PROGRESIONES ARITMETICAS
|
|
|
- María Teresa Botella Gutiérrez
- hace 9 años
- Vistas:
Transcripción
1 PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió. EJEMPLO.-, 4, 7,... Es ua progresió cuya diferecia es 3. 3, 5,, 5... Es ua progresió cuya diferecia es 5 RESULTADO.- Térmio -ésimo de ua progresio aritmetica Si a, a, a 3,... a -, a so los sucesivos térmios de ua progresió aritmética cuya diferecia es d, se puede escribir las siguietes igualdades: a = a + d a 3 = a + d = a + d a 4 = a 3 + d = a + 3d a 5 = a 4 + d = a + 4d a = a - + d = a + (-)d Es decir: El térmio -ésimo, tambié llamado TÉRMINO GENERAL, de ua progresió aritmética se obtiee sumado al primer térmio la diferecia multiplicada por ( -): a a d RESULTADO.- Suma de térmios equidistates de los extremos Dos térmios a p y a q de ua progresió aritmética so equidistates de los extremos cuado el úmero de térmios que precede a a p es igual al úmero de térmios que sigue a a q. E las progresioes aritméticas los térmios equidistates de los extremos verifica la siguiete propiedad: La suma de dos térmios de ua progresió aritmética, equidistates de los térmios extremos, es igual a la suma de dichos extremos. a a a a a a a a... a ( ) d RESULTADO 3.- Suma de térmios de ua progresió aritmética La suma de los térmios de ua progresió aritmética es igual a la semisuma de los térmios extremos multiplicada por el úmero de térmios que se suma. a S a a a3... a Siedo a = Primer sumado; a = Último Sumado; = º de Sumados a De otra forma: a ( ). d S a a a3... a a = Primer sumado; d = Diferecia
2 EJERCICIOS RSUELTOS: P.- Halla el térmio cuadragésimo octavo de la progresió aritmética de diferecia 3 y primer térmio. a 48 = a +(48-).d = = 5 P.- Los águlos de u triágulo está e progresió aritmética, hállalos si el mayor vale º. Sea a, a+d y a+d los tres águlos. La suma de los tres es: a + (a+d) +(a+d) = 3a+3d = 8 (a+d)= 6 ; Como el mayor es, = a+d d= 4 y los agulos so : º, 6º y º. P3.- Suma Es la suma de térmios de ua progresió aritmética de diferecia Luego 99 S PRACTICA: P4.- Ua progresió aritmética de 5 térmios empieza por 9 y termia por. Calcular su diferecia y la suma de sus térmios. P5.- Calcula la suma de los mil primeros úmeros pares y de los mil primeros úmeros impares. Cuál es mayor?. P6.- Calcula el valor de P7.- Calcuala el valor de la suma de los primeros umeros Pares. Idem para los primeros úmeros Impares P8.- E ua progresió aritmética, la suma de los primeros térmios es y la suma de los siguietes, desde a hasta a, es. Cuál es la diferecia de la progresió? P9.- La suma de 8 eteros positivos cosecutivos es u cuadrado perfecto. Cual es el el meor valor posible de la suma de ellos
3 P.- E ua progresio aritmetica a 3.a 7 = - y a 4 +a 6 = -4. Hallar el termio geeral y la suma de los primeros termios. P.- Los tres primeros térmios de ua progresio aritmetica so a, 4, 3a. Hallar el termio geeral y la suma de los 3 primeros térmios. Si la suma de los primeros térmios es 55, halla. P.- E ua progresio aitmetica la suam de los primeros termios es 4 y la suam de los diez primeros termios impares es 5. Cuato vale a 6? P3.- a es ua progresio aritmetica y b = a. Si b +b +b 3 = /8 y b.b.b 3 =/8, calcula a 8 P4.- Los 4 primeros termios de ua progresio aritmetica so a, x, b, x. Calcula el valor de a/b P5.- Los 4 primeros termios de ua progresio aritmetica so x+y, x-y, x.y y x/y e ese orde. Cuál es el 5º termio? P6.- Se llea los cuadrados vacios de la tabla de la figura de maera que los úmeros de cada fila, de cada columa y de las dos diagoales forma progresioes aritméticas. Cuál debe ser el úmero x?
4 PROGRESIONES GEOMETRICAS DEF. Se dice que ua serie de úmeros está e progresió geométrica cuado cada uo de ellos (excepto el primero) es igual al aterior multiplicado por ua catidad costate llamada razó de la progresió. EJEMPLO.-, 3, 9, 7, 8... Es ua progresió cuya razó es 3. 8, 4,,, ½, ¼,...Es ua progresió cuya razó ½ RESULTADO 4.- Térmio -ésimo de ua progresio geométrica Si a, a, a 3,... a -, a so los sucesivos térmios de ua progresió geométrica cuya razó es r, se puede escribir las siguietes igualdades: a = a.r a 3 = a. r = a. r a 4 = a 3. r = a. r 3 a 5 = a 4. r = a. r a = a -. r = a. r (-) Es decir: El térmio -ésimo, tambié llamado TERMINO GENERAL, de ua progresió geométrica se obtiee multiplicado el primer térmio por la razó elevada a ( -) a a r ( ) RESULTADO 5.- Producto de térmios equidistates de los extremos El producto de dos térmios de ua progresió geométrica, equidistates de los térmios extremos, es igual al producto de dichos extremos. a a a a a3 a a4 a 3... RESULTADO 6.- Producto de los termios de ua progresió geometrica Sea la progresió geométrica de térmios: a, a, a3,..., a-, a-, a. represeta el producto de todos los térmios, se tiee: P a a a... a a a 3 Si P El producto de los térmios de ua progresió geométrica limitada es igual a la raíz cuadrada del producto de los extremos elevado a u expoete igual al úmero de térmios que se multiplica.
5 RESULTADO 7.- Suma de térmios de ua progresió geometrica Sea la progresió geométrica de térmios: a, a, a3,..., a-, a-, a. represeta la suma de los térmios, se tiee: Si S S a a a3... a a r a a r a r r Fórmula que permite hallar la suma de los térmios de ua progresió geométrica limitada, coociedo el primer térmio, el último y la razó. RESULTADO 8.- Suma de ifiitos térmios de ua progresió geometrica de razo r (siedo r u úmero tal que - < r < ) S a a a3... a r La suma de los térmios de ua progresió geométrica ilimitada decreciete es igual al primer térmio dividido por ( -r). EJERCICIOS RSUELTOS: P.- La razo r de ua progresió geométrica es 3 y el tercer térmio vale 45. Halla la suma de los 8 primeros térmios. a a r 45 a 9 a 5 a 3 8 a r a8 r a S8 64 r 3 P.- E ua progresió geométrica de razó r = 3, coocemos S 6 = 456. Calcular a y a a6 3 a ( a 3 ) 3 a a 3 a 6 S6 456 a(3 ) a 4 a 6 4 a (3 ) 78 P3.- Calcula el valor de S ceros 5 ceros P4.- La suma de los ifiitos térmios de ua progresió geométrica es igual a 4 y a =. Calcula a y la razó. a a a r S 4 r 4r 4r 4r 4r r r r r r r r a a r
6 PRACTICA P7.- Determia el térmio geeral de cada ua de las siguietes progresioes geométricas: (a) -, ½, -¼, /8,... (b), 3, 3,... (c) -3, 6, -8, 4,... P8.- Determia los térmios b, b 4, b 8 y b 5 de cada ua de las siguietes progresioes geométricas: (a) b, -8, 6, b 4,... (b) b,, 6, b 4,... (c) b,, /3, b 4,... P9- Determia los dos primeros térmios de ua progresió geométrica que cumple: (a) b 8 = 7b y b +b +b 3 = 4+ 3 (b) b 6 =4/9 y b 7 = -4/7 (c) b =644 y b 5 = 3b P.- Calcula las siguietes sumas: (a) (b)
7 P.- Si a, b, c, d so umeros reales positivos tales que a, b, c, d forma ua progresio artimetica creciete y a, b, d ua progresio geométrica, calcula a d P.- Tres umeros reales forma ua progresio aritmetica cuyo primer termio es 9. Si añadimos al segudo termio y al tercero los tres umeros forma ua progresio geometrica. Cual es el meor valor posible para el tercer termio de la progresio geométrica? P3.- E ua progresio geometrica la suma de los primeros dos termios es 7 y la suma de los primeros 6 termios es 9. Cuato vale la suma de los 4 primeros termios P4.- 6 equipos juega e ua liga de volleyball. Cada equipo juega ua vez cotra todos los demás. E cada partido, el gaador cosigue u puto y el perdedor putos; o hay empates. Ua vez jugados todos los partidos, los putos obteidos por los equipos forma ua progresió aritmética. Cuátos putos tiee el último clasificado? P5.- E ua progresió geométrica a se verifica: a 3 < a < a 4 Etoces, A ) a3 a4 B ) a a3 C ) a a4 D ) a E ) a a3 P6.- Las logitudes de las aristas de u paralelepípedo rectágulo e cetímetros, so úmeros eteros y forma ua progresió geométrica de razó q=. Cual de los siguietes puede ser el volume del paralelepípedo? A) cm 3 B) 88 cm 3 C) 6 cm 3 D) 35 cm 3 E) 5 cm 3
MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero
ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los
OBJETIVO: RESOLVER PROBLEMAS DE PROGRESIÓN ARITMETICA APLICANDO FORMULA ULTIMO TÉRMINO Y DE LA SUMA
I. Muicipalidad De Providecia Corporació De Desarrollo Social Liceo Polivalete Arturo Alessadri Palma A Nº Depto. de Matemática Profesor: Pedro Campillay GUÍA MEDIO COEFICIENTE DOS MODULO MATEMATICO NOMBRE:
PROGRESIONES ARITMÉTICAS.-
PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.
ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:
Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/
Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:
Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si
SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:
SUCESIONES Págia REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja, que se reproduce
La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:
SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,
ACTIVIDAD INTEGRADORA Nº PROGRESIONES ARITMÉTICAS
ACTIVIDAD INTEGRADORA Nº 5-7 PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS PROGRESIONES ARITMÉTICAS Teemos: Diferecia d = a - a -1 Térmio geeral de ua progresió aritmética: a = a k + ( - k)d Iterpolació de térmios:
Sucesiones numéricas.
SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El
Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.
Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,
2 Halla la diferencia de una progresión aritmética sabiendo que el segundo término es 8 y el quinto 17.
EJERCICIOS EXTRA PROGERSIONES ARITMETICAS Y GEOMETRICAS 1 15 Halla la suma de los 1 primeros térmios de la progresió aritmética: 8,, 7,... Halla la diferecia de ua progresió aritmética sabiedo que el segudo
EJERCICIOS PENDIENTES 3º E.S.O. PROGRESIONES ARITMÉTICAS
3º E.S.O. PROGRESIONES ARITMÉTICAS (a + a ) RECUERDA: E ua progresió aritmética: a a + ( )d, S ) Escribe el térmio geeral de las siguietes progresioes aritméticas: a) a -3, d 5; b) a 3, d ; c) a 5, d )
Conjunto de números dispuestos uno a continuación de otro: a 1, a 2, a 3,..., a n. Sucesión inversible o invertible. a n 1 a n.
Sucesioes Tema 8.- Sucesioes y Límites Cojuto de úmeros dispuestos uo a cotiuació de otro: a, a, a 3,..., a Operacioes a =a, a, a 3,..., a b =b, b, b 3,..., b Suma Diferecia (a )+(b )=(a +b )= a +b, a
SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43
TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a Págia. a) Es la sucesió de los úmeros impares:, 5, 7 b) Se suma al valor absoluto del úmero y se cambia de sigo: 7, 0, c) Se
Ejercicios de Sucesiones y Progresiones
Ejercicios de Sucesioes y Progresioes 1. Escribe los siguietes térmios de estas sucesioes: a) 5,6,8,11,15, b) 0,20,10,0, c) 7,14,21,28,... d) 1,5,25,125,.. Qué criterio de formació ha seguido cada uo?
SUCESIONES DE NÚMEROS REALES. PROGRESIONES
www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos
SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43
TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a a 8 + ( ); Y fialmete: a 7 8 + (7 ) 86 0 7 + 0. S 0 Págia 7 [ ( 7 + 9 5) ] 95. a) 6 : pero 0 : 6,6 o es PG b) 6 : ( ) : 6 :
R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.
R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de
GUÍA SUCESIONES Y SERIES. a n 1 1. a) La suma de los 5 primeros términos de la sucesión. b) La suma de los 10 primeros términos de la sucesión.
ESCUELA DE GOBIERNO Y GESTIÓN PÚBLICA UNIVERSIDAD DE CHILE GUÍA SUCESIONES Y SERIES. Escriba los cico primeros térmios de la sucesió dada a) a = + b) a = ( ) c) b = (+) d) c = - (-). Sea a la sucesió defiida
PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS
PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS. Qué es cierto: 3 < 3 o 3 < 3? 2. Sea a 2 R tal que a 3 2a 2 0a = 20.
Sumatoria, Progresiones y Teorema del Binomio
Capítulo Sumatoria, Progresioes y Teorema del Biomio.. Símbolo Sumatorio Es u símbolo muy útil y coveiete que permite escribir sumas e forma abreviada. Este símbolo se represeta mediate la letra griega
/ n 0 N / D(f) = {n N / n n 0 }
Liceo Nº 10 016 SUCESIONES Primera defiició Ua sucesió de úmeros reales es ua fució cuyo domiio es el cojuto de los úmeros aturales (N) y cuyo recorrido está coteido e el cojuto de los úmeros reales (R).
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad
Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El
Álgebra I Práctica 2 - Números Naturales e Inducción
FCEyN - UBA - Verao 07 Sumatoria Álgebra I Práctica - Números Naturales e Iducció. Reescribir cada ua de las siguietes sumas usado el símbolo de sumatoria: (a) + + 3 + 4 +... + 00 (b) + + 4 + 8 + 6 +...
Seminario de problemas Curso Hoja 12
Semiario de problemas Curso 014-15 Hoja 1 78. Resolver el siguiete sistema de ecuacioes dode x, y, z so reales positivos: x y z 8 x 1 y 4 z 9 10 Solució: E la figura CDE, EFG, GHA y ABC so triágulos rectágulos
UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5
UNIDAD 3 a Escribe los cico primeros térmios de las sucesioes: a.1) a 2, a 3 1 2 a a a 1 2 a.2 b 2 + 1 b Halla el térmio geeral de cada ua de estas sucesioes: b.1 3, 1, 1, 3, 5,... b.2 2, 6, 18, 54,...
Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)
Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA
RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 13 RAZONES Y PROPORCIONES ab + cd = 2500, halle el valor de (a + c) a c e g K.
SEMANA 1 RAZONES Y PROPORCIONES 1. Si: a b c d y 7 4 1 6 ab + cd = 500, halle el valor de (a + c) A) 75 B) 80 C) 90 D) 95 E) 100 a b ab K K 7 4 8 d e de K K 1 6 7 Luego: 500 100K K = 5 Luego: a = 5, d
2. CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO)
Portal Fueterrebollo Cocurso Primavera Matemáticas: NIVEL IV (BACHILLERATO). CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO) 1. Co las letras de la palabra NADIE podemos formar 10 palabras
XIV CONCURSO CANGURO MATEMÁTICO 2007
XIV CONCURSO CANGURO MATEMÁTICO 007 Nivel (º de E.S.0.) Día 5 de marzo de 007. Tiempo : hora y 5 miutos No se permite el uso de calculadoras. Hay ua úica respuesta correcta para cada preguta. Cada preguta
[ ] ( ) ( ) ( ) ( ) = = RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN a a a RESOLUCIÓN SEMANA 9 TEORÍA DE LOS NÚMEROS NÚMEROS PRIMOS.
SEMAA 9 TEORÍA DE LOS ÚMEROS ÚMEROS PRIMOS. Sea A = 3...( 6) cifras Calcule si A tiee 444 divisores compuestos. A) 3 B) C) D) E) 6 A = 3 6 6 = 6 ( ) A = 3 + A = 3 CD( A) = 444 + 4 CD( A) = 448 ( A) ( )
Desigualdad entre las medias Aritmética y Geométrica
Desigualdad etre las medias Aritmética y Geométrica Jorge Tipe Villaueva Dados reales positivos a 1, a,..., a, defiimos la media aritmética de a 1, a,..., a como el úmero a 1 + a +... + a y la media geométrica
IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre:
IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. º ESO A Nombre: Evaluació: Primera. Feca: 0 de diciembre de 00 NOTA Ejercicio º.- Aplica el orde de prioridad de las operacioes para calcular: 64 : 5
Tema 1 Los números reales Matemáticas I 1º Bachillerato 1
Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma
Unidad 4 Ecuaciones de segundo grado. 1 EJERCICIOS PARA ENTRENARSE
Uidad Ecuacioes de segudo grado. Escribe co ua icógita los siguietes datos: EJERCICIOS PARA ENTRENARSE a U úmero su cuadrado. b U úmero su raíz cuadrada. c Los cuadrados de dos úmeros cosecutivos. d Los
Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común:
PERIODO I FACTORIZACIÓN Factorizar es escribir o represetar ua expresió algebraica como producto de sus factores: Ejemplo: x 4 = (x + ) (x ) = (x + ) (x + ) (x ) Ua expresió queda completamete factorizada
Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:
Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios
Walter Orlado Gozales Caicedo Secuecias Lógicas OBJETIVO: Lograr habilidad y destreza e el alumo practicado u razoamieto abstracto PROCEDIMIENTOS: INICIAL: Halla el valor del térmio que cotiúa e:,,,, 0,
Álgebra I Práctica 3 - Números enteros (Parte 1)
FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c
SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.
CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio
CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007
CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y
EJERCICIOS DE SERIES DE FUNCIONES
EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:
6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES
6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:
6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES
6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,
UNIVERSIDAD DE ANTIOQUIA SEMILLERO DE MATEMÁTICAS NIVEL11 TALLER N o 13 SUCESIONES. Agustín Luis Cauchy
UNIVERSIDAD DE ANTIOQUIA SEMILLERO DE MATEMÁTICAS NIVEL TALLER N o SUCESIONES Agustí Luis Cauchy Nació: agosto de 789 e París (Fracia) Murió: mayo de 857 e Sceaux (Paris-Fracia) Vida Laplace y Lagrage
IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11
IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como
AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1
AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga
) = Ln(1 + 1 n ) 1 n. Ln( n ) n tiene términos positivos y si 0 < lím n n bn. < entonces ambas series divergen o bien ambas series convergen
Criterio de Comparació Si a 0 y b 0. Si existe ua costate C > 0 tal que a Cb etoces la covergecia de b implica la covergecia de a. Ejemplo.- Sabemos que la serie coverge a, pero como (+), etoces la serie
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre
Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos
SUCESIONES Y SERIES Una sucesión es un conjunto de números ordenados bajo cierta regla específica. 7, 10, 13, 16, 19, 22, 25,...
SUCESIONES Y SERIES. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto
Capítulo 2. Series de números reales. 2.1 Convergencia de una serie de números reales.
Capítulo 2 Series de úmeros reales Defiició 2.0. Dada ua sucesió a, a 2, a 3,,, de úmeros reales, la sucesió S, S 2, S 3,, S, dode: S = a S 2 = a + a 2 S 3 = a + a 2 + a 3 S = a + a 2 + a 3 + + se dice
L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2
Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los
TRABAJO DE GRUPO Series de potencias
DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre
3.8. Ejercicios resueltos
3.8 Ejercicios resueltos 101 3.8. Ejercicios resueltos 3.8.1 Ua sucesió a ) se dice que es cotractiva si existe 0
TALLER DE MATEMÁTICAS DESIGUALDADES
TALLER DE MATEMÁTICAS DESIGUALDADES NOTAS Es bie sabido que e el cojuto de los úmeros reales existe ua relació de orde atural : se dice que x < y cuado y x es u úmero positivo Co esta relació, el cojuto
3Soluciones a los ejercicios y problemas PÁGINA 79
Solucioes a los ejercicios y problemas PÁGINA 79 Pág. P RACTICA Sucesioes formació térmio geeral Escribe los cico primeros térmios de las siguietes sucesioes: a) Cada térmio se obtiee sumado 7 al aterior.
TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1
TEMA : Potecias y raíces Tema : Potecias y raíces ESQUEMA DE LA UNIDAD.- Cocepto de potecia..- Potecias de expoete atural..- Potecias de expoete etero egativo..- Operacioes co potecias..- Notació cietífica...-
CÁLCULO INTEGRAL APUNTES SERIES
UN I V E R S I D A D MA Y O R FA C U LT A D DE IN G E N I E R Í A SE G U N D O SE M E S T R E 0 CÁLCULO INTEGRAL AUNTES SERIES CRITERIOS. Criterio del -ésimo térmio para la divergecia Si la serie a coverge,
QUÉ SON LOS POLÍGONOS? ELEMENTOS DE UN POLÍGONO
Las matemáticas so u juego: Figuras plaas: S. CEIP Mauel Siurot (La Palma del Cdo.) QUÉ SON LOS S? So figuras plaas formadas por ua líea poligoal cerrada y su iterior. Cualquier figura plaa que esté formada
Resuelve. Unidad 2. Sucesiones. BACHILLERATO Matemáticas I. Una hermosa curva. Página 55
Uidad. Sucesioes Resuelve Págia Ua hermosa curva La curva de la derecha está costruida co ocho arcos de circuferecia. Los siete primeros so de u cuarto de circuferecia. El octavo, es solo u trocito. a)
Examen Madrid 23 de Junio de 2018
Exame Madrid de Juio de 08 Academia DEIMOS Oposicioes: a) Matemáticas Secudaria. b) Diplomados e Estadística del Estado. 669 64 06 MADRID www.academiadeimos.es http://academiadeimos.blogspot.com.es [email protected]
6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS
Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. 6. SUCESIONES Y SERIES NUMÉRICAS 6... Sucesioes de úmeros reales 6.. SUCESIONES NUMÉRICAS Se llama sucesió de úmeros reales a cualquier
Series de números reales
Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió
MEDIDAS DE TENDENCIA CENTRAL. _ xi
EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee
9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.
Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como
Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi
u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo
Sesión de Preparación de Olimpiada Matemática.
Sesió de Preparació de Olimpiada Matemática 6 de Diciembre de 06 Ferado Mayoral Desigualdades (y Poliomios y otras fucioes) (I) -Alguas desigualdades básicas ) x 0 para cualquier x R La igualdad sólo se
Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.
Matemáticas Sesió No. 6 Nombre: Fucioes expoeciales y logarítmicas y el uso de las progresioes aritméticas y geométricas. Cotextualizació Las fucioes expoeciales y logarítmicas se les cooce como trascedetes,
3º DE EDUCACIÓN SECUNDARIA OBLIGATORIA MATEMÁTICAS UNIDAD 5 LAS PROGRESIONES
3º DE EDUCACIÓN SECUNDARIA OBLIGATORIA MATEMÁTICAS UNIDAD 5 LAS PROGRESIONES a) Presetació b) Evaluació Iicial c) Coceptos d) Actividades e) Autoevaluació f) Otros recursos: bibliografía y recursos e red
Sucesiones de números reales
Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x
Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton
Estalmat Madrid Miguel Reyes Diámica compleja Cojutos de Julia y Madelbrot Método de Newto Los úmeros complejos Los úmeros complejos so los úmeros de la forma a dode a y b so úmeros reales e i es la uidad
TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n
TEMA 8: UCEIONE DE NÚMERO. PROGREIONE.- UCEIONE DE NÚMERO RACIONALE: U sucesió es u cojuto ordedo de úmeros reles:,,,, - Los úmeros turles se llm ídices. El subídice idic el lugr que el térmio ocup e l
Técnicas para problemas de desigualdades
Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,
Los números complejos
Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació
a = n Clase 11 Tema: Radicación en los números reales Matemáticas 9 Bimestre: I Número de clase: 11 Esta clase tiene video
Matemáticas 9 Bimestre: I Número de clase: Clase Actividad Esta clase tiee video Tema: Radicació e los úmeros reales Lea la siguiete iformació. Si es u úmero etero positivo, etoces la raíz -ésima de u
SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y Series
SOLUCIONES DE LOS EJERCICIOS DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y Series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez 3 Sucesioes
