Los números complejos
|
|
|
- Eduardo Jorge Pinto Moya
- hace 9 años
- Vistas:
Transcripción
1 Los úmeros complejos
2 Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació Forma polar z = r α siedo r el módulo y α el argumeto. r = z = a + b α arcta b = a Operacioes si z = a + bi y z = a + b i si z = r α y z' = Suma z + z = (a + a ) + (b + b )i z z = (a a ) + (b b )i s β Resta z z = (a a ) + (b b )i
3 Multiplicació z z = (aa bb ) + (ab + a b)i r s = ( r s) α β α + β Divisió z' a' a+ b' b ab' a' b = + i z a + b a + b r s α β = ( r/ s) α β Potecia z = ( rα ) = ( r ) α 1 1 ( ) ( ) r = r = r = r α α α α+ k + k k va desde 0 hasta 1
4 Qué es u úmero complejo? U úmero complejo, z, está formado por ua parte real, a = Re(z), y ua parte imagiaria, b = Im(z), y se escribe a + bi, o bie, (a, b). U úmero complejo es ua expresió co dos sumados: uo es u úmero real y el otro es u úmero real por ua letra i. Por ejemplo, z es u ejemplo de úmero complejo: z = 3 + i El sumado si la i se deomia parte real, mietras que el úmero que acompaña a la i se deomia parte imagiaria del úmero complejo. E el ejemplo aterior, 3 es la parte real y se idica 3 = Re(z); mietras que es la parte imagiaria y se idica = Im(z). U úmero complejo tambié puede escribirse e forma de par ordeado; e el ejemplo, el úmero complejo z = 3 + i tambié puede escribirse como (3, ), siedo la primera coordeada la parte real, y la seguda coordeada la parte imagiaria. Así pues, u úmero complejo es u úmero formado por ua parte real, a, y ua parte imagiaria, b, que se escribe a + bi o bie, (a, b) Cómo se represeta u úmero complejo? Para represetar u úmero complejo puede utilizarse los ejes coordeados cartesiaos, el eje X para la parte real y el eje Y para la parte imagiaria. Para represetar u úmero complejo puede utilizarse los ejes coordeados cartesiaos, el eje X para la parte real (eje real) y el eje Y para la parte imagiaria (eje imagiario). Así, por ejemplo, el úmero z = 3 + i, o tambié (3, ), se represeta por el siguiete vector: 1
5 So ecesarios los úmeros complejos? Los úmeros complejos so imprescidibles, ya que permite que cualquier ecuació poliómica tega solució. Para ello, se requiere que los úmeros reales sea completados co el deomiado úmero i, cuyo valor es i = 1. Es fácil observar que existe ecuacioes que o tiee solució real. Por ejemplo, la ecuació x + 1 = 0 o tiee solució, ya que si aislamos la x : x = 1 y o existe igú úmero real que elevado al cuadrado sea 1, porque debería suceder que: x = 1 y ya sabemos que o existe la raíz cuadrada de u úmero egativo. Para permitir que ecuacioes del tipo aterior tambié tega solució, se completa los úmeros reales añadiedo la raíz cuadrada de 1, co lo que obteemos los úmeros complejos. A la raíz cuadrada de 1 se le deomia i: i = 1 es decir i = 1 y, cualquier úmero complejo se puede expresar de la forma: z = a + bi Veamos que la ecuació aterior tiee solució compleja: x = 1 por lo tato, x = ± 1 = ± i Es decir, las solucioes de la ecuació so +i y i. Veámoslo: i + 1 = = 0 ( i) + 1 = = 0 De este modo, cualquier ecuació poliómica tiee solució compleja. Cómo se represeta las potecias de i? Las potecias de i so fáciles de hallar y de represetar. Ta sólo es ecesario calcular las cuatro primeras porque el resto a partir de la quita potecia de i, i 5, se repite cíclicamete. Las potecias de i so fáciles de hallar: i 1 = i i = 1 i 3 = i i = i i = (i ) = ( 1) = 1 i 5 = i i = i vemos que a partir de i 5 se vuelve a repetir los valores, es decir, i 5 = i i 6 = i i 7 = i 3 i 8 = i
6 Cómo se calcula el opuesto y el cojugado de u úmero complejo? El opuesto de u úmero complejo z = a + bi, se idica z y es igual a z = a bi. El cojugado de dicho complejo z, se idica z, y es z = a bi Dado u úmero complejo z = a + bi, su opuesto, que se idica z, es el úmero complejo co los sigos opuestos, es decir, z = a bi. El cojugado de dicho complejo z, que se idica z, se costruye cambiado de sigo la parte imagiaria de z; así pues, z = a bi. Por ejemplo, el opuesto de z = 3 + i es z = 3 i. Mietras que su cojugado es z = 3 i. E este gráfico puede observarse el opuesto y el cojugado de z = 3 + i: 3
7 Cómo se realiza la suma y la resta etre complejos? Para sumar dos úmeros complejos z = a + bi y z = a + b i, se suma las partes reales e imagiarias, z + z = (a + a ) + (b + b )i. La resta se realiza de maera similar: z z = (a a ) + (b b )i. Para sumar dos úmeros complejos z = a + bi y z = a + b i, se suma las partes reales e imagiarias de la siguiete maera: z + z = (a + a ) + (b + b )i Por ejemplo, si z = + i y z = 1 + i z + z = ( + 1) + (1 + )i = 1 + 5i como puede verse gráficamete: La resta se realiza de modo similar, restado las partes reales e imagiarias: z z = (a a ) + (b b )i Por ejemplo, si z = + i y z = 1 + i z + z = ( 1) + (1 )i = 3 3i Cómo se realiza el producto de úmeros complejos? El producto de dos úmeros complejos z = a + bi y z = a + b i es igual a z z = (aa bb ) + (ab + a b)i. La multiplicació de dos úmeros complejos se realiza de maera semejate a la multiplicació de poliomios: si los úmeros so z = a + bi y z = a + b i, para obteer el resultado se sitúa uo sobre el otro, y se multiplica factor a factor, teiedo e cueta que i i = i = 1: a + bi a + b i aa + ab i bb i + a bi (aa bb ) + (ab + a b)i es decir, z z = (aa bb ) + (ab + a b)i Así, por ejemplo, si z = + i y z = 1 + i z z = ( 1 1 ) + ( + 1 1)i = 6 7i
8 Cómo se realiza el cociete de úmeros complejos? El cociete de dos úmeros complejos z = a + bi y z = a + b i es igual a z' a' a+ b' b ab' a' b = + i. z a + b a + b Para realizar el cociete de dos úmeros complejos se debe multiplicar umerador y deomiador por el cojugado del deomiador. Si los úmeros so z = a + bi y z = a + b i, y teiedo e cueta que i i = i = 1: z' a' + b' i ( a' + b' i)( a bi) ( a' a+ b' b) + ( ab' a' b) i = = = = z a + bi ( a + bi)( a bi) a + b aa ' + bb ' ab' ab ' = + i a + b a + b aa ' + bb ' ab' a ' b es decir, la parte real del cociete es y la parte imagiaria es. a + b a + b Así, por ejemplo, si z = 3 + i y z = 1 + i z ' 1 ( 3) ( 3) = + i = 0, + 1, i z
9 Cómo se represeta u úmero complejo e forma polar? U úmero complejo z = a + bi puede represetarse por z = r α, siedo r el módulo de z, y α el argumeto o águlo que forma co el eje real. Observado la represetació de u úmero complejo, es fácil comprobar que el úmero z puede tambié caracterizarse por la logitud del vector, deomiada módulo, z, y el águlo que forma co el eje real, deomiado argumeto. Si el úmero es z = 3 + i, la logitud del segmeto es z = 3 + = 5, mietras que el águlo puede establecerse buscado el arcotagete del cociete etre la parte imagiaria y la aparte real: α = arcta 0,93 rad. 3 E geeral, pues, u úmero complejo z = a + bi, o (a, b), puede represetarse por z = rα, siedo r el módulo de z, y α el águlo que forma dicho segmeto co el eje real: r = z = a + b α arcta b = a Cabe destacar que el argumeto debe ser u águlo etre 0 y p (e ocasioes es mejor utilizar águlos etre -p y p); si fuese mayor o meor, debe buscarse el águlo etre 0 y p que se correspoda; por ejemplo: el águlo p se correspode co el águlo p. el águlo 9p/ se correspode co el águlo p/. Cómo se trasforma u complejo de forma polar a forma biómica? La forma biómica de u úmero complejo e forma polar, z z = r cos α + i r se α. = r α, es Si z es u úmero complejo e forma polar, z = r α, para hallar su forma biómica, ta sólo debe calcularse las coordeadas del eje real e imagiario, (a, b): a = r cos α b = r se α es decir, la forma biómica es z = r cos α + i r se α. 6
10 Cómo se realiza la multiplicació y la divisió e forma polar? Para realizar el producto de dos úmeros complejos e forma polar, r α y s β, debe multiplicarse ambos módulos y poer por argumeto la suma de argumetos, r s ( r s) =. Para realizar la divisió, debe dividirse α β α +β ambos módulos y poer por argumeto la diferecia de argumetos, r α = ( r/ s) s. α β β La suma y la resta o suele realizarse e forma polar porque es mucho más fácil realizarlas e forma biómica. E cambio, la multiplicació y la divisió so más secillas e forma polar que e forma biómica. Para realizar el producto de dos úmeros complejos e forma polar, r α y s, debe β multiplicarse ambos módulos y poer por argumeto la suma de argumetos: rα sβ = ( r s) α + β Por ejemplo, el producto de z = y z ' = 3 es igual a 3 ( ) 7 z z' = 3 = 3 = como puede observarse e este gráfico: Para dividir dos úmeros complejos e forma polar, r α y s β, debe dividirse ambos módulos y poer por argumeto la diferecia de argumetos: rα = ( r/ s) α β s Por ejemplo, el cociete de z = y β 3 z 3 = = = z ' 3 z ' = 3 es igual a ( /3) ( /3) 3 1 7
11 Cómo se realiza la potecia de u úmero complejo e forma polar? La potecia de expoete de u úmero complejo r α es ( rα ) ( r ) =. α Para realizar la potecia de u úmero complejo, r α, debe observarse lo siguiete: ( r ) ( α = rα rα = r ) α ( r ) 3 ( ) ( ) ( 3 α = rα rα = rα r = r ) es decir, e geeral, ( rα ) = ( r ) α α 3α Esta expresió es válida tato para expoetes positivos como egativos. Por ejemplo: ( ) ( ) 3 = 3 = 81 = 81 = 811,7 8 8 todos los águlos debe estar etre 0 y = = = = ( ) 3 3 ( 3 3 ) ,8 todos los águlos debe estar etre 0 y Cómo se realiza las raíces de u úmero complejo e forma polar? La potecia de expoete de u úmero complejo r α es ( rα ) ( r ) =. α Ua raíz o es más que ua potecia de expoete quebrado. El proceso es, pues, similar a la obteció de ua potecia, auque el úmero de raíces de u úmero complejo es igual al ídice de la raíz. Por ejemplo: 1 1 ( ) = = = 1 8
12 Esto es así porque: = Ahora bie, es fácil observar que tambié: 3 = 3 = Así pues, para hallar las raíces de u úmero complejo e forma polar se lleva a cabo lo siguiete: 1 1 r ( ) α = r α = r = ( r) α + k k va desde 0 hasta 1 α+ k Por ejemplo, para hallar las raíces de ídice de la uidad, es decir, del úmero real 1, que e forma polar se escribe 10, debe hacerse lo siguiete: 1 1 ( ) ( ) 1 = 1 = 1 = 1 = k k 0+ k Para k = 0 1 = 1 = Para k = 1 1 = 1 = Para k = 1 = 1 = 1 0 Para k = 3 1 = 1 = k va desde 0 hasta 1 = 3 Por lo tato, las raíces de ídice de la uidad so: 10,, 1 y
13 10
Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi
u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo
Tema 1: Números Complejos
Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre
Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos
Tema 1 Los números reales Matemáticas I 1º Bachillerato 1
Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma
INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS
Capítulo INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Problema Calcula las partes real e imagiaria de los siguietes úmeros complejos: a) i + + i, b) + i i + i + i + i, c) d) + i), + ), + i e) f) ) + i 04, i +
Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx
.7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )
Números reales Números. irracionales. Figura 3.1. Construcción del conjunto de los números complejos.
Números Complejos El cojuto de los úmeros complejos La supremacía de los úmeros reales como cojuto umérico máximo duró poco; o existe u úmero real a que satisfaga la ecuació x 2 + a = 0. Para ello, es
PROGRESIONES ARITMÉTICAS.-
PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.
Los números complejos ( )
Los úmeros complejos (15.06.016) 1. Itroducció Estas otas se propoe u doble objetivo. Co los apartados a 8 se pretede dar uas ocioes básicas sobre los úmeros complejos que ayude a fijar los coceptos expuestos
Si la razón es q, y el primer termino es a, la progresión se escribe. POR LO TANTO EL ENÉSIMO TÉRMINO DE UNA P.G SE DETERMINA A PARTIR DE:
Ua progresió es geométrica, si cada termio después del primero se obtiee multiplicado el aterior por u valor costates Este valor costate se llama razó geométrica (q) E geeral: a a : a......... a ; 3 Si
Expresiones Algebraicas
Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,
SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.
CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio
1. Definiciones y propiedades básicas - C como extensión de R.
Facultad de Ciecias Exactas, Igeiería y Agrimesura Departameto de Matemática - Escuela de Ciecias Exactas y Naturales ÁLGEBRA y GEOMETRÍA ANALÍTICA I Liceciatura e Física - 2015 Equipo docete: Viviaa del
Técnicas para problemas de desigualdades
Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.
ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:
Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/
SUCESIONES DE NÚMEROS REALES. PROGRESIONES
www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos
TEMA 19 Cálculo de límites de sucesiones*
CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,
FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.
FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma
2.- ESPACIOS VECTORIALES. MATRICES.
2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces
ÁLGEBRA ELEMENTAL. Un término es una expresión algebraica que sólo contiene productos y cocientes (es decir, no aparecen sumas o restas).
ÁLGEBRA ELEMENTAL 1.- EXPRESIONES ALGEBRAICAS (GENERALIDADES) 1.1.- Alguas defiicioes Ua epresió algebraica es ua epresió matemática que cotiee úmeros, letras que represeta úmeros cualesquiera sigos matemáticos
5n la Unidad 4 hemos estudiado las razones trigonométricas de un ángulo y sus relaciones;
UNIDAD Fucioes trigoométricas y úmeros complejos la Uidad hemos estudiado las razoes trigoométricas de u águlo y sus relacioes; E e esta vamos a estudiar las fucioes circulares a que da lugar las mecioadas
UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda
UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar
6. Sucesiones y Series numéricas Series numéricas DEFINICIONES Y PROPIEDADES
6. Sucesioes y Series uméricas 6.2. Series uméricas 6.2.. DEFINICIONES Y PROPIEDADES Series de úmeros reales Se llama serie umérica o de úmeros reales a la suma idicada de los ifiitos térmios de ua sucesió:
Matemáticas I - 1 o BACHILLERATO Binomio de Newton
Matemáticas I - o Bachillerato Matemáticas I - o BACHILLERATO El biomio de Newto es ua fórmula que se utiliza para hacer el desarrollo de la potecia de u biomio elevado a ua potecia cualquiera de expoete
Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.
1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.
UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior
UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que
MEDIDAS DE TENDENCIA CENTRAL. _ xi
EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee
TEMA 2: LOS NÚMEROS COMPLEJOS
Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado
LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO
LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que
Límite y Continuidad de Funciones.
Límite Cotiuidad de Fucioes. Eleazar José García. [email protected]. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por
21 EJERCICIOS de POTENCIAS 4º ESO opc. B. impar (-2)
EJERCICIOS de POTENCIAS º ESO opc. B RECORDAR a m a a m m ( a ) a b a a (a b) a m a a b m a m+ b a a - a b a - b a Tambié es importate saber que algo ( base egativa) par (- ) ( base egativa) impar (- )
Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.
CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió
3Soluciones a los ejercicios y problemas PÁGINA 79
Solucioes a los ejercicios y problemas PÁGINA 79 Pág. P RACTICA Sucesioes formació térmio geeral Escribe los cico primeros térmios de las siguietes sucesioes: a) Cada térmio se obtiee sumado 7 al aterior.
Tema 3.- Números Complejos.
Álgebra. 200-2005. Igeieros Idustriales. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Tema 3.- Números Complejos. Los úmeros complejos. Operacioes. Las raíces de u poliomio real. Aplicacioes
Números complejos Susana Puddu
Números complejos Susaa Puddu 1. El plao complejo. E el cojuto C = IR IR defiimos la suma y el producto de dos elemetos de C de la siguiete maera a, b + c, d = a + c, b + d a, b.c, d = ac bd, ad + bc Dejamos
Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:
Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.
Intervalos de Confianza basados en una muestra. Instituto de Cálculo
Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza
A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.
. POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes
Unidad 1: Números Complejos
Uidad 1: Números Complejos 11 Itroducció Además de los cojutos de úmeros aturales, eteros, racioales y reales existe el cojuto de úmeros complejos que juega u rol importate o solo e matemáticas sio e las
Números naturales, enteros y racionales
Tema 2 Números aturales, eteros y racioales Estudiamos e este tema los úmeros reales que podemos ver como los más secillos e ituitivos. Empezamos detectado detro de R a los úmeros aturales, a partir de
BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON
págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:
CAPÍTULO VIII. CONVERGENCIA DE SUCESIONES. SECCIONES A. Criterios de convergencia. B. Ejercicios propuestos.
CAPÍTULO VIII CONVERGENCIA DE SUCESIONES SECCIONES A Criterios de covergecia B Ejercicios propuestos 347 A CRITERIOS DE CONVERGENCIA Ua fució cuyo domiio es el cojuto de los úmeros aturales se dice sucesió
Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0
Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada
Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS
Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes
ALGEBRA ELEMENTAL AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES.
ALGEBRA ELEMENTAL INDICE AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. Ley asociativa... Ley distriutiva... 1.- EXPONENTES Y RADICALES...
UNIVERSIDAD ANTONIO NARIÑO GUIA 1
UNIVERSIDAD ANTONIO NARIÑO GUIA ANTIDERIVADAS OBJETIVO: Apreder el cocepto de atiderivada e itegral idefiida y resolver itegrales usado las formulas básicas. ocepto: Dada ua fució, sabemos como hallar
POTENCIACIÓN Y RADICACIÓN EN. Recordemos en primer lugar algunas definiciones y propiedades de la potenciación y de la radicación de números reales:
POTENCIACIÓN Y RADICACIÓN EN Recordemos e primer lugr lgus defiicioes y propieddes de l potecició y de l rdicció de úmeros reles: PROPIEDADES DE LA POTENCIACIÓN Poteci de expoete cero : 0 = por defiició,
NÚMEROS COMPLEJOS: UNA PRESENTACIÓN GRÁFICA
NÚMEROS COMPLEJOS: UNA PRESENTACIÓN GRÁFICA José Luis Soto Muguía Departameto de Matemáticas Uiversidad de Soora. INTRODUCCIÓN. Desde los primeros años de la escuela, el estudiate se efreta e matemáticas
Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación
Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:
OPERACIONES ALGEBRAICAS FUNDAMENTALES
MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6
OPCIÓN A EJERCICIO 1_A
IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede
Prácticas Matlab ( 1) Práctica 7. Objetivos
PRÁCTICA SERIES DE POTENCIAS Prácticas Matlab Práctica 7 Objetivos Estudiar la covergecia putual de ua serie de potecias. Estimar gráficamete el itervalo de covergecia de ua serie de potecias. Aproimar
Aplicaciones del cálculo integral vectorial a la física
Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua [email protected] Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el
Tema 3. Polinomios y otras expresiones algebraicas (Estos conceptos están extraídos del libro Matemáticas 1 de Bachillerato.
UH ctualizació de oocimietos de Matemáticas ara Tema Poliomios y otras eresioes algebraicas Estos cocetos está etraídos del libro Matemáticas de achillerato McGrawHill Poliomios: oeracioes co oliomios
SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.
págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,
Problemas de Sucesiones
Capítulo Problemas de Sucesioes Problema. Calcular los siguietes ites: l se i e + 3 ii 5 iii l iv + + + Solució: l se i [ escala de iitos se acotada ] 0 acotada 0. e + e ii 5 + [ úmero meor que uo 5 ]
ORGANIZACIÓN DE LOS DATOS.
ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar
Series de potencias. Desarrollos en serie de Taylor
Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de
Sea cualquier número real. Designamos con la letra el mayor entero que no supere a. Si no es entero, se tiene = + ; 1 +
4. 4.. Fraccioes cotiuas: prelimiares. Demostrar el Algoritmo de Euclides. Sea cualquier úmero real. Desigamos co la letra el mayor etero que o supere a. Si o es etero, se tiee + ; >. Exactamete igual,
c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5
Aexo Calculadora La proliferació de las calculadoras e la vida cotidiaa obliga a profesores y padres a replatearse su uso. Los profesores debemos eseñar a los alumos su utilizació. Pero será los profesores
Sucesiones numéricas.
SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El
OPERACIONES CON POLINOMIOS.
OPERACIONES CON POLINOMIOS. EXPRESIONES ALGEBRAICAS. Ua epresió ateática que usa úeros o variables o abos para idicar productos o cocietes es u tério. Los térios,, (ab), so todos epresioes algebraicas.
TEMA 5: INTERPOLACIÓN
5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x
SUCESIONES Y SERIES DE FUNCIONES
CAPÍTULO XV. SUCESIONES Y SERIES DE FUNCIONES SECCIONES A. Campo de covergecia. Covergecia uiforme. B. Series de potecias. Itervalos de covergecia. C. Desarrollo de fucioes e series de potecias. D. Aplicacioes
Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios
Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua
2 Halla la diferencia de una progresión aritmética sabiendo que el segundo término es 8 y el quinto 17.
EJERCICIOS EXTRA PROGERSIONES ARITMETICAS Y GEOMETRICAS 1 15 Halla la suma de los 1 primeros térmios de la progresió aritmética: 8,, 7,... Halla la diferecia de ua progresió aritmética sabiedo que el segudo
La sucesión de Lucas
a sucesió de ucas María Isabel Viggiai Rocha Cosideramos la sucesió umérica { } defiida por: - - si 3 y y 3. Esta sucesió es coocida como la sucesió de ucas y a sus térmios se los llama úmeros de ucas.
SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que
SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso
84 ejercicios de repaso de NÚMERO REAL, POLINOMIOS, ECUACIONES e INECUACIONES
8 ejercicios de repaso de NÚMERO REAL, POLINOMIOS, ECUACIONES e INECUACIONES Repaso úmero real. Itervalos: 1. Separar los siguietes úmeros e racioales o irracioales, idicado, de la forma más secilla posible,
Potencias, radicales y logaritmos
. Los úmeros egativos Potecias, radicales y logaritmos BLOQUE I: ARTIMÉTICA El tema comieza co el estudio de las potecias; éste se iicia co las potecias de expoete atural, se prosigue co las de expoete
Profr. Efraín Soto Apolinar. Área bajo una curva
Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura
PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O
PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros
El tema de este capítulo es el estudio de las sucesiones de números reales. Una sucesión no es más que un conjunto ordenado de números.
Capítulo 3 Sucesioes 3 Defiicioes Geerales El tema de este capítulo es el estudio de las sucesioes de úmeros reales Ua sucesió o es más que u cojuto ordeado de úmeros Por ejemplo, 2, 4, 6, 8, 0, 2,, 2,
Sucesiones de números reales
Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54
3. Volumen de un sólido.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos
PRÁCTICA POLINOMIOS DE TAYLOR. RESTO DE LAGRANGE CURSO Práctica 6 (5- XI-2014)
PRÁCTICA POLINOMIOS DE TAYLOR. RESTO DE LAGRANGE CURSO 04-05 Prácticas Matlab Práctica 6 (5- XI-04) Objetivos Represetar ua sucesió de térmios Itroducir el cocepto de serie como suma ifiita de los térmios
Cálculo de límites Criterio de Stolz. Tema 8
Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que
FUERZAS EN LOS ENGRANAJES
FUERZAS EN LOS ENGRANAJES Además de la omeclatura, tipo y aplicacioes de los egraajes, el igeiero agrícola debe coocer la relació que existe etre los egraajes y las fuerzas que actúa sobre ellos. Esta
ESTADISTICA UNIDIMENSIONAL
ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate
Juan José Font Ferrandis. Salvador Hernández Muñoz. Sergio Macario Vives
CÁLCULO Jua José Fot Ferradis Salvador Herádez Muñoz Sergio Macario Vives Ídice geeral. Campos Numéricos.. El úmero real.......................... 2... Desigualdades....................... 2..2. Valor
SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A
IES Fco Ayala de Graada Juio de 014 (Colisioes Modelo 3) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO 3 (COLISIONES) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices
Potencias y raíces de números enteros
Potecias y raíces de úmeros eteros Objetivos E esta quicea aprederás a: Expresar multiplicacioes de u mismo úmero e forma de potecia. Realizar operacioes co potecias. Trabajar co potecias de base 0. Expresar
Trabajo Especial Estadística
Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,
Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z <
Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD La distribució ormal: La distribució ormal, campaa de Gauss o, curva ormal, tambié defiida por De Moivre. Características y propiedades: La siguiete fórmula
Tema 5 Series numéricas
Tema 5 Series uméricas Objetivos 1. Defiir series co wxmaxima. 2. Calcular sumas parciales de ua serie. 3. Iterpretar la defiició de suma de ua serie. 4. Calcular la suma de ua serie geométrica. 5. Calcular
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS 4º ESO º Trimestre Autor: Vicete Adsuara Ucedo INDICE Tema : Vectores e el Plao.. Ejercicios Tema 9 Tema : Depedecia Lieal...7 Ejercicios Tema. 0 Tema 3: El Plao Afí...... Ejercicios
Cómo simplificar expresiones algebraicas?
Cómo simplificar expresioes algebraicas? Prof. Jea-Pierre Marcaillou OBJETIVOS: La calculadora CASIO ClassPad 330 dispoe de los comados [simplify] y [combie] del submeú desplegable Trasformació del meú
IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió
+ + + = 6 no parece ayudarnos a comprender cómo llegar a conjeturar esta relación. Intentamos acá una aproximación geométrica.
http://www.ricomatematico.com La fórmula para la suma de los cuadrados de los primeros úmeros aturales obteida visualmete Mario Augusto Buge Uiversidad de Bueos AIres Ciclo Básico Comú Departameto de Matemática
