESUELTOS 1. Dados los polinomios en x sobre R : Encontrar : a) p(x) + q(x), b) p(x) q(x)
POLINOMIOS, ECUACIONES, POLINOMICAS PROBLEMAS RESUELTOS Ddos los polioios e soe R : p 5 8 q 7 Ecot : p q, c p - q p q Solució : p q 5 7 8 9 5 8 5 7 9 5 6 56 5 65 5 8 7 8 5 p q c p q p q 5 7 8 Detei ls
Las reglas de divisibilidad
Uiversidd Itermeric de Puerto Rico - Recito de Poce Ls regls de divisibilidd Por: Erique Díz Gozález Uiversidd Itermeric de Puerto Rico e el Recito de Poce Itroducció Desde l escuel elemetl los estudites
Introducción a las SUCESIONES y a las SERIES NUMERICAS
Itroducció ls SUCESIONES y ls SERIES NUMERICAS UNIVERSIDAD NACIONAL DE RIO NEGRO Asigtur: Mtemátic Crrers: Lic. e Ecoomí Profesor: Prof. Mbel Chresti Semestre: ero Año: 0 Sucesioes Numérics Defiició U
Tema IV. Sucesiones y Series
00 Tem IV. Sucesioes y Series Σ Gil Sdro Gómez Stos UASD 03/04/00 Tem IV. Sucesioes y Series Ídice Sucesió... 4 Límite de u sucesió... 4 Teorem 4.. Límite de u sucesió... 5 Teorem 4.. Leyes de límites
PROBLEMAS Y EJERCICIOS RESUELTOS
PROGRESIONES 3º ESO PÁGINA EJERCICIOS RESUELTOS DE PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS UN POCO DE HISTORIA: UN NIÑO LLAMADO GAUSS Hce poco más de dos siglos, u mestro lemá que querí pz y trquilidd e
Segunda definición.- Se llama sucesión de números reales a una aplicación del conjunto N* = N {0} en el conjunto de los números reales
SUCESIONES DE NÚMEROS REALES. LÍMITE DE SUCESIONES. INTRODUCCIÓN.- Relció - Relció es tod propiedd que comuic los elemetos de dos cojutos o bie comuic etre sí los elemetos de u mismo cojuto. E geerl u
3. SISTEMAS DE ECUACIONES LINEALES
Sistems de Ecuciones Hemients infomátics p el ingenieo en el estudio del lgeb linel SISEMAS DE ECUACIONES LINEALES 1 DEFINICIONES PREVIAS 2 EOREMA DE ROUCHÉ-FROBENIUS MÉODO DE RESOLUCIÓN DE GAUSS 4 MÉODO
10 problemas Sangaku con triángulos
0 poblems Sgku co tiágulos Ricd Peió i Estuch Eeo 009 Itoducció Los Sgku so us tbls de mde co eucidos de poblems de geometí euclíde cedos e Jpó e el peíodo Edo 603-867 E este peíodo Jpó estb isldo de occidete
SISTEMA DE ECUACIONES LINEALES
SISTEM DE ECUCIONES LINELES Defiició: Llmremos sistem de m ecucioes co icógits, u cojuto de ecucioes de l form: m.... m..... m m (S) Los elemetos so los coeficietes del sistem. ij Los elemetos i so ls
En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración.
Arquitectur del Computdor ots de Teórico SISTEMAS DE UMERACIÓ. Itroducció E este cpítulo expodremos brevemete ( modo de repso) coceptos básicos sobre los sistems de umerció. o por secillo el tem dej de
Progresiones. Antes de empezar. Para empezar, te propongo un juego sencillo, se trata de averiguar la ficha de dominó que falta en cada caso.
Progresioes Ates de empezr? Pr empezr, te propogo u juego secillo, se trt de verigur l fich de domió que flt e cd cso. MATEMÁTICAS 3º ESO 73 Progresioes. Sucesioes Defiició. U sucesió es u cojuto ordedo
POTENCIAS. Una potencia es una operación matemática y se realiza de de la siguiente forma: a = a a a a a a. n veces
Aputes de Mteátics pr º de E.S.O. Potecis POTENCIAS Potecis Qué es u poteci? U poteci es u operció teátic y se reliz de de l siguiete for: = veces recibe el obre de bse se deoi expoete Ejeplo: ) = = =
Partícula en una caja de potencial unidimensional
Prtícul e u cj de potecil uidimesiol V() V() V() V()0 0 E este cso se tiee u electró o u prtícul de ms m que se ecuetr e el eje pero restrigid moverse e el itervlo (0 ). Detro de ese itervlo l eergí potecil
Operaciones con fracciones
Uidd. Númeos eles lsmtemtics.eu Pedo Csto Oteg mteiles de mtemátics Opecioes co fccioes Mtemátics I - º Bchilleto Opeció Sum c d c d d Rest (difeeci) c d c d d ) ) Ejemplo 5 5 5 5 7 7 7 7 OJO! Osev como
Sucesiones. Se denomina sucesión a una función cuyo dominio es el conjunto de los números naturales.
Sucesioes Sucesió Se deomia sucesió a ua fució cuyo domiio es el cojuto de los úmeros aturales. Para deotar el -ésimo elemeto de la sucesió se escribe a e lugar de f(). Ejemplo: a = 1/ a 1 = 1, a 2 = 1/2,
Unidad 2: SUCESIONES Y SERIES NUMÉRICAS.
Uidd : SUCESIONES Y SERIES NUMÉRICAS. U sucesió es u cojuto ordedo de elemetos que respode u ley de formció. L sucesió suele brevirse: (,...) ( ) =,, 3,..., 3 Siedo el primer térmio, el segudo térmio,
( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m
Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede
Potencias y radicales
Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de
Operaciones con Fracciones
Frccioes Opercioes co frccioes Opercioes co Frccioes Reducció de frccioes Frccioes co igul deomidor: De dos frccioes que tiee el mismo deomidor es meor l que tiee meor umerdor. < Frccioes co igul umerdor:
CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.
CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió
UNIDAD 2: POLINOMIOS Y FRACCIONES ALGEBRAICAS
I.E.S. Rmó Girldo UNIDAD : POLINOMIOS Y FRACCIONES ALGEBRAICAS. POLINOMIOS Poliomios e u idetermid L epresió lgeric... 0 recie el omre de poliomio e l idetermid. Dode: es u úmero turl.,..., 0 so úmeros
Profesora: María José Sánchez Quevedo FUNCIÓN DERIVADA
FUNCIÓN DERIVADA Cosideremos, de etrd, u fució f cotiu, Ituitivmete diremos que l fució f es derivble si es de vrició suve, esto es, que o preset cmbios bruscos como picos o cmbios vertigiosos pediete
PROGRESIONES ARITMÉTICAS.-
PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.
Sucesiones de funciones
Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci
Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Integles y licciones. 4. Integles imois: definición y oieddes. Hst este momento hemos clculdo integles definids de funciones con ngo finito en intevlos
LUGARES GEOMÉTRICOS Y ÁNGULOS
REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nombe: Cuso: Fec: Se llm lug geomético l conjunto de todos los puntos que cumplen un detemind popiedd geométic. EJEMPLO Cuál es el lug geomético
Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria
Mtemátics EJERCICIOS RESUELTOS: Sucesioes umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Sucesioes umérics Sucesioes
Definición. una sucesión, definimos la sumatoria de los n primeros
MATEMATICA GENERAL 00, HERALDO GONZALEZ S SUMATORIAS Suto sle Defcó U sucesó el es tod fucó co doo u sucouto de los úeos tules y co vloes e, sólcete, l sucesó es : N tl que Osevcó Deotos l sucesó o N,
8 1 2n 2. 2( n 1) 1 2n 1 2n 1 2n 1
E.T.S.I. Idustriles y Telecomuicció Curso 00-0 Grdos E.T.S.I. Idustriles y Telecomuicció Asigtur: Cálculo I Tem : Sucesioes y Series Numérics. Series de Potecis. Ejercicios resueltos Estudir l mootoí de
Capítulo 7. Series Numéricas y Series de Potencias.
Cpítulo Series Numérics y Series de Potecis.. Itroducció. E este cpítulo le dremos setido l cocepto de sum ifiit de úmeros ó serie uméric, es decir, diremos que sigific sumr u ifiidd de úmeros... 4 El
UNIDAD 5 Series de Fourier
Series de Fourier 5. Fucioes ortogoles, cojutos ortogoles y cojutos ortoormles Se dice que dos fucioes f ( x ) y f x so ortogoles e el itervlo < x< si cumple co: f x = Est ide se hce extesiv u cojuto de
NÚMEROS COMPLEJOS. r φ. (0,0) a
Educgu.com NÚMEROS COMPLEJOS DEFINICIÓN Se llm númeo complejo un p odendo de númeos eles (,b). Los númeos eles y b se llmn componentes del númeo complejo. A l componente se le desgn pte el y l componente
TEMA1: MATRICES Y DETERMINANTES:
TEM: MTRICES Y DETERMINNTES: MTRICES: U triz de diesió, es u tbl ford por fils y colus. j i siedo ij,.,,., ) ( Por ejeplo: Se ll Mtriz Fil l que tiee u sol fil, ejeplo: Se ll Mtriz Colu l que tiee u sol
n sen a n + sen + = sen 2 2n u sen u 2 sen sen( 2sen
Ho Polems Aálisis I 8 78.- Hll.... Solció: Como semos qe p q p-q-pq etoces se tiee qe: * Si Si Si 5...... Si - 5 Si - * - - - q p q p q p igldd l sdo 4 4 4 79.- Hll el volme del sólido geedo l gi lededo
Números Reales, Polinomios, Ecuaciones, Inecuaciones, Logaritmos e Inducción PREGUNTAS MÁS FRECUENTES
Númeos Reles, Poliomios, Ecucioes, Iecucioes, Logitmos e Iducció PREGUNTAS MÁS FRECUENTES. Cómo se modific el ídice de u dicl? Se multiplic (o divide el ídice y el epoete del dicdo po u mismo úmeo. IES
RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día viernes 24 de junio en hojas de carpeta)
RAÍCES Y SUS PROPIEDADES Guí r el redizje (Presetr el dí vieres de juio e hojs de cret) NOMBRE DEL ESTUDIANTE: CURSO: RADICALES Se llm ríz -ésim de u úmero, y se escribe, u úmero b que elevdo de. 9 =,
ANÁLISIS MATEMÁTICO I. Coordinadora: Mg. Alicia Tinnirello SUCESIONES Y SERIES
Cátedr: Crrer: ANÁLISIS MATEMÁTICO I ISI Coordidor: Mg. Alici Tiirello SUCESIONES Y SERIES Práctic del libro Cálculo. Trscedetes Temprs º Ed.- Jmes Stewrt - Ig. Mirt Mechi Ig. Edurdo Ggo Año 0 Sucesioes
TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS
TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4
Sistemas Numéricos. Cs00821
Sistems Numéicos Cs0082 Sistems Numéicos U sistem uméico cosiste de u cojuto odedo de símbolos, llmdos dígitos, co elcioes defiids ete ellos: sum() est(-) divisió(/) multiplicció(*). Ctidd Símbolos 2005
Progresiones aritméticas y geométricas
Pogesioes itétics y geoétics Pogesioes itétics U pogesió itétic es scesió de úeos, tles qe l difeeci ete dos cosectivos clesqie de ellos es costte, po ejeplo, l scesió de los úeos ipes,,, dode l difeeci
Matemáticas 1 EJERCICIOS RESUELTOS:
Mtemátics EJERCICIOS RESUELTOS: Series umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Series umérics Clculr l
3.6 APLICACIONES DE LOS OPERADORES DIFERENCIALES EN MEDIOS CONTINUOS
3.6 APLICACIONES E LOS OPERAORES IFERENCIALES EN MEIOS CONTINUOS Existe vis pblems físics que puede epesetse mtemáticmete e témis de pedes difeeciles. E geel, se utiliz epesetcies vectiles p que ls pltemiets
PROPORCIONALIDAD NUMÉRICA Y SUCESIONES
º EO PROPORCONALA NUMÉRCA Y UCEONE EPARTAMENTO E MATEMÁTCA. AGRAO CORAZÓN COPRRA_Julio Cés Abd Mtíez-Los ARNEO (LA ROJA) PROPORCONALA NUMÉRCA Y UCEONE.- MAGNTUE RÉCTAMENTE PROPORCONALE Mgitud: todo quello
PAIEP. Sumas de Riemann
Progrm de Acceso Iclusivo, Equidd y Permeci PAIEP Uiversidd de Stigo de Chile Sums de Riem Ddo u itervlo de l form [, b], co y b e R, < b, u prtició del itervlo [, b] es u colecció de putos P = {x, x,...,
1. CONJUNTOS DE NÚMEROS
Águed Mt y Miguel Reyes, Dpto. de Mtemátic Aplicd, FI-UPM. 1 1. CONJUNTOS DE NÚMEROS 1.1. NÚMEROS REALES Culquier úmero rciol tiee u expresió deciml fiit o periódic y vicevers, es decir, culquier expresió
7. Solución. Como: Se pide: mn = (2)(15) = 30 Rpta. 8. Solución IV.
CERU ALGEBRA. Solució SOLUCIONARIO Como G. A. 0 + ( + ) + 0 + 0 6 Rpt.. Solució Como + b + c 7 ( b c) 7 ( bc + c) 8 b 8 b. bc + c. Solució G. A( ) 8 ( + ) + ( b ) 8 + b 7 G. A( Q ) 6 ( + ) + ( b) 6 b +
