PROBLEMAS Y EJERCICIOS RESUELTOS
|
|
|
- Mercedes Benítez Castro
- hace 9 años
- Vistas:
Transcripción
1 PROGRESIONES 3º ESO PÁGINA EJERCICIOS RESUELTOS DE PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS UN POCO DE HISTORIA: UN NIÑO LLAMADO GAUSS Hce poco más de dos siglos, u mestro lemá que querí pz y trquilidd e su clse propuso sus lumos que clculr l sum de los úmeros del l 00. A Crl Friedrich Guss (0 ñitos) se le ocurrió lo siguiete, e primer lugr escribió l sum de los 000 úmeros e el orde orml: Después escribió l sum l revés Y después fue sumdo el úmero de rrib co el correspodiete de debjo Se dio cuet que tods ls prejs sumb 0, por tto el resultdo de l sum que teemos plted será 0x00, como e est sum hemos clculdo el doble de l ctidd que querímos, tedremos etoces que l sum de los úmeros del l 00 será: Crl Friedrich Guss fue u fmoso mtemático y stróomo lemá ( ). PROBLEMAS Y EJERCICIOS RESUELTOS. Hllr el vigésimo térmio de l progresió ritmétic: -5, -, -9, -6,... = -5 ; d = - (-5) = = 3; = 0; =? = + ( ) d 0 = -5 + (0 ) 3 = = 4 0 = 4. L sum de los cutro primeros térmios de u PA creciete es 56 y el térmio myor es 0. Escribe esos cutro térmios. Como 4 = 0, S 4 = 56 y = 4. se tiee: 0 56 S , de dode: = 8. 4 Por otro ldo = + ( ) d, etoces se tiee: = 8 + (4 )d ; d = 4 Solució: los cutro primeros térmios so: 8,, 6, 0 3. Coociedo que e u PA el térmio 00 = 99 y que l sum de los 00 primeros térmios es 0.000, clculr el primero y l difereci. 00 = 99; = 00; S 00 = 0.000; =?; d =?
2 S = + 99; = 4. Dd l sucesió -6,,8,5, ( ) d (00 ) d = + (00 ) d 98 = 99d d =. PROGRESIONES 3º ESO PÁGINA 5. Clculr l sum de los doce primeros térmios de u PA de difereci 4, sbiedo que el primero vle 7. = 7; = ; S =? ( ) d ( ) d = + (00 ) d 98 = 99d d =. 7 5 S S 348 S = Clculr l sum de los primeros térmios de u PA, cuyo primer térmio es 4 y cuy difereci es 3, sbiedo que el térmio es 40. S =?; =?; = 4; = 40; d = 3 ( ) d 4 ( ) De dode = S S S 3 =86
3 PROGRESIONES 3º ESO PÁGINA 3 7. Coociedo el primer térmio de u PA. 3 y el doce 5, determir l difereci y l sum de los doce primeros. S =?; = ; = 3; = 5; d =? ( ) d ( ) d 5 3d 5 3 d d d =. 4 5 S S 68 S =68 8. De u progresió ritmétic coocemos los térmios 8 = 9 y = 44. Clcul: 9. Hllr el úmero de térmios de u progresió ritmétic que tiee por primer térmio 7, por último y por difereci 3. =?; = 7; = ; d = 3 ( ) d = 7 + ( - ) 3 = = = 08; = 36 = Coociedo el primer térmio de u PA es 3, cierto térmio es 39 y que l sum de todos los térmios etre los dos teriores es 0, clcul l difereci y el lugr que ocup el térmio 39. = 3; = 39; S = 0; d =?; =? S = 0
4 ( ) d (0 ) d 0 39 = d 39-3 = 9d d = 4. PROGRESIONES 3º ESO PÁGINA 4. Clculr l sum de todos quellos úmeros que, teiedo tres cifrs, so múltiplos de 7. Debemos buscr el primer úmero de tres cifrs que se divisible por 7, d 05 y luego debemos buscr el úmero más grde de tres cifrs que se divisible por 7, veremos que d 994. = 05; = 994; d = 7 ( ) d 994 = 05 + ( - ) 7 S = ( - ) / 7 = = =70336 S = Formr u PA de térmios positivos de difereci sbiedo que el último de ellos es8 y que etre todos sum 88. d = ; = 8; S = 88 ( ) d 8 ( ) S (38 ) De dode: = 0; y simplificdo: = 0 Resolviedo le ecució de segudo grdo hllmos los vlores de ; = ; = 8 Pr = ; = 0 - ; = 0 - ; = - ; o cumple el eucido Pr = 8; = 0 - ; = 0-6; = 4 Los 8 primeros térmios so: 4, 6, 8, 0,, 4, 6, 8 3. Cul será l profudidd de u pozo si por el primer metro se h pgdo 760 y por cd uo de los resttes, 50 más que el metro terior. El pozo h costdo =?; = 760; d = 50; S = ( ) d 760 ( ) S ( )
5 PROGRESIONES 3º ESO PÁGINA 5 De dode: = ; y simplificdo: = 0 Resolviedo le ecució de segudo grdo hllmos los vlores de ; = 0; = 0 4. Clcul l sum de los 80 primeros múltiplos de Hllr los cutro águlos de u cudrilátero, sbiedo que form p.. de rzó igul 5º. = 4; d = 5; S = 360º 360 S = + (4 - ) d 80 - = + 3 5; = + 75; de dode = 05; = 5'5 Solució: 5º 30'; 77º 30'; 0º 30'; 7º 30'. 6. Iterpolr 0 elemetos etre los úmeros 3 y 5, pr que forme progresió ritmétic. NOTA: iterpolr, quiere decir meter etre los dos extremos de l progresió el úmero de térmios que os pid. Por ello uestr progresió cut co doce térmios (los dos extremos más los diez que debemos iterpolr) = 3; = 5; d =?; ( ) d 5 3 ( ) d = d d = Luego, los doce térmios so: 3, 5, 7, 9,, 3, 5, 7, 9,, 3, 5 7. Iterpolr seis medios ritméticos etre y 9 =, = 8 = 9, = 8 ( seis medios ritméticos y los dos extremos) 9 8 ( ) d 9 (8 ) d d = d = 4 Etoces l progresió ritmétic es: ; 5; 9; 3; 7;, 5; 9
6 LA LEYENDA DEL INVENTOR DEL AJEDREZ PROGRESIONES 3º ESO PÁGINA 6 Cuet l leyed que el rey Shirhm, rey de l Idi, estb muy deprimido por hber perdido su hijo e u btll. U sbio de su corte llmdo Siss Be Dhir le llevó el juego del jedrez pr imrlo y le eseñó jugr. El rey Shirhm, quedó t impresiodo co el juego que se ofreció regrle su ivetor lo que pidier como recompes. Así, el ivetor pr drle u lecció de humildd, le pidió lo siguiete: u gro de trigo por l primer csill del tblero, dos por l segud, cutro por l tercer, ocho por l curt... y sí sucesivmete, duplicdo e cd csill l ctidd de l terior hst llegr l últim. El rey extrñdísimo de lo poco co lo que se coformb ordeó que le dier lo que pedí, pero cudo cudo sus cotbles echro cuets, viero sombrdos, que o hbí trigo e el reio, i siquier e tod l tierr pr jutr es ctidd. De qué ctidd estmos hbldo? Ate qué tipo de progresió estmos? Solució Primero debes sber que el tblero cost de 64 csills, luego l ctidd de gro de recompes vedrá dd por l sum de los gros de cd u de ess csills. Además os dice que los gros de cd csill se obtiee multiplicdo por el úmero de gros situdos e l primer csill, que es, es decir, que v estr e u progresió geométric dode el primer térmio es y l rzó : =, =, 3 = 4, 4 = 8, 5 = 6,... Y como e u progresió geométric l sum de térmios viee dd por l expresió: llegmos : S64 = ,8 0 9 S r r, Es decir, el úmero de gros es: dieciocho trilloes, cutrocietos curet y seis mil setecietos curet y cutro billoes, setet y tres mil setecietos ueve milloes, quiietos cicuet y u mil seiscietos quice gros de trigo. L cifr fil es t elevd que sobreps l producció mudil de trigo de l ctulidd. 8. Comprueb que ls siguietes sucesioes so progresioes geométrics, hll el térmio geerl y el vlor del térmio duodécimo ) 5,,,,... b) +,, +,,... c), +,, +, ) Pr 5, ,,,... se cumple que: 5/ / 4 5/ 90 3, luego es u PG Como = 5 y r =, su térmio geerl será: 5. Por tto, , y lo mismo sucede pr
7 PROGRESIONES 3º ESO PÁGINA 7 b) Pr +,, +,,..., el cociete etre dos térmios cosecutivos es siempre Por tto, r =. Su térmio geerl es ( ) ( ). 9. Dd l sucesió 6,-8,4,-,... Luego ( ) c) Pr, +,, +,... que tmbié tiee rzó. Su térmio geerl es ( ) ( ) ( ) Luego. 0. Clcul el térmio geerl de l PG:,, 4, 6, 3,... Clcul los térmios 0 y 45 Se trt de u progresió geométric de rzó r =. Su térmio geerl será:. Por tto Y Clcul l sum de los 0 primeros térmios de l progresió,, 4, 8,... Se trt de u PG, de rzó r = y cuyo primer térmio es r Como S r 0 0 S 0 =03. Luego S 0 03
8 . Clcul l sum de todos los térmios de l PG siguietes. 00, 50, 5, 5... b. 7, 7/3, 7/9, 7/7 PROGRESIONES 3º ESO PÁGINA 8 ) Se trt de u PG de rzó r = y cuyo primer térmio es 00 Como S r 00 S 00 / b) Se trt de u PG de rzó r = 3 y cuyo primer térmio es 7 Como S r 7 7 S : 0'5 / Clcul el producto de los 0 primeros térmios de l progresió geométric 3, 6,, 36,.. Ejercicio de mplició. L fórmul del producto de los primeros térmios de u PG es P ( ) Por tto P ) (3 3 ) 3 3 ( 4. Clcul el producto de los 6 primeros térmios de l progresió geométric 56, 8, 64,.. Siguiedo el ejercicio terior: 6 r P ( ) (56 56 ) ()
Sucesiones de números reales
Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5
Si quieres que algo se haga, encárgaselo a una persona ocupada Proverbio chino
i quieres que lgo se hg, ecárgselo u perso ocupd Proverbio chio hht ttpp: ://ppeer rssoo..wddoooo..eess/ /ti iimoomt tee Noviembre 006 PROGREIONE DEFINICIÓN DE UCEIÓN NUMÉRICA U sucesió uméric es u cojuto
Progresiones aritméticas y geométricas
Progresioes ritmétics y geométrics Progresioes ritmétics y geométrics. Esquem de l uidd PROGRESIONES Progresioes Aritmétics Progresioes Geométrics Iterés compuesto Sum de térmios Sum de térmios Producto
Tema 2 Sucesiones Matemáticas I 1º Bachillerato. 1
Tem Sucesioes Mtemátics I º Bchillerto. TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,...
Matemáticas 1 1 EJERCICIOS RESUELTOS: Sucesiones numéricas. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria
Mtemátics EJERCICIOS RESUELTOS: Sucesioes umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Sucesioes umérics Sucesioes
Unidad 7: Sucesiones. Solución a los ejercicios
Mtemátics º Uidd 7: Sucesioes Uidd 7: Sucesioes. Solució los ejercicios Ejercicio Ecuetr el térmio geerl de ls siguietes sucesioes: ),,,,,... 5 6 7 b ) 0,, 8,5,, 5... b 5 6 c ) 0,,,,,,... 5 6 7 c Ejercicio
Matemáticas 1 EJERCICIOS RESUELTOS:
Mtemátics EJERCICIOS RESUELTOS: Series umérics Ele Álvrez Sáiz Dpto. Mtemátic Aplicd y C. Computció Uiversidd de Ctbri Igeierí de Telecomuicció Fudmetos Mtemáticos I Ejercicios: Series umérics Clculr l
Guía ejercicios resueltos Sumatoria y Binomio de Newton
Auilir: Igcio Domigo Trujillo Silv Uiversidd de Chile Guí ejercicios resueltos Sumtori y Biomio de Newto Solució: ) Como o depede de j, es costte l sumtori. b) c) d) Auilir: Igcio Domigo Trujillo Silv
EJERCICIOS DE APLICACIÓN
EJERCICIOS DE APLICACIÓN Uidd. Añde tres térmios cd serie. ; ; ; 9; 6;... b. 7; 7,7;,7;,7;... c. ; ; 0; ; 6;... d. 0; ; 6; ; 0;... e. ; ; ; ;... f. ; 6 ; ; ; ; ;.... Escribe térmios más de l sucesió. ;
TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES
TRABAJO PRÁCTICO TEMA: SUCESIONES Y SERIES SUCESIÓN NUMÉRICA: es u fució cuyo domiio es el cojuto de los úmeros turles (o u subcojuto de él) y l imge está icluid e el cojuto de los Reles ( ) SUCESIÓN ARITMÉTICA:
FUNDAMENTOS DE MATEMÁTICA MATERIAL CON FINES DIDÁCTICOS UNEFA NÚCLEO TÁCHIRA PRODUCTOS NOTABLES.
PRODUCTOS NOTABLES. Productos Notbles: So poliomios que se obtiee de l multiplicció etre dos o más poliomios que posee crcterístics especiles o expresioes prticulres, cumple cierts regls fijs; es decir,
Podemos decir que: Sucesión es una secuencia ordenada de números u otras cantidades
Sucesioes Uidd 5 Cocepto Leordo Fibocci (70-50), posiblemete el mejor mtemático de l Edd Medi, icluye el siguiete problem e su fmoso escrito Liber Abci. Cuáts prejs de coejos se puede crir prtir de u sol
S U C E S I O N E S N U M É R I C A S
S U C E S I O N E S N U M É R I C A S. S U C E S I O N E S D E N Ú M E R O S R E A L E S Se llm sucesió u cojuto de úmeros ddos ordedmete de modo que se pued umerr: primero, segudo, tercero,... Los elemetos
SISTEMAS DE ECUACIONES
. Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.
LÍMITES DE SUCESIONES. EL NÚMERO e
www.mtesxrod.et José A. Jiméez Nieto LÍMITES DE SUCESIONES. EL NÚMERO e. LÍMITE DE UNA SUCESIÓN... Aproximció l cocepto de límite. Vmos cercros l cocepto de límite hlldo lguos térmios de distits sucesioes
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas son equivalentes porque 2 10 4 5.
Itroducció º ESO º ESO Pr operr co frccioes se sigue el mismo método que pr operr co úmeros eteros. Es decir, hy que respetr u jerrquí. Recordémosl: 1. Corchetes y prétesis.. Multipliccioes y divisioes..
UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5
UNIDAD 3 a Escribe los cico primeros térmios de las sucesioes: a.1) a 2, a 3 1 2 a a a 1 2 a.2 b 2 + 1 b Halla el térmio geeral de cada ua de estas sucesioes: b.1 3, 1, 1, 3, 5,... b.2 2, 6, 18, 54,...
1.4 SERIES NUMÉRICAS.SUMA DE SERIES. (46 Problemas ) sabiendo que n
. SERIES NUMÉRICAS.SUMA DE SERIES. (6 Problems.- Estudir el crácter de ls series:! 0 b + si >0, segú vlores de. 0.- Clculr cos α sbiedo que x x e 0! 0! 3.- Estudir l serie de térmio geerl. π se.- Cosidermos
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 4º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre
Escuel Púlic Experimetl Descocetrd Nº Dr. Crlos Ju Rodríguez Mtemátic º Año Ciclo Básico de Secudri Teorí Nº Primer Trimestre Cojuto de los úmeros rcioles Los úmeros rcioles so quellos que puede ser expresdos
PROCESOS INFINITOS Y LA NOCIÓN DE LÍMITE
UNIDAD PROCEO INFINITO Y LA NOCIÓN DE LÍMITE Propósitos Explorr diversos problems que ivolucre procesos ifiitos trvés de l mipulció tbulr, gráfic y simbólic pr propicir u cercmieto l cocepto de límite
Definición: Llamamos función exponencial a una función que se expresa de la forma: x. ( x)
FUNCIÓN EXPONENCIAL Defiició: Llmmos fució epoecil u fució que se epres de l form: f = = co > 0 ( ), dode f ( ) : R R > 0 Ates de trbjr específicmete, co ls fucioes epoeciles, recordemos lguos coceptos
Potencias, Raíces y logaritmos
Potecis, Ríces y logritmos El ivetor del jedrez, le preseto su ovedos creció l rey de Dirhm, e l idi, este quedo t fscido por el juego que le ofreció culquier cos que el deser como recompes. Ate este
( a b c) n = a n b n c n ( a : b) n = a n : b n a n a m = a n+m a n :a m = a n-m (a n ) m = a n.m
Igreso Potecició e R: Ddo u úmero rel, que le llmremos bse y u umero turl, l que le llmremos epoete. defiimos: =.... Propieddes de l potecició: veces ( epoete) Ests propieddes se eplic mejor si se etiede
Integral Definida. Aplicaciones
Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució
1. Discutir según los valores del parámetro k el sistema
. Discutir segú los vlores del práetro el siste C Si, el (º de icógits) S. C. D. Teiedo e cut lo terior se discute el tipo de solució del siste pr los vlores del práetro que ulr el deterite de l tri de
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
Números turles. Sistem de umerció deciml Como y sbes, el sistem de umerció deciml utiliz diez cifrs o dígitos distitos:,,,, 4, 5, 6, 7, 8 y 9. Además, es u sistem posiciol porque cd cifr o dígito tiee
GESTIÓN FINANCIERA. 1. Por qué se caracteriza una operación financiera? (1,5 puntos)
Escuel Técic Superior de Iformátic Covoctori de Juio - Primer Sem Mteril Auxilir: Clculdor ficier GESTIÓN FINANCIERA 27 de Myo de 2-8, hors Durció: 2 hors. Por qué se crcteriz u operció ficier? (, putos)
POTENCIAS.- a determina la potencia de base a y exponente n, significa que hemos de multiplicar a por si mismo n veces.
POTENCIAS.- determi l oteci de se y exoete, sigific ue hemos de multilicr or si mismo veces. Defiició: L otció Bse Exoet El exoete,, idic ls veces ue se reite l se e el roducto de ést or si mism. L se,,
Sucesiones de funciones
Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci
Anillos de Newton Fundamento
Aillos de Newto Fudmeto Los illos de Newto so producidos por itererecis cudo dos hces de luz, procedetes de l mism uete, recorre cmios ópticos dieretes. Eiste distitos modos de logrr este eómeo, el que
z 2 16 z Por tanto concluimos que log 3 2 z 5 Por tanto concluimos que z 2 Por tanto concluimos que log log 3 z 2 log a p p que resulta evidente
UNIDAD.- LOGARIMOS. APLICACIONES (tem del libro). LOGARIMO DE UN NÚMERO Cosideremos l ecució: 8. Como vemos l icógit está e el epoete, lo que l hce diferete todos los tipos vistos hst hor. es el epoete
Fracción generatriz de un decimal. Denominador :1 seguido de tantos 0 como cifras decimales haya 1000 = 7 8
º BACHILLERATO (LOMCE) MATEMÁTICAS CC SS TEMA.- NÚMEROS- PROFESOR: RAFAEL NÚÑEZ NOGALES.- FRACCIONES Y DECIMALES Opercioes comids co frccioes Pr relizr vris opercioes se reliz primero los prétesis y se
EJERCICIOS DE RAÍCES. a b = RECORDAR: Definición de raíz n-ésima: Equivalencia con una potencia de exponente fraccionario:
EJERCICIOS DE RAÍCES RECORDAR: Defiició de ríz ésim: x x Equivleci co u poteci de expoete frcciorio: m x Simplificció de rdicles/ídice comú: Propieddes de ls ríces: x m/ b b b p m p b m m ( ) m Itroducir/extrer
SUCESIONES DE NÚMEROS REALES. PROGRESIONES
www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos
Licenciatura en Electrónica y Computación: Métodos Numéricos
CIICp VLORES Y VECTORES PROPIOS Los vlores y vectores propios se cooce tmié como eigevlores y eigevectores. Estos vlores y vectores propios se utiliz geerlmete e sistems lieles de ecucioes homogéeos que
TEMA 3: RESOLUCIÓN DE SISTEMAS DE ECUACIONES MEDIANTE DETERMINANTES.
TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES. º BCH(CN) TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES..-INTRODUCCIÓN. L resoluió de sistems de euioes está ligd l estudio
Potencias y radicales
Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de
1. Aplicar la definición para hallar, sin calculadora, el valor de las siguientes potencias:
EJERCICIOS de POTENCIAS º ESO FICHA : Potecis de expoete IN RECORDAR:... Defiició de poteci ( veces). Aplicr l defiició pr hllr, si clculdor, el vlor de ls siguietes potecis: ) b) ( ) c) d) ( ) e) f) (
( x) OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI. 0 son coeficientes numéricos y n N, c R es un cero o raíz, de ( x)
Pági del Colegio de Mtemátics de l ENP-UNAM Opercioes co frccioes lgebrics rdicles Autor: Dr. José Muel Becerr Espios OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES UNIDAD VI VI. TEOREMAS DEL RESIDUO
Práctica 6. Calcular la suma de los primeros K números naturales y k k. . 2 Calcular la suma de los cuadrados de los primeros k números
PRÁCTICA SERIES NUMÉRICAS Práctics Mtlb Objetivos Práctic 6 Estudir l covergeci o divergeci de u serie de térmios positivos utilizdo distitos criterios combido ls coclusioes experimetles (el ordedor) co
Neper ( ) Lección 2. Potencias, radicales y logarítmos
Neer (0-7) Lecció Potecis, rdicles y logrítmos º ESO MATEMÁTICAS ACADÉMICAS Potecis, rdicles y logritmos LECCIÓN. POTENCIAS, RADICALES, LOGARITMOS. Potecis de exoete etero Recuerd l defiició de oteci co
5 3 = (5)(5)(5) = 125
Potecició: Es el resultdo que se obtiee l ultiplicr l bse por si is cuts veces lo idique el expoete: = ( )( )( )... BASE = ()()() = POTENCIA EXPONENTE Bse: Es el úero que se ultiplic por si iso. Expoete:
6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES
6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,
Cálculo II (0252) TEMA 5 SERIES NUMÉRICAS. Semestre
Cálculo II (05) Semestre -0 TEMA 5 SERIES NUMÉRICAS Semestre -0 José Luis Quitero Julio 0 Deprtmeto de Mtemátic Aplicd U.C.V. F.I.U.C.V. CÁLCULO II (05) José Luis Quitero Ls ots presetds cotiució tiee
TEMA 1. VECTORES Y MATRICES 1.4. APLICACIONES
TEM. VECTORES Y MTRICES.. PLICCIONES . VECTORES Y MTRICES.. PLICCIONES... Cálculo del rgo de u mtri.... Cálculo de l ivers de u mtri.... Resolució de ecucioes mtriciles.... Discusió resolució de sistems
Problemas de Sucesiones
Capítulo Problemas de Sucesioes Problema. Calcular los siguietes ites: l se i e + 3 ii 5 iii l iv + + + Solució: l se i [ escala de iitos se acotada ] 0 acotada 0. e + e ii 5 + [ úmero meor que uo 5 ]
TEMA1: MATRICES Y DETERMINANTES:
TEM: MTRICES Y DETERMINNTES: MTRICES: U triz de diesió, es u tbl ford por fils y colus. j i siedo ij,.,,., ) ( Por ejeplo: Se ll Mtriz Fil l que tiee u sol fil, ejeplo: Se ll Mtriz Colu l que tiee u sol
Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:
Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si
Z={...,-4,-3,-2,-1,0,1,2,3,4,...}
TEMA Prelimires: Números y cojutos P- Números eteros: Se deomi úmeros turles (tmbié llmdos eteros positivos) los úmeros que os sirve pr cotr objetos:,,,4,5,... El cojuto de los úmeros turles se desig por
TEMA 7. SUCESIONES NUMÉRICAS.
º EO Tem 7 TEMA 7. UCEIONE NUMÉRICA.. UCEIONE NUMÉRICA. Imgiemos el ecoido que efectú u bló que se h lzdo l suelo y midmos ls distcis ete bote y bote: Ls distcis fom u sucesió de úmeos: 0, 5, 0, 5,. U
En este capítulo expondremos brevemente (a modo de repaso) conceptos básicos sobre los sistemas de numeración.
Arquitectur del Computdor ots de Teórico SISTEMAS DE UMERACIÓ. Itroducció E este cpítulo expodremos brevemete ( modo de repso) coceptos básicos sobre los sistems de umerció. o por secillo el tem dej de
2 Halla la diferencia de una progresión aritmética sabiendo que el segundo término es 8 y el quinto 17.
EJERCICIOS EXTRA PROGERSIONES ARITMETICAS Y GEOMETRICAS 1 15 Halla la suma de los 1 primeros térmios de la progresió aritmética: 8,, 7,... Halla la diferecia de ua progresió aritmética sabiedo que el segudo
1.3.6 Fracciones y porcentaje
Ejemplo : Se hor u situció e l que ecesitmos clculr l frcció de otr frcció. Por ejemplo de. Pr u mejor iterpretció de l regl terior, recurrimos l represetció gráfic. Represetemos l frcció de Es decir:
ESQUEMA DE LOS CONJUNTOS NUMÉRICOS
Miisterio de Educció Uiversidd Tecológic Nciol Fcultd Regiol Treque Luque ESQUEMA DE LOS CONJUNTOS NUMÉRICOS NÚMEROS NATURALES De cuerdo l esquem terior, existe cojutos chicos y grdes, y lguos de ellos
AUMENTOS Y DISMINUCIONES PORCENTUALES
NÚMEROS NATURALES =N= { 0,,,3,... } ENTEROS =Z={ 0, ±, ±, ± 3,... } RACIONALES=Q= { rccioes co umerdor y deo mi dor eteros( deo mi dor 0) } = úmeros eriódi cos ( icluso co eríodo cero { } Pso de º deciml
Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo.
III. LOGARITMACION A) Defiició d e l og ri to : Se deoi logrito de u úero l expoete l que h que elevr u úero, lldo se, pr oteer u úero ddo. Siólicete: log x x 0 De l defiició de logrito podeos deducir:
Ejercicios resueltos de Matemática discreta: Combinatoria, funciones generatrices y sucesiones recurrentes.
Ejercicios resueltos de Mtemátic discret: Combitori, fucioes geertrices y sucesioes recurretes. (º Igeierí iformátic. Uiversidd de L Coruñ José Muel Rmos Gozález Itroducció Estos ejercicios h sido propuestos
Sucesiones numéricas.
SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El
Potencias y radicales
Potecis y rdicles Ojetivos E est quice prederás : Clculr y operr co potecis de epoete etero. Recoocer ls prtes de u rdicl y su sigificdo. Oteer rdicles equivletes uo ddo. Epresr u rdicl como poteci de
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00
POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales:
POTENCIACIÓN Y RADICACIÓN EN Recordemos e primer lugr lgus defiicioes y propieddes de l potecició y de l rdicció de úmeros reles: PROPIEDADES DE LA POTENCIACIÓN Poteci de expoete cero : 0 = por defiició,
Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales y a los enteros negativos.
Tem 1: Números Reles 1.0 Símbolos Mtemáticos Distito Aproximdo Meor o igul Myor o igul Uió Itersecció Cojuto vcío Existe No existe Perteece No perteece Subcojuto Implic Equivlete 1.1 Cojuto de los úmeros
Álgebra para ingenieros de la Universidad Alfonso X
Crrer: UAX Asigtur: temátics Fech: Pági de 9 Álger pr igeieros de l Uiversidd Alfoso X -trices y sistems de ecucioes lieles Opercioes co mtrices: A= m m B= m p p q q pq Sum: - s mtrices sumr tiee que teer
UNIVERSIDAD AMERICANA. Curso BAN-03: Matemática I ( Jueves- Noche ) Prof. Edwin Gerardo Acuña Acuña PRÁCTICA DE FACTORIZACIÓN
UNIVERSIDAD AMERICANA Escuel de Mteátic, I C-12. Curso BAN-03: Mteátic I ( Jueves- Noche ) Prof. Edwi Gerrdo Acuñ Acuñ PRÁCTICA DE FACTORIZACIÓN L fctorizció es epresr e for teátic u polioio o úero coo
DELTA MASTER FORMACIÓN UNIVERSTARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID
/ Grl. Ampudi, 6 Teléf.: 9 5-9 55 9 ADRID FBRRO 5 UNIVRSIDAD PONTIFIIA D SALAANA ATÁTIAS DISRTAS FBRRO 5 (TARD) PROBLA : Se cooce el siguiete comportmieto de Luis e u resturte l que v comer: - No es verdd
1, 4, 16, 64,. Cuál regla define esta sucesión? Puedes indicar los próximos dos elementos?
UCEIONE Prof. Evel Dávil Cálculo Reviso ABRIL 0 U sucesió o sucesió cosiste e u eumerció o listo e elemetos los cules los escribe u regl o ptró por tto el ore e sus elemetos es fumetl.,,,,. Cuál regl efie
Capítulo 7. Series Numéricas y Series de Potencias.
Cpítulo Series Numérics y Series de Potecis.. Itroducció. E este cpítulo le dremos setido l cocepto de sum ifiit de úmeros ó serie uméric, es decir, diremos que sigific sumr u ifiidd de úmeros... 4 El
Liceo Marta Donoso Espejo Raíces para Terceros
. Ríces cudrds y cúics Liceo Mrt Dooso Espejo Ríces pr Terceros Coeceos el estudio de ls ríces hciédoos l siguiete pregut: Si el áre de u cudrdo es 64 c 2, cuál es l edid de su ldo? Pr respoder esto deeos
IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre:
IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. º ESO A Nombre: Evaluació: Primera. Feca: 0 de diciembre de 00 NOTA Ejercicio º.- Aplica el orde de prioridad de las operacioes para calcular: 64 : 5
TEMA 1. ÁLGEBRA LINEAL
Te Álgebr Liel Mteátics TEMA. ÁLGEBRA LINEAL - VECTORES DE R Defiició R {(,,..., )/,,..., R } (-tupls de os reles ordeds) Defiios e este cojuto opercioes: Su () Pr culesquier eleetos, (,,..., ), (y,y,...,y
1. POTENCIAS Y RAÍCES DE NÚMEROS ENTEROS
C/ Eilio Ferrri, 87 - Mdrid 8017 www.slesissjose.es Deprteto de Ciecis Nturles MT01. POTENCIAS Y RAÍCES DE NÚMEROS ENTEROS 1. POTENCIAS Y RAÍCES DE NÚMEROS ENTEROS Ates de epezr Seguro que ás de u vez
1 2 n n -1 = -
Límite cudrdo, es u grbdo de M. Escher (898-97) dode utiliz figurs semejtes e vez de figurs cogruetes. prtir de 955, Escher se sirve de este tipo de costruccioes pr proximr el ifiito medite series. lgus
SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04
SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - - Comprobr que culquier mriz cudrd M se puede expresr de form úic como sum de dos mrices, u siméric
Supertriangular Subtriangular Diagonal Unidad
MT. EMPRESRILES TE RESOLVEMOS LS PRIMERS DUDS L eorí de mrices es l que v porr l form operiv de resolver u iumerle cidd de ejercicios de Álger. Por odo lo que supoe eso, os vmos proporcior los coocimieos
Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015
Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd
SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.
CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio
ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:
Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/
TEMA 10 OPERACIONES DE AMORTIZACION O PRESTAMO (I)
Fcultd de.ee. Dpto. de Ecoomí Ficier I Dipoitiv Mtemátic Ficier TEM OPERIONES DE MORTIZION O PRESTMO (I). Pltemieto geerl 2. Método prticulre de mortizció - Prétmo merico - Prétmo frcé - Prétmo co cuot
FÓRMULA DE TAYLOR 1. Introducción formula de Taylor Brook Taylor 2. Objetivos Aproximación de funciones por polinomios f(x) P(x) f(x)
FÓRMULA DE TAYLOR. Itroducció Los poliomios igur etre ls ucioes más secills que se estudi e Aálisis. So decuds pr trjr e cálculos uméricos por que sus vlores se puede oteer eectudo u úmero iito de multipliccioes
Resumen: Límites, Continuidad y Asíntotas
Resue: Líites, Cotiuidd y Asítots epre que se pued sustituir probles e l epreó de Los csos e los que o se pued sustituir es: k cudo tegos Es ideterido el go del y depede de l regl de los gos. : *? ** *
