Tema 1: Números Complejos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 1: Números Complejos"

Transcripción

1 Números Complejos Tema 1: Números Complejos Deició U úmero complejo es u par ordeado (x, y) de úmeros reales Éste puede iterpretarse como u puto del plao cuya abscisa es x y cuya ordeada es y El cojuto de todos los úmeros complejos se deota por C Diremos que dos úmeros complejos (a, b) y (c, d) so iguales si a = c y b = d U úmero real x puede ser iterpretado como el úmero complejo (x, 0) Por medio de esta ideticació podemos decir que R es u subcojuto de C Operacioes Suma: Si (a, b), (c, d) C, etoces (a, b) + (c, d) = (a + c, b + d) Se comprueba que la suma tiee la propiedad asociativa, comutativa, posee elemeto eutro (0, 0) y cada (a, b) C, tiee opuesto ( a, b) Producto: Si (a, b), (c, d) C, etoces (a, b) (c, d) = (ac bd, ad + bc) Se comprueba que el producto tiee la propiedad asociativa, ( comutativa, posee elemeto a eutro (1, 0) y cada (a, b) C {(0, 0)}, tiee iverso a 2 + b, b ) Además, el 2 a 2 + b 2 producto es distributivo respecto de la suma Uidad imagiaria Hemos dado ua deició especial de producto y os ecotramos co la siguiete situació (0, 1) (0, 1) = ( 1, 0) es decir, hemos ecotrado u úmero complejo cuyo cuadrado podemos ideticar co 1 Lo llamaremos uidad imagiaria y lo deotaremos co i Observemos el comportamieto de la uidad imagiaria i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 i 5 = i i 6 = 1 i 7 = i i 8 = 1 i 9 = i i 10 = 1 i 11 = i E cosecuecia, si N, teemos i = i r siedo r el resto de dividir etre 4 1

2 Si z = (x, y) C, etoces se puede escribir como sigue z = (x, y) = (x, 0) + (0, y) = (x, 0) + (y, 0) (0, 1) x + y i Formas de represetar u úmero complejo Forma cartesiaa: z = (x, y) Forma biómica: z = x + y i Módulo y Argumeto de u Número Complejo Deicioes Dado u úmero complejo z = x+y i, se deomia parte real de z al úmero real x y se deota Re(z) Llamaremos parte imagiaria de z al úmero real y, lo deotaremos co Im(z) Así teemos z = Re(z) + Im(z) i U úmero complejo cuya parte real sea 0 será llamado imagiario puro Deició Dado el úmero complejo z = x + y i, se deomia cojugado de z al úmero complejo x y i y lo deotaremos z z = x y i Proposició Si z, w C, etoces se verica: (1) z + w = z + w (2) z w = z w (3) α z = α z co α R (4) z = z (5) z z = Re(z) 2 + Im(z) 2 (6) Re(z) = 1 (z + z) 2 (7) Im(z) = 1 2i (z z) (8) si z 0, etoces 1 z = z z z Deició A cada úmero complejo z se asiga u úmero real o egativo deomiado módulo de z que deimos como la raíz cuadrada positiva de z z y deotamos co z z = + z z Proposició Si z, w C, etoces se verica: (1) z = 0 z = 0 (2) z w = z w (3) Re(z) z, Im(z) z (4) z = z (5) z + w z + w (6) z w z w (7) Si z 0, etoces w = w z z Deició A cada úmero complejo o ulo z = (x, y) le asociamos u úmero real que deomiamos argumeto de z y que deimos como cualquier úmero real θ que verique x = z cos(θ) y = z si(θ) 2

3 Escribiremos arg(z) = θ Como las fucioes seo y coseo so fucioes periódicas, podemos armar que si θ es u argumeto de z tambié lo es θ + 2kπ co k Z Pero cada z C {(0, 0)} posee u úico argumeto e el itervalo ( π, π] que se deomia argumeto pricipal de z Deició Si z es u úmero complejo o ulo, podemos calcular su módulo y u argumeto de z y, e cosecuecia, podemos escribir z = x + y i = ( z cos(θ) ) + ( z si(θ) ) i = z ( cos(θ) + si(θ) i ) = z e θ i Esta última forma de represetar u úmero complejo es coocida como forma polar de z Nota La forma polar resulta muy útil para multiplicar y dividir úmeros complejos o ulos: si z = z e θ i y w = w e α i, etoces z w = z w e (θ+α) i z w = z w e(θ α) i Resume U úmero complejo o ulo z se puede represetar de las siguietes formas: Forma cartesiaa: z = (x, y) Forma biómica: z = x + y i Forma polar: z = z e θ i Potecias y Raíces de u Número Complejo Poteciació Sea z u úmero complejo o ulo y Z Llamaremos potecia -ésima de z y escribiremos z a z = z z, z 0 = 1 si 0 z = (z 1 ) si > 0 Fórmula de De Moivre (e θ i ) m = e (mθ) i co m Z Cálculo de potecias Si z = z e θ i es u úmero complejo o ulo y m Z, etoces z m = ( z e θ i ) m = z m ( e θ i ) m = z m ( e (mθ) i ) Radicació Sea z u úmero complejo o ulo y N Diremos que w C es ua raíz -ésima de z si w = z Si z = 1, hablaremos de raíces -ésimas de la uidad 3

4 Cálculo de raíces Cosideremos u úmero complejo o ulo z = z e θ i y N, pretedemos ecotrar u úmero complejo w = w e α i tal que w = z, esto es, w = z ( w e α i) = z e θ i w e (α) i = z e θ i Por tato, w = z y α = θ + 2kπ co k Z Como la fució seo y coseo so fucioes periódicas (2π), de los iitos argumetos que existe bastará cosiderar k {0, 1,, 1}, es decir, los argumetos θ, θ + 2π,, para costruir las raíces -ésimas de z distitas: θ + 2( 1)π w 1 = z e θ, w2 = z e θ+2π,, w = z e θ+2( 1)π Las raíces -ésimas de z reside e ua circuferecia cetrada e el orige y de radio z y determia los vértices de u polígoo regular de lados ( 3) Problemas Sesió 1 (PI) Efectuar las operacioes siguietes ( 1 (a) ) (2 3 i 12 ) i (b) (2 3 i)(3 2 3 i) (c) 3 + i 2 i (d) 5 i 5 + i (2 3i)(3 2i) (2 3i)(3 + 2i) (e) (f) (g) (1 i)2 i (1 + i) 2 (3 + 2i) (2 + i) 2 + i (PII) Desarrollado por las fórmulas del biomio de Newto calcular: ( (a) (1 i) 3 (b) ( 1 + i) i (c) 2 3 i (PIII) Hallar el valor x para que el producto (2 i)(x + 3i) sea u úmero imagiario puro (PIV) Hallar el valor de x para que el cociete 2 + xi sea u úmero real 3 i (PV) Hallar el valor de x para que el cociete 1 + 3i 1 + xi tega módulo 5 (P4)(pág 38) Prueba que z u z u (P6)(pág 38) Describe los siguietes subcojutos del plao complejo: (i) z 2 > z 3 (b) 1 z = z (c) z 2 = Im(z) 4 ) 7

5 (PVI) Demostrar que para cualesquiera úmeros complejos se cumple que: (1 z 2 )(1 w 2 ) = 1 z w 2 z w 2 Problemas Sesió 2 (PI) Calcula las potecias que se idica, efectuado las operacioes e forma polar, y expresado el resultado e forma biómica: (i) ( i) 6 (ii) ( ) 10 1 i 1 + (iii) (1 + 3 i) 3 3 i (1 + i) 2 (PII) Calcular: (a) i (b) (1 + i) 53 (c) i (P16)(pág 40) Calcular las raíces cúbicas de -i (P21)(pág 41) Calcular las raíces cúbicas de la uidad Si llamamos w y w a las dos raíces complejas, comprueba que se verica las relacioes siguietes: (i) 1 + w + w 2 = 0 (ii) w = w 2 (iii) w = (w ) 2 (iv) w w = 1 (PIII) Resolver las ecuacioes que se idica: (a) 4x = 0 (b) x 3 27 = 0 (c) x = 0 5

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna, Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

Números Complejos. Capítulo Los números complejos. 1.2 El plano complejo. 2 Matemáticas 1 : Preliminares

Números Complejos. Capítulo Los números complejos. 1.2 El plano complejo. 2 Matemáticas 1 : Preliminares 2 Matemáticas 1 : Prelimiares Capítulo 1 Números Complejos Este tema de úmeros complejos es más iformativo que recordatorio, siedo el uso explícito de los complejos escaso e las asigaturas de Matemáticas

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I - Ferado Sáchez - - Números Cálculo I complejos 09 0 07 E el cuerpo de los úmeros reales ecuacioes como x + = 0 o tiee solució: el poliomio x + o tiee raíces reales. Hace falta exteder el cocepto de úmero

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS º BCT DPTO DE MATEMÁTICAS T4: NÚMEROS COMPLEJOS - LOS NÚMEROS COMPLEJOS.- INTRODUCCIÓN: LAS ECUACIONES DE º GRADO CON SOLUCIONES IMPOSIBLES Desde el siglo XVI al XVIII llamaro la ateció, por la forma de

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

Unidad 1: Números Complejos

Unidad 1: Números Complejos Uidad : Números Complejos. Itroducció Además de los cojutos de úmeros aturales, eteros, racioales y reales existe el cojuto de úmeros complejos que juega u rol importate o solo e matemáticas sio e las

Más detalles

Tema 3.- Números Complejos.

Tema 3.- Números Complejos. Álgebra. 2004-2005. Igeieros Idustriales. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Tema 3.- Números Complejos. Los úmeros complejos. Operacioes. Las raíces de u poliomio real. Aplicacioes

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos Grados E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Coocimietos previos Para poder seguir adecuadamete este tema, se requiere que el alumo repase y poga al día sus coocimietos e los siguietes

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

1. Definiciones y propiedades básicas - C como extensión de R.

1. Definiciones y propiedades básicas - C como extensión de R. Facultad de Ciecias Exactas, Igeiería y Agrimesura Departameto de Matemática - Escuela de Ciecias Exactas y Naturales ÁLGEBRA y GEOMETRÍA ANALÍTICA I Liceciatura e Física - 2015 Equipo docete: Viviaa del

Más detalles

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS

INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Capítulo INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Problema Calcula las partes real e imagiaria de los siguietes úmeros complejos: a) i + + i, b) + i i + i + i + i, c) d) + i), + ), + i e) f) ) + i 04, i +

Más detalles

Números complejos Susana Puddu

Números complejos Susana Puddu Números complejos Susaa Puddu 1. El plao complejo. E el cojuto C = IR IR defiimos la suma y el producto de dos elemetos de C de la siguiete maera a, b + c, d = a + c, b + d a, b.c, d = ac bd, ad + bc Dejamos

Más detalles

Unidad I: Números Complejos

Unidad I: Números Complejos Uidad I: Números Complejos INTRODUCCIÓN Desde Al'Khwarimi (800 DC), quie fuera precursor del Álgebra, sólo se obteía las solucioes de las raíces cuadradas de úmeros positivos El matemático italiao Girolamo

Más detalles

cuadrado sea igual a -1. El conjunto de los números complejos es una ampliación del conjunto de los números reales.

cuadrado sea igual a -1. El conjunto de los números complejos es una ampliación del conjunto de los números reales. NUMEROS COMPLEJOS El cojuto de los úmeros complejos fue creado para poder resolver alguos problemas matemáticos que o tiee solució detro del cojuto de los úmeros reales. Por ejemplo x 2 + 1 = 0 o tiee

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile 12.4. Raíces de la uidad Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Itroducció al Álgebra 08-1 Importate: Visita regularmete http://www.dim.uchile.cl/~algebra.

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2011 Semana 13: Lunes 30 de Mayo Viernes 3 de Junio. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2011 Semana 13: Lunes 30 de Mayo Viernes 3 de Junio. Contenidos Complemeto Coordiació de Matemática I (MAT01) 1 er Semestre de 011 Semaa 13: Lues 30 de Mayo Vieres 3 de Juio Coteidos Clase 1: Forma Polar de u Número Complejo. Teorema de Moivre. Clase : Raíces de la

Más detalles

Los números complejos ( )

Los números complejos ( ) Los úmeros complejos (15.06.016) 1. Itroducció Estas otas se propoe u doble objetivo. Co los apartados a 8 se pretede dar uas ocioes básicas sobre los úmeros complejos que ayude a fijar los coceptos expuestos

Más detalles

Tema 4: Números Complejos

Tema 4: Números Complejos Tema : Números Complejos 1.- Itroducció.- Forma biómica del úmero Complejo.- Operacioes e forma biómica.- Propiedades algebraicas de los úmeros Complejos 5.- Forma Polar y trigoométrica del úmero Complejo

Más detalles

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que Sea V u cojuto dode hemos defiido ua ley u operació itera, que desigaremos por + V V. Sea K u cuerpo (comutativo) y sea, por último, ua operació extera que desigaremos por K V V. Diremos que (V,+, ) tiee

Más detalles

1 SISTEMA DE NUMEROS COMPLEJOS

1 SISTEMA DE NUMEROS COMPLEJOS UNIVERSIDAD DEL VALLE FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMATICAS Prof DORIS HINESTROZA SISTEMA DE NUMEROS COMPLEJOS Sea C el cojuto de parejas ordeadas (a, b) deúmeros reales, esto es C = {(a, b)

Más detalles

Eje I: Números y Operaciones

Eje I: Números y Operaciones Colegio Provicial de Educació Secudaria Nº Gregorio Álvarez Maestro Patagóico C I C L O Eje I: Números y Operacioes L E C T I V O 0 1 8 ALUMNO: PROFESORA: MARÍA ELISA PALMAS Eje I: Números y Operacioes

Más detalles

Capítulo III Teoría de grupos

Capítulo III Teoría de grupos Capítulo III Teoría de grupos Tema 1. Leyes de composició iteras. 1.1 Leyes de composició iteras. Dado u cojuto A, se defie como Ley de composició itera defiida e A a toda aplicació, A A A ( x, y) x y

Más detalles

La Teoría Introducción:

La Teoría Introducción: La Teoría Itroducció: La ecesidad de dar salida a ecuacioes del tipo x + 1=0, así como el coflicto que geera el hecho de o teer solució e el cuerpo de los úmeros reales el cálculo de radicales de ídice

Más detalles

ARITMÉTICA MODULAR. CONGRUENCIAS ENTERAS Carl Friedrich Gauss ( )

ARITMÉTICA MODULAR. CONGRUENCIAS ENTERAS Carl Friedrich Gauss ( ) CONGRUENCIAS ENTERAS Carl Friedrich Gauss (1777 1855) ARITMÉTICA MODULAR Defiició Sea m, a, b. a es cogruete co b módulo m si y sólo si ma b. a b (mód m) La relació de cogruecia es ua relació de equivalecia:

Más detalles

Tema 4: Números Complejos

Tema 4: Números Complejos Tema : Números Complejos 1.- Itroducció.- Forma biómica del úmero Complejo.- Operacioes e forma biómica.- Forma Polar y trigoométrica del úmero Complejo 5.- Operacioes e forma Polar 6.- Radicació de úmeros

Más detalles

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton Estalmat Madrid Miguel Reyes Diámica compleja Cojutos de Julia y Madelbrot Método de Newto Los úmeros complejos Los úmeros complejos so los úmeros de la forma a dode a y b so úmeros reales e i es la uidad

Más detalles

AMPLIACIÓN DE MATEMÁTICAS APLICACIONES.

AMPLIACIÓN DE MATEMÁTICAS APLICACIONES. AMPLIACIÓN DE MATEMÁTICAS APLICACIONES. Ejemplo 1. La ecuació poliómica x 2 + 2x + 2 = 0, co coeficietes reales, tiee dos solucioes complejas cojugadas: 1 + i y 1 i. Este o es u hecho aislado. Proposició

Más detalles

Los números complejos ( )

Los números complejos ( ) Los úmeros complejos (15.06.016) 1. Itroducció Estas otas se propoe u doble objetivo. Co los apartados a 8 se pretede dar uas ocioes básicas sobre los úmeros complejos que ayude a fijar los coceptos expuestos

Más detalles

Apéndice Números Complejos

Apéndice Números Complejos Aédice Números Comlejos 1 Números comlejos. Geeralidades. Oeracioes co úmeros comlejos Potecia y raíz de úmeros comlejos. 4 Fució exoecial y forma exoecial. E.U.Politécica de Sevilla. Fudametos Matemáticos

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Teoría: Números Complejos. Necesidad de ampliar el conjunto de los números reales

Teoría: Números Complejos. Necesidad de ampliar el conjunto de los números reales Necesidad de ampliar el cojuto de los úmeros reales Defiició El cojuto de los úmeros complejos se defie como el cojuto R co la suma y el producto complejo defiido ateriormete. Es decir, = (, +,*) C R.

Más detalles

MATEMÁTICAS 2. GIE. El cuerpo de los números complejos.

MATEMÁTICAS 2. GIE. El cuerpo de los números complejos. MATEMÁTICAS. GIE. El cuerpo de los úmeros complejos.. Expresar los siguietes úmeros complejos e forma biómica: (a) ( + i) 3 (c) +3i 3 4i (e) i 5 + i 6 (g) + i + i + i 3 (b) i (d) (+i 3) 3 (f) π/ (h) π/4.

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Series de funciones en C z n z. f n (z) converge puntualmente en D C, entonces

Series de funciones en C z n z. f n (z) converge puntualmente en D C, entonces Series de fucioes e C. Defiició. Sea f : D C;, ua sucesió de fucioes. Sea S : D C la sucesió defiida por S (z) = f (z). La serie f (z) se dice covergete e z D si la sucesió {S (z)} es k= covergete e z

Más detalles

EXAMEN TEMA 1. Sucesiones, series, dos variables

EXAMEN TEMA 1. Sucesiones, series, dos variables GRUPO Ma 4-5) CÁLCULO Facultad de Iformática UPM) 5-Juio - 05 Tiempo: horas º º 3º 4º 5º suma EXAMEN TEMA. Sucesioes, series, dos variables. ptos.) Determiar el valor que ha de teer a R para que se cumpla

Más detalles

NÚMERO COMPLEJO. Nota decimos que a es su parte real (anotamos Re(z) = a ) y b su parte imaginaria (anotamos Im(z) = b )

NÚMERO COMPLEJO. Nota decimos que a es su parte real (anotamos Re(z) = a ) y b su parte imaginaria (anotamos Im(z) = b ) NÚMERO COMPLEJO Fudametos de la Matemática 1 Defiició Si llamamos C = R R y defiimos: : C C C ; ( a, a ') ( b, b ') = ( a b, a ' b ') : C C C ; ( a, b) ( a ', b ') = ( aa ' bb ', ab ' a ' b) A la estructura

Más detalles

Universidad Diego Portales Facultad de Ingeniería. Laboratorio Nº 11. Números Complejos

Universidad Diego Portales Facultad de Ingeniería. Laboratorio Nº 11. Números Complejos Uiversidad Diego Portales Facultad de Igeiería Istituto de Ciecias Básicas Asigatura: Álgebra Laboratorio Nº Números Complejos Coteidos Álgebra de úmeros complejos Resolució de ecuacioes complejas Forma

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

162 ÁLGEBRA Y FUNDAMENTOS: UNA INTRODUCCIÓN. (i) Efectuando el producto, tenemos. (ii) De forma semejente, si z 2 6= 0, tenemos

162 ÁLGEBRA Y FUNDAMENTOS: UNA INTRODUCCIÓN. (i) Efectuando el producto, tenemos. (ii) De forma semejente, si z 2 6= 0, tenemos 162 ÁLGEBRA Y FUNDAMENTOS: UNA INTRODUCCIÓN (i) Efectuado el roducto, teemos z 1 z 2 = jz 1 jjz 2 j (cos ' 1 + i se ' 1 )(cos ' 2 + i se ' 2 ) = jz 1 jjz 2 j [(cos ' 1 cos ' 2 se ' 1 se ' 2 )+(se ' 1 cos

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

Números reales. Operaciones

Números reales. Operaciones Números reales. Operacioes Matemáticas I 1 Números reales. Operacioes Números racioales. Caracterizació. Recuerda que u úmero r es racioal si se puede poer e forma de fracció de úmeros eteros de la forma

Más detalles

Soluciones de la relación de ejercicios del TEMA 1

Soluciones de la relación de ejercicios del TEMA 1 1 Solucioes de la relació de ejercicios del TEMA 1 1. Demuestraqueelcojutoformadoporlosúmerosprimosesifiito. Aprovechamos este ejercicio para hacer uso de las llamadas demostracioes por reducció al absurdo.

Más detalles

ALGEBRA, CÁLCULO NUMÉRICO Y GEOMETRÍA ANALÍTICA Capítulo 3

ALGEBRA, CÁLCULO NUMÉRICO Y GEOMETRÍA ANALÍTICA Capítulo 3 Números Complejos Itroducció E este capítulo itroducimos uo de los coceptos más importates de la Matemática. E el Reacimieto los matemáticos pesaba que ya se había descubierto todos los úmeros. Todos los

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

Unidad 10: LÍMITES DE FUNCIONES

Unidad 10: LÍMITES DE FUNCIONES Uidad 1: LÍMITES DE FUNCIONES LÍMITES 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Ua sucesió de úmeros reales es u cojuto ordeado de iiitos úmeros reales. Los úmeros reales a1, a,..., a,... se llama térmios,

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales 38 Matemáticas : Cálculo diferecial e IR Capítulo Sucesioes y series de úmeros reales Sucesioes Defiició 37- Llamaremos sucesió de úmeros reales a cualquier aplicació f: N R y la represetaremos por { a,

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

Números reales Números. irracionales. Figura 3.1. Construcción del conjunto de los números complejos.

Números reales Números. irracionales. Figura 3.1. Construcción del conjunto de los números complejos. Números Complejos El cojuto de los úmeros complejos La supremacía de los úmeros reales como cojuto umérico máximo duró poco; o existe u úmero real a que satisfaga la ecuació x 2 + a = 0. Para ello, es

Más detalles

DEFINICIÓN DE PRODUCTO CARTESIANO:

DEFINICIÓN DE PRODUCTO CARTESIANO: Fucioes DEFINICIÓN DE PRODUCTO CARTESIANO: Dados dos cojutos A y B, llamaremos producto cartesiao de A por B (lo aotaremos A B) al cojuto formado por todos los pares ordeados que tiee como primera compoete

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - Curso de Verao 016 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c y

Más detalles

Tema 1.1: El cuerpo de los números complejos. Módulo y argumento de un número complejo

Tema 1.1: El cuerpo de los números complejos. Módulo y argumento de un número complejo Tema 1.1: El cuerpo de los úmeros complejos. Módulo y argumeto de u úmero complejo Facultad de Ciecias Experimetales, Curso 2008-09 Erique de Amo, Uiversidad de Almería Notació. N deotará el cojuto de

Más detalles

Tema 2: Diagonalización de matrices cuadradas

Tema 2: Diagonalización de matrices cuadradas Departameto de Aálisis Ecoómico UNIVERSIDAD DE ZARAGOZA Tema : Diagoalizació de matrices cuadradas.1. El cojuto R Defiició: Dados úmeros reales x 1, x,..., x R, se llama -tupla ordeada a x = ( x 1,, x,...,

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

4. Sucesiones de números reales

4. Sucesiones de números reales 4. Sucesioes de úmeros reales Aálisis de Variable Real 2014 2015 Ídice 1. Sucesioes y límites. Coceptos básicos 2 1.1. Defiició de sucesió... 2 1.2. Sucesioes covergetes... 2 1.3. Sucesioes acotadas...

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

Construcción de los números reales.

Construcción de los números reales. B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x

Más detalles

NÚMEROS COMPLEJOS. el conjunto de todos los pares ordenados

NÚMEROS COMPLEJOS. el conjunto de todos los pares ordenados NÚMEROS COMPLEJOS 0.- INTRODUCCIÓN Represetareos por reales: el cojuto de todos los pares ordeados Dicho cojuto se deoia plao cartesiao. xy, : xy, x, y de úeros Recuerda que sabeos suar pares ordeados

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Unidad 1: Números Complejos

Unidad 1: Números Complejos Uidad 1: Números Complejos 11 Itroducció Además de los cojutos de úmeros aturales, eteros, racioales y reales existe el cojuto de úmeros complejos que juega u rol importate o solo e matemáticas sio e las

Más detalles

CLAUSURA ALGEBRAICA Y NÚMEROS COMPLEJOS

CLAUSURA ALGEBRAICA Y NÚMEROS COMPLEJOS Clausura algebraica y úmeros complejos CLAUSURA ALGEBRAICA Y NÚEROS COPLEJOS. Itroducció Nos pregutamos Porqué o podemos resolver ciertas ecuacioes poliómicas e u determiado campo de úmeros?. Geeralmete,

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 5: Series de potecias. Operacioes co series de potecias. Series de potecias Elaborado por los profesores Edgar Cabello y Marcos Gozález Cuado estudiamos las series geométricas, demostramos la

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 1 Conjuntos en C - Topología en C - Sucesiones de números complejos

MATEMATICAS ESPECIALES I PRACTICA 1 Conjuntos en C - Topología en C - Sucesiones de números complejos MATEMATICAS ESPECIALES I - 07 PRACTICA Cojutos e C - Topología e C - Sucesioes de úmeros complejos. Represetar e el plao complejo la familia de curvas defiidas por: a) Re( z ) = c b) Re(z ) = c c) Im(z)

Más detalles

MATEMÁTICA LICENCIATURA EN RECURSOS HUMANOS PROFESORA CELIA SÁNCHEZ

MATEMÁTICA LICENCIATURA EN RECURSOS HUMANOS PROFESORA CELIA SÁNCHEZ MATEMÁTICA LICENCIATURA EN RECURSOS HUMANOS PROFESORA CELIA SÁNCHEZ UNIDAD NÚMEROS REALES INTERVALOS ENTORNOS VALOR ABSOLUTO - INECUACIONES MATEMÁTICA PROF. CELIA SÁNCHEZ INTRODUCCIÓN E esta uidad, osotros

Más detalles

Hoja de Problemas Tema 3. (Sucesiones y series)

Hoja de Problemas Tema 3. (Sucesiones y series) Depto. de Matemáticas Cálculo (Ig. de Telecom.) Curso 23-24 Hoja de Problemas Tema 3 (Sucesioes y series) Sucesioes de úmeros reales. Sea {a } N, {b } N sucesioes de úmeros reales. Demostrar o refutar

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

a = n Clase 11 Tema: Radicación en los números reales Matemáticas 9 Bimestre: I Número de clase: 11 Esta clase tiene video

a = n Clase 11 Tema: Radicación en los números reales Matemáticas 9 Bimestre: I Número de clase: 11 Esta clase tiene video Matemáticas 9 Bimestre: I Número de clase: Clase Actividad Esta clase tiee video Tema: Radicació e los úmeros reales Lea la siguiete iformació. Si es u úmero etero positivo, etoces la raíz -ésima de u

Más detalles

Funciones de variable compleja

Funciones de variable compleja Tema 10 Fucioes de variable compleja 10.1 Fucioes complejas de variable compleja Defiició 10.1 Ua fució compleja de variable compleja es ua aplicació f: A C dode A C. Para cada z A, fz) C, luego fz) =

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

Convolución discreta cíclica

Convolución discreta cíclica Covolució discreta cíclica Estos aputes está escritos por Darío Coutiño Aquio y Egor Maximeko. Objetivos. Defiir la covolució discreta cíclica y demostrar el teorema sobre la covolució discreta cíclica

Más detalles

Ejercicio 44 Calcula el volumen limitado por la superficie z = 1+2x+3y y los cuatro lados verticales del rectángulo D = [1, 2] [0, 1]. (x + y)dxdy.

Ejercicio 44 Calcula el volumen limitado por la superficie z = 1+2x+3y y los cuatro lados verticales del rectángulo D = [1, 2] [0, 1]. (x + y)dxdy. BLOQUE II Itegració múltiple Ejercicio 44 Calcula el volume limitado por la superficie z = x3y y los cuatro lados verticales del rectágulo = [, ] [0, ]. Ejercicio 45 Sea = {(x, y) R : 0 x, x y x }. Calcular

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n

Serie de Potencias. Denición 1. A una serie de la forma. a n (x c) n. a n x n Uidad 5 Covergecia Uiforme 5.1 Series de potecias y radio de covergecia. Serie de Potecias Deició 1. A ua serie de la forma a () dode a 1, a 2,..., a,... so costates y c R es jo, se le llama serie de potecias

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

bc (b) a b + c d = ad+bc a b = b a

bc (b) a b + c d = ad+bc a b = b a 1 Cojutos 1 Describa los elemetos de los siguietes cojutos A = { x x 1 = 0 } D = { x x 3 x + x = } B = { x x 1 = 0 } E = { x x + 8 = 9 } C = {x x + 8 = 9} F = { x x + 16x = 17 } Para los cojutos del ejercicio

Más detalles

1.3 Introducción a la combinatoria

1.3 Introducción a la combinatoria .3 Itroducció a la combiatoria Aprederemos e esta secció técicas básicas para cotar, aplicadas a diferetes aspectos: Cotar los elemetos de u cojuto, como por ejemplo los elemetos de A B o los de A B, co

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k)

. Una de las aplicaciones más importantes de los coeficientes binomiales es el Binomio de Newton : n k) Permutacioes. E Matemáticas, dado u cojuto fiito co todos sus elemetos diferetes, llamamos permutació a cada ua de las posibles ordeacioes de los elemetos de dicho cojuto. Por ejemplo, e el cojuto 1, 2,

Más detalles

Seminario de problemas Curso Hoja 12

Seminario de problemas Curso Hoja 12 Semiario de problemas Curso 014-15 Hoja 1 78. Resolver el siguiete sistema de ecuacioes dode x, y, z so reales positivos: x y z 8 x 1 y 4 z 9 10 Solució: E la figura CDE, EFG, GHA y ABC so triágulos rectágulos

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

Números racionales. Caracterización.

Números racionales. Caracterización. Números reales Matemáticas I Aplicadas a las Ciecias Sociales 1 Números racioales. Caracterizació. ecuerda que u úmero r es racioal si se puede poer e forma de fracció de úmeros eteros de la forma a b

Más detalles

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11.

Cód. Carrera: Área de Matemática Fecha: MODELO DE RESPUESTAS Objetivos 1 al 11. rueba Itegral Lapso 03-7-76-77 /0 Uiversidad Nacioal Abierta Matemática I (Cód. 7-76-77) icerrectorado Académico Cód. Carrera: 6-36-80-08- -60-6-6-63 Fecha: 0 0-0 MODELO DE RESUESTAS Objetivos al. OBJ

Más detalles

(, ) ( ) ( ) ( ) ( ) TEMA 1: Función Compleja de Variable Compleja. Revisión de números complejos y sus operaciones.

(, ) ( ) ( ) ( ) ( ) TEMA 1: Función Compleja de Variable Compleja. Revisión de números complejos y sus operaciones. TEMA : Fució Compleja de Variable Compleja Revisió de úmeros complejos y sus operacioes. Defiició: Se deomia úmero complejo a todo par de úmeros reales: =, y ; C ; R ; y R Ejemplo: (,3) : Compoete real

Más detalles

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común:

Factorizar es escribir o representar una expresión algebraica como producto de sus factores: Factor común: PERIODO I FACTORIZACIÓN Factorizar es escribir o represetar ua expresió algebraica como producto de sus factores: Ejemplo: x 4 = (x + ) (x ) = (x + ) (x + ) (x ) Ua expresió queda completamete factorizada

Más detalles

Introducción a los métodos lineales en dominio de la frecuencia.

Introducción a los métodos lineales en dominio de la frecuencia. Dr. Mario Estévez Báez Capítulo 5 Itroducció a los métodos lieales e domiio de la frecuecia. 1.1 Aálisis armóico. El aálisis armóico surgió y se desarrolló iicialmete como ua útil herramieta para la Física

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

Tema 3. Series de Fourier. Análisis de Espectros

Tema 3. Series de Fourier. Análisis de Espectros Idice: Señales periódicas. Aálisis de Simetría Simetría Par Simetría Impar Simetría de Media Oda Simetría de Cuarto de Oda Señales Ortogoales Prof. Raquel Frías Aálisis de Señales 1 1. Señales Periódicas

Más detalles