TEMA1: MATRICES Y DETERMINANTES:
|
|
|
- Elisa Montero Acosta
- hace 9 años
- Vistas:
Transcripción
1 TEM: MTRICES Y DETERMINNTES: MTRICES: U triz de diesió, es u tbl ford por fils y colus. j i siedo ij,.,,., ) ( Por ejeplo: Se ll Mtriz Fil l que tiee u sol fil, ejeplo: Se ll Mtriz Colu l que tiee u sol colu, ejeplo: Se ll Mtriz Cudrd l que tiee igul úero de fils que de colus. Dos trices se dice Equidiesioles, si tiee l is diesió, es decir igul úero de fils e igul úero de colus. y So Equidiesioles Dos trices so igules cudo tiee l is diesió y los eleetos que ocup e iso lugr e bs so igules. Se ll triz trspuest de u triz, l triz que se obtiee prtir de cbido fils por colus: ' Se ll triz siétric u triz cudrd que coicide co su trspuest Ls trices cudrds que tiee todo uos e l digol pricipl y cero e el resto se deoi trices uidd y se desig por I I I Digol secudri Digol pricipl
2 SUM Y REST DE MTRICES: Pr sur o restr trices, ésts debe teer l is diesió, y se reliz sudo o restdo los eleetos que ocup l is posició. L triz resultdo tiee l is diesió. y El eleeto eutro pr l su y l rest es l triz ul ford por fils y colus de ceros El eleeto opuesto es ( ) ij L su de trices cuple l propiedd socitiv y couttiv. MULTIPLICCIÓN DE UN NÚMERO POR UN MTRIZ. K ij k ij MULTIPLICCIÓN DE MTRICES: Dos trices y se dice que so ultiplicbles, si el úero de colus de coicide co el úero de fils de. C Es decir ij y b jk p de diesió p, e el que cd eleeto por l colu j de l triz. Se y el resultdo es u triz p y ( ) ( ) ij Dd u triz c ik, se obtiee ultiplicdo l fil i de l triz, Etoces: ( ) ( ) ( ) ( ) ( ), el eleeto eutro es l triz uidd de diesió. No tod triz tiee ivers pr l ultiplicció, sólo lgus trices cudrds. Si u triz cudrd tiee ivers se deot por Dos trices de orde so iverss si su producto es l triz uidd de orde U triz cudrd que posee ivers se dice que es u triz iversible o regulr, e cso cotrrio se dice que es u triz sigulr. c ik
3 Ejercicios:. Dd l triz. Idicr cul es el eleeto eutro pr l ultiplicció y coprobrlo. b. Clculr I. Resolver l ecució: y y. Coprobr que l ivers de l triz es. Dds ls trices ; ; C Clcul:. ( + C) b. C c. + d. e. f. + C. Dds ls trices ; Clcul:. U triz C tl que + C =, cóo se ll es triz? b. c.. U cotrtist quiere dquirir ls ctiddes requerids de der, ldrillo, hierro, vidrio y pitur de tres proveedores. Los precios de cd proveedor pr los teriles viee ddos por l siguiete triz: dode cd fil se refiere u proveedor y l colu los teriles, e el orde ddo teriorete. El cotrtist quiere dquirir todos los teriles del iso proveedor. L obr I requiere uiddes de der, de ldrillos, de hierro, de vidrio y de pitur; l obr II ecesit,,, y y l obr III ecesit,,, y uiddes respectivete. Resuir est iforció e u triz y forr l triz de precios e cd obr segú el proveedor y decir que proveedor debe bstecer cd obr.
4 . U epres coerciliz tres producto deddos por tres clietes. Los dtos referidos ls deds de cd cliete está e l siguiete tbl: Cliete Cliete Cliete Producto Producto Producto L teció los clietes se puede efectur por dos ruts coerciles distits e ls que los costes de los productos vrí de l for siguiete: Rut Rut Precio producto Precio producto Precio producto Pr iizr los beeficios, qué rut iteres ás l epres? PU (Septiebre ). Resolver l ecució tricil X + = C siedo C CÁLCULO DE L MTRIZ INVERS:. prtir de l defiició: y Se, debeos ecotrr u triz z t y z y t y z t z y t tl que: Y resolviedo esos dos sistes obteeos Ejercicio: Hll, si es posible, l ivers de ls siguietes trices:. b.. Medite el étodo de Guss: Dd l triz prtios de y edite ls siguietes trsforcioes: - Multiplicr por u úero distito de cero - Sur o restr u fil otr ultiplicd por u úero b b b b Pr llegr dode b b b b Si e el proceso prece e el lugr de l triz lgu fil ul, l triz o tiee ivers Filete coprobos que relete es l triz ivers
5 Ejercicio: Hll, por este étodo, l triz ivers de l trices del ejercicio terior. Ejercicio: Hll l triz ivers de Solució: Ejercicio: Clcul l triz ivers de Ejercicio: (PU Juio ) Dds ls trices, y C b. Clcul, triz ivers de b. Deteri los vlores que debe tor y b pr que se verefique: t I C C. Por djutos: Se ecesit coocer el cálculo de deterites. RNGO DE UN MTRIZ: - Dos fils (o colus) so lielete depedietes si so proporcioles - U fil F, depede lielete de otrs fils F, F,, F si eiste uos úeros reles,,, o todos ulos, tl que: F F F F - Por el cotrrio so lielete idepedietes si o so proporcioles y por tto o hy igu relció de l for F F F F etre ells. El Rgo o Crcterístic de u triz es el úero de fils, o colus, lielete idepedietes. CÁLCULO DEL RNGO DE UN MTRIZ: E el cálculo del rgo de u triz, evideteete éste o vrí si: - Se suprie ls fils o colus uls - Se suprie ls fils o colus proporcioles - Se suprie ls fils o colus depedietes de otrs El Rgo de u triz tpoco vrí si: - Multiplicos u fil o colu por u úero distito de cero - Suos o restos u fil o colu otr plicdo ests propieddes u triz podeos llegr trsforrl e u triz esclod que os idicrá el úero de fils o colus idepedietes.
6 Se ) ( Rgo F F que podeos precir E cso de o ver clr l depedeci etre ls dos fils, podríos poder cotiudo co el escloieto de l triz: ) ( Rgo Ejercicio: Clcul el rgo de ls siguietes trices: i. ii. iii. C
7 DETERMINNTES: Sólo se puede clculr deterites de trices cudrds. Deterite de segudo orde: Dd l triz cudrd de segudo orde se ll deterite de l úero rel det( ) Deterite de tercer orde: Dd l triz cudrd de tercer orde de l úero rel det( ) se ll deterite Ejercicio: Clculr los siguietes deterites: = Propiedd: U triz cudrd tiee triz ivers y por tto es u triz regulr si su deterite es distito de cero. Si su deterite es cero etoces l triz o tiee triz ivers y por tto es u triz sigulr. Ejercicio: Idic si ls siguietes trices tiee ivers y clcúll: y Ejercicio: Clcul el vlor de pr que l triz se sigulr.
TEMA 1. ÁLGEBRA LINEAL
Te Álgebr Liel Mteátics TEMA. ÁLGEBRA LINEAL - VECTORES DE R Defiició R {(,,..., )/,,..., R } (-tupls de os reles ordeds) Defiios e este cojuto opercioes: Su () Pr culesquier eleetos, (,,..., ), (y,y,...,y
MATRICES Y DETERMINANTES
Eucidos de proles de selectividd. Mteátics II. Mtrices y deterites MTRICES Y DETERMINNTES.(97).- Se dice que u triz cudrd es ortogol si se verific que t I. Si y B so dos trices ortogoles de igul tño, lizr
5. Repaso de matrices. ( Chema Madoz, VEGAP, Madrid 2009)
. epso de trices he Mdoz, VEGP, Mdrid ) Mtrices Eleeto: ij Tño: Mtriz cudrd: orde ) Eleetos de l digol: Vector colu triz ) Vector fil triz ) ) 8, B ) 8) B Su: ij k k k k k k k k k k k ) Multiplicció por
= (columnas), llamamos matriz de. = i, =... A (matriz de orden n) MATRICES
TRICES INTRODUCCIÓN Observemos el siguiete ejemplo: Tbl de ots de tres lumos e el primer bimestre: ------------------ temátic Físic Químic Biologí 6 4 5 8 toio 5 7 5 5 Betriz 5 6 7 4 L tbl terior os permite
SISTEMAS DE ECUACIONES
. Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.
a 11 a 12 a a 1n a 21 a 22 a a 2n a 31 a 32 a a 3n... a m1 a m2 a m3... a mn
TEMA ÁLGEBRA DE MATRICES Mtemátics CCSSII º Bchillerto TEMA ÁLGEBRA DE MATRICES NOMENCLATURA Y DEINICIONES - DEINICIÓN Ls mtrices so tls umérics rectgulres ª colum ª fil m m m m ( ij ) Est es u mtriz de
SISTEMAS DE ECUACIONES LINEALES: TEOREMA DE ROUCHÉ- FROBENIUS
R.F.- - SISTES DE ECUCIONES INEES: TEORE DE ROUCHÉ- FROBENIUS Recordeos que u siste de ecucioes co icógits es u siste de l for: Dode: ij so úeros reles se ll coeficietes del siste,,,, so úeros reles recie
1. Discutir según los valores del parámetro k el sistema
. Discutir segú los vlores del práetro el siste C Si, el (º de icógits) S. C. D. Teiedo e cut lo terior se discute el tipo de solució del siste pr los vlores del práetro que ulr el deterite de l tri de
TEMA 0. MATRICES Y SISTEMAS DE ECUACIONES
TEM. MTRICES Y SISTEMS DE ECUCIONES Mtriz es el ore geérico que e teátics se plic lists y tls uérics. Ls trices se eple, etre otrs uchs coss, pr lcer iforció, pr descriir relcioes, pr el estudio de sistes
C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA. CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Patricia Cardona
C0MPLEJO EDUCATIVO Dr. OSCAR ABDALA ÁREA DE MATEMÁTICA CONTENIDOS DE REVISIÓN PARA 3º AÑO Prof. Ptrici Crdo COMPLEJO EDUCATIVO Dr. OSCAR ABDALA CONTENIDOS DE REVISIÓN CONJUTOS NUMÉRICOS Nturles: N = 1
Álgebra para ingenieros de la Universidad Alfonso X
Crrer: UAX Asigtur: temátics Fech: Pági de 9 Álger pr igeieros de l Uiversidd Alfoso X -trices y sistems de ecucioes lieles Opercioes co mtrices: A= m m B= m p p q q pq Sum: - s mtrices sumr tiee que teer
TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES
TEM. VECTORES Y MTRICES.. PLICCIONES . VECTORES Y MTRICES.. PLICCIONES... Cálculo del rgo de u mtri.... Cálculo de l ivers de u mtri.... Resolució de ecucioes mtriciles.... Discusió resolució de sistems
Liceo Marta Donoso Espejo Raíces para Terceros
. Ríces cudrds y cúics Liceo Mrt Dooso Espejo Ríces pr Terceros Coeceos el estudio de ls ríces hciédoos l siguiete pregut: Si el áre de u cudrdo es 64 c 2, cuál es l edid de su ldo? Pr respoder esto deeos
Matemáticas II Hoja 2: Matrices
Profesor: Miguel Ágel Bez lb (º Bchillerto) Mtemátics II Hoj : Mtrices Opercioes: Ejercicio : Ecotrr ls mtrices X e Y tles que: X Y 5 X Y 7 Ejercicio : 5 Dds ls mtrices y B, clcul: ) -B b) B c) B(-) d)
TEMA 1. VECTORES Y MATRICES 1.2. MATRICES. OPERACIONES ELEMENTALES
TEM VECTORES Y MTRICES MTRICES OPERCIONES ELEMENTLES VECTORES Y MTRICES MTRICES: OPERCIONES ELEMENTLES Cocepo de riz Eleeos Tipos de rices Su y difereci de rices Produco de u úero por u riz Trsposició
CÁLCULO DE DETERMINANTES DE SEGUNDO Y TERCER ORDEN. REGLA DE SARRUS
Fcultd de Cotdurí y dmiistrció. UNM Determites utor: Dr. José Muel Becerr Espios MEMÁICS BÁSICS DEERMINNES CONCEPO DE DEERMINNE DEFINICIÓN Se u mtriz cudrd de orde. Se defie como ermite de (deotdo como,
3. SISTEMAS DE ECUACIONES LINEALES
Teorí ejercicios de teátics II. Álger Sistes de ecucioes lieles - -. SISTES DE ECUCIONES INEES. DEFINICION U ecució liel es u ecució de l for e l que, so los coeficietes de ls icógits, es el tério idepediete
Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...
Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo
LOGARITMO 4º AÑO DEF. Y PROPIEDADES
LOGARITMO º AÑO DEF. Y PROPIEDADES E l epresió c, puede clculrse u de ests tres ctiddes si se cooce dos de ells resultdo de este odo, tres opercioes diferetes: º Poteci º Rdicció º Logrito c pr clculr,
TEMA 2: POTENCIAS, RADICALES Y LOGARITMOS
Te : Opercioes ásics co úeros reles: Potecició, y sus propieddes, rdicció y logritos TEMA : POTENCIAS, RADICALES Y LOGARITMOS ser TEMA : POTENCIAS, RADICALES Y LOGARITMOS. POTENCIACIÓN..... POTENCIA DE
Definición.- Llamamos POTENCIA a la expresión abreviada usada para escribir un producto de n factores no necesariamente iguales.
POTENCIAS Y RAÍCES. 1.- POTENCIAS. Defiició.- Llos POTENCIA l expresió revid usd pr escriir u producto de fctores o ecesriete igules. Escriios: =... ( veces) dode es l BASE y el EXPONENTE. Ejeplo: 7 2
MATRICES: INVERSA GENERALIZADA DE MOORE-PENROSE. Jorge Eduardo Ortiz Triviño
MTRIES: INVERS GENERLIZD DE MOORE-PENROSE Jorge Edurdo Ortiz Triviño jeortizt@uleduco http:/wwwdocetesuleduco Mtrices Elemeto: ij Tmño: m Mtriz cudrd: orde ) Elemetos de l digol: m m m Vector colum mtriz
el blog de mate de aida CSI: sistemas de ecuaciones. pág
el blog de mte de id CSI: sistems de ecucioes pág SISTEMAS DE ECUACIONES DE PRIMER GRADO U sistem de "m" ecucioes lieles co "" icógits,,,, es u cojuto de "m" igulddes de l form: m m b b m dode ij, b i
Matrices. Matrices especiales
UNIVERSIDD UÓNO DE NUEVO EÓN FUD DE INGENIERÍ EÁNI Y EÉRI tries triz: ojuto de eleetos ordedos e fils y olus os eleetos puede ser úeros reles o oplejos E este urso solo se osider tries o eleetos reles
1. POTENCIAS Y RAÍCES DE NÚMEROS ENTEROS
C/ Eilio Ferrri, 87 - Mdrid 8017 www.slesissjose.es Deprteto de Ciecis Nturles MT01. POTENCIAS Y RAÍCES DE NÚMEROS ENTEROS 1. POTENCIAS Y RAÍCES DE NÚMEROS ENTEROS Ates de epezr Seguro que ás de u vez
ECUACIONES DE SEGUNDO GRADO. Resolver la ecuación de segundo grado aplicando propiedades de la
ECUACIONES DE SEGUNDO GRADO Ojetivos: Defiir ecució de segudo grdo. Resolver l ecució de segudo grdo plicdo propieddes de l iguldd. Resolver l ecució de segudo grdo plicdo fctorizcioes. Resolver l ecució
Progresiones aritméticas y geométricas
Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto
SISTEMA DE ECUACIONES LINEALES
SISTEM DE ECUCIONES LINELES Defiició: Llmremos sistem de m ecucioes co icógits, u cojuto de ecucioes de l form: m.... m..... m m (S) Los elemetos so los coeficietes del sistem. ij Los elemetos i so ls
Potencias y raíces de números enteros
Potecis y ríces de úeros eteros. Opercioes co potecis Poteci de productos y cocietes Pr hcer el producto de dos úeros elevdo u is poteci tiees dos cios posibles, cuyo resultdo es el iso: Puedes priero
Clase-09 Potencias: Una potencia es el producto de un número "a" por si mismo "n" veces lo que se denota por a n ; con a IR y n Z ; luego: n veces a
Clse-9 Potecis: U poteci es el producto de u úero "" por si iso "" veces lo que se deot por ; co IR y Z ; luego: dode "" se ll se, "" es el expoete y el producto oteer es l poteci.... veces Clculr plicdo
UNIVERSIDAD AMERICANA. Curso BAN-03: Matemática I ( Jueves- Noche ) Prof. Edwin Gerardo Acuña Acuña PRÁCTICA DE FACTORIZACIÓN
UNIVERSIDAD AMERICANA Escuel de Mteátic, I C-12. Curso BAN-03: Mteátic I ( Jueves- Noche ) Prof. Edwi Gerrdo Acuñ Acuñ PRÁCTICA DE FACTORIZACIÓN L fctorizció es epresr e for teátic u polioio o úero coo
POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES
Lecció : POTENCIAS Y RAÍCES DE NÚMEROS RACIONALES.1.- POTENCIA DE UNA FRACCIÓN Si se tiee e cuet que ls frccioes so cocietes idicdos y que l poteci de u cociete es igul l cociete de potecis, se puede decir
BLOQUE II: ÁLGEBRA =... son números reales, el primer índice indica la fila y el segundo la columna en la que se encuentra el elemento.
BLOQUE II: ÁLGEBR Deprtmento de Mtemátics 2º Bchillerto - DEFINICIONES: Un mtriz viene dd por 2 = m 2 22 m2 3 23 m3 n 2n mn donde son números reles, el primer índice indic l fil y el segundo l column en
ANEXO: Determinantes de matrices de orden 2 x 2 y 3 x 3. Aplicaciones al cálculo de la inversa de una matriz.
Profesor: Rf Gozález Jiméez Istituto St Eulli TEM : MTRICES ÍNDICE..- Cocepto de mtriz..2.- Tipos de mtrices..3.- Opercioes co mtrices..3..- Sum de mtrices. Propieddes..3.2.- Producto por u esclr. Propieddes..3.3.-
5 3 = (5)(5)(5) = 125
Potecició: Es el resultdo que se obtiee l ultiplicr l bse por si is cuts veces lo idique el expoete: = ( )( )( )... BASE = ()()() = POTENCIA EXPONENTE Bse: Es el úero que se ultiplic por si iso. Expoete:
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.
Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..
Seminario Universitario de Ingreso Números reales
Seirio Uiversitrio de Igreso 07 Núeros reles Si u úero posee ifiits cifrs deciles o periódics, o puede escriirse coo u cociete etre úeros eteros, es decir, o es u Núero Rciol. Estos úeros recie el ore
Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino
i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto
SUCESIONES DE NÚMEROS REALES
SUCESIONES DE NÚMEROS REALES Sucesioes de úmeros reles Se llm sucesió de úmeros reles u plicció del cojuto N * (cojuto de todos los úmeros turles excluido el cero) e el cojuto R de los úmeros reles. N
Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo.
III. LOGARITMACION A) Defiició d e l og ri to : Se deoi logrito de u úero l expoete l que h que elevr u úero, lldo se, pr oteer u úero ddo. Siólicete: log x x 0 De l defiició de logrito podeos deducir:
TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ
TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes
Unidad 7: Sucesiones. Solución a los ejercicios
Mtemátics º Uidd 7: Sucesioes Uidd 7: Sucesioes. Solució los ejercicios Ejercicio Ecuetr el térmio geerl de ls siguietes sucesioes: ),,,,,... 5 6 7 b ) 0,, 8,5,, 5... b 5 6 c ) 0,,,,,,... 5 6 7 c Ejercicio
FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES.
PRODUCTOS NOTABLES. Productos Notbles: So poliomios que se obtiee de l multiplicció etre dos o más poliomios que posee crcterístics especiles o expresioes prticulres, cumple cierts regls fijs; es decir,
Sucesiones de Números Reales
Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u
2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA
ejeriiosemees.om MTRICES Y DETERMINNTES. Dds ls mtries Hllr ) ) B ).B d) B. e) +B f) C. g) C.B h) C.D i) j) B k) + l) B.B uioes. Dds ls mtries B. Clul +B, B,, B, B, B uió D C B.B / / / / / / / / B / /
TEMA 3: RADICALES 3.1 DEFINICIÓN. Colegio Mater Salvatoris. Se llama raíz n-ésima de un número a, y se representa n a, a otro nº b tal que b n = a.
Colegio Mter Slvtoris TEMA : RADICALES.1 DEFINICIÓN Se ll ríz -ési de u úero, se represet, otro º tl que. Se l epresió geerl de u ríz -esi es el ídice es el rdicdo c Al síolo lo llos Rdicl c es el coeficiete
UNIDAD 1: MATRICES Y DETERMINANTES
IES NERVIÓN. MTEMÁTICS PLICDS CIENCIS SOCILES II Uidad 1: MTRICES Y DETERMINNTES UNIDD 1: MTRICES Y DETERMINNTES 1. MTRICES 1.1. DEFINICIONES BÁSICS Matriz de orde : es ua serie de úeros reales distribuidos
MANUAL MATEMÁTICAS PARA ESTUDIANTES DE FINANZAS. Exponentes
_ Defiició: Epoetes Pr u úero rel u etero positivo, veces se le deoi l se l poteci o epoete Ejeplos:..... Not: oserv que del segudo es. o so igules, el resultdo del priero es Lees de epoetes: Pr cd u de
( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m
Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede
2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA
MTRICES Y DETERMINNTES. Dds ls mtries Hllr ) ) B ).B d) B. e) +B f) C. g) C.B h) C.D i) j) B k) + l) B.B uioes. Dds ls mtries B. Clul +B, B,, B, B, B uió D C B.B / / / / / / / / B / / / / / / C. +B B.
MATRICES. MATRIZ INVERSA. DETERMINANTES.
DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?
Unidad 1: NÚMEROS REALES
Resúees de Mteátics pr Bchillerto I.E.S. Ró Girldo Uidd : NÚMEROS REALES.- ALGUNOS NÚMEROS QUE NO SON RACIONALES El úero pi: L Lcircufere ci r d d El úero ríz de dos: d Cuál es l logitud de l digol? d
Potencias y radicales
Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de
LAS POTENCIAS Y SUS PROPIEDADES. Multiplicación y división de potencias de igual base. Potencia de un producto y de un cuociente.
LAS POTENCIAS Y SUS PROPIEDADES Defiició de poteci y sigos de est. Multiplicció y divisió de potecis de igul bse. Poteci de poteci. Poteci de u producto y de u cuociete. Multiplicció y divisió de potecis
TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...
Deprtmento de Mtemátics TEM : MTRICES Un mtriz de orden mxn es un conjunto de m n números reles dispuestos en m fils y n columns... n... n... m m m... mn los números reles ij se les llm elementos de l
TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN
TERCER PERÍODO 01 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis
3.- Matrices y determinantes.
3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot
UN RESUMEN DEL CURSO DE TALLER DE MATEMATICAS
Este teril sido elbordo por el profesor Alfoso C. Becerril Espios durte el triestre O 009. UAM-A. UN RESUMEN DEL CURSO DE TALLER DE MATEMATICAS ARITMETICA Y ALGEBRA E los úeros reles teeos ls siguietes
Determinantes de una matriz y matrices inversas
Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión
I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.
I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,
TEMA 1. FUNCIONES REALES. DEFINICIÓN Y LÍMITES
Uidd. Fucioes. Defiició y Líites TEMA. FUNCIONES REALES. DEFINICIÓN Y LÍMITES. Fucioes reles de vrible rel. Doiio de u fució.. Doiios de ls fucioes ás hbitules. Coposició de fucioes. Propieddes. Fució
POTENCIAS. Una potencia es una operación matemática y se realiza de de la siguiente forma: a = a a a a a a. n veces
Aputes de Mteátics pr º de E.S.O. Potecis POTENCIAS Potecis Qué es u poteci? U poteci es u operció teátic y se reliz de de l siguiete for: = veces recibe el obre de bse se deoi expoete Ejeplo: ) = = =
lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 10. Matrices y determinantes (2) Matemáticas II 2º Bachillerato 2 3 a
Resuelve ls siguientes ecuciones: 4 5 = 0 0 + 6 = 0 0 + 0 = 0 = 0 Hll el vlor de los siguientes determinntes de orden 4: 0 0 0 0 0 0 4 0 0 5 4 0 0 6 0 5 Clcul el vlor de los siguientes determinntes: 0
BLOQUE DE ÁLGEBRA TEMA 1: MATRICES
Álgebr Liel Memáics º chillero LOQUE DE ÁLGER TEM : MTRICES U mriz es u cojuo de úmeros reles colocdos recgulrmee ecerrdos ere préesis o corchee o doble brr. Pr or u mriz se uiliz o: u ler myúscul, por
MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn
Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m
INSTITUCIÓN EDUCATIVA DINAMARCA DOCENTE LETICIA LOPERA ZULETA GUÍA # 4- GRADO NOVENO POTENCIACIÓN Y RADICACIÓN NOMBRES: POTENCIA DE UN NÚMERO
INSTITUCIÓN EDUCATIVA DINAMARCA DOCENTE LETICIA LOPERA ZULETA GUÍA # 4- GRADO NOVENO POTENCIACIÓN Y RADICACIÓN NOMBRES: Si POTENCIA DE UN NÚMERO N y R, etoces, es igul l producto de veces el úmero rel
Supertriangular Subtriangular Diagonal Unidad
MT. EMPRESRILES TE RESOLVEMOS LS PRIMERS DUDS L eorí de mrices es l que v porr l form operiv de resolver u iumerle cidd de ejercicios de Álger. Por odo lo que supoe eso, os vmos proporcior los coocimieos
